Injector Experimental Progress

Size: px
Start display at page:

Download "Injector Experimental Progress"

Transcription

1 Injector Experimental Progress LCLS TAC Meeting December John Schmerge for the GTF Team

2 GTF Group John Schmerge Paul Bolton Steve Gierman Cecile Limborg Brendan Murphy Dave Dowell Leader Laser Accelerator Simulations Laser Accelerator

3 Outline Review 2000 results and 2001 goals 2001 transverse measurements BNL transverse measurements 2001 longitudinal measurements Laser Upgrade Control System Upgrade 2002 Plans Conclusions

4 Emittance Measurement 2000 (presented at last TAC meeting)

5 2001 Plans (presented at last TAC meeting) Optimize the laser spatial profile Measure QE as a function of position on the cathode Demonstrate low emittance using temporally shaped laser pulses Measure emittance versus charge Measure the emittance as a function of longitudinal position at the gun exit

6 Laser Transverse Profile

7 QE vs Position QE = 3.6 ± June Yposition mm Xposition mm

8 Emittance Measurement Technique Quadrupole Scan Technique Measure beam size vs quadrupole current or strength. Background subtracted image rms spot size calculation using projection cut off at 5% of maximum

9 Quad Scan Fit ± 31 pc 2.18 kg 1.8 ps uv pulse rms beamwidth (mm) Best Fit: α = 14.6 β = 5.98 m ε n = 1.8 mm mrad k (1/m)

10 Emittance vs Charge ps data 4.3 ps data 2 ps parmela 4 ps parmela Normalized rms emittance ε (mm mrad) Parameters E gun = 110MV/m φ gun = 40 R cat = 1mm B sol 2.0kG E linac = 8.3 MV/m Charge (pc)

11 Laser Pulse Length Measurement Normalized Counts ps FWHM 4.3 ps FWHM Time (ps) Streak camera resolution at 263 nm 1 ps

12 Analysis with Space Charge σ '' x ε 2 = g + σ 3 I γ 3 x A I p ( ) σ + σ x y Assumptions: ε = ε, α = α, β = x y x y At the entrance to the first quadrupole. No significant space charge effects until the end of the second quadrupole. x β y

13 Effects of Space Charge RMS spot size (µm) εn = 1.69 µm fit no space charge measured RMS spot size (µm) εn = 1.45 µm measured fit with space charge k (m -1 ) k (m -1 ) Q = 280 pc t laser = 4 ps FWHM t ebeam = 3 ps FWHM Typically 20-25% lower emittance when including space charge effects.

14 Effects of YAG screen resolution Emittance as a function of measurement system resolution εnrms (µm) emittance spot size σ rms (µm) resolution (µm) 188 σ beam = σ 2 measured σ 2 resolution

15 Beam spot exiting gun as a function of solenoid current due to 15 m focal length quad field in solenoid. Solenoid field imperfections 143 A 148 A 145 A 149 A 146 A 151 A 147 A 95 MV/m, 40, 300 pc.

16 BNL Measurements 0.8 mm-mrad at 0.5 nc reported at FEL 2001, Darmstadt Yakimenko and Wang et al at ATF Multiple screen emittance measurement intentionally avoiding measurements at waist positions to prevent screen saturation. 0.6 mm-mrad/mm reported at PAC 2001 Graves at SDL Thermal emittance for flat-top distribution Emittance measured at very low charge (2 pc)

17 Longitudinal Measurement Technique similar to quadrupole scan of transverse emittance Gun Booster Spectrometer Determine Longitudinal φ-space at Exit of Gun φ booster Energy Screen Longitudinal : Measure Energy Spectra vs booster phase Transverse: Measure Beam Size vs quad strength

18 Longitudinal Data Analysis 2 2 γ t + 2α t E + β E = E Longitudinal beam ellipse εl π ε β = Uncorrelated l ε γ = Uncorrelated Include distortions by adding quadratic and cubic terms = α t β ± α t β 2 2 εl γ t π β l + a t 2 Bunch Length Energy Spread + b t 3 E Ray trace to fit 5 parameters [ cos( φ ) ( )] RF + t0 cos φrf t1= t0 1 = E0 + ERF ;

19 Measurements Booster Phase = -13 degrees Booster Phase = Minimum Energy Spread Maximum Energy Correlated Energy Spread E Total = -E RF cos(φ RF ) φ = 400 kev or 8 % FWHM PARMELA predicts 2% correlated energy spread Energy (MeV) Longitudinal Distribution After Gun Time (ps)

20 Proposed Explanations Wakefield in the gun Wakefield in gun to linac drift region Ratio of half cell to full cell gun field < 1

21 Proposed Measurements Repeat longitudinal measurement with different Q and t Repeat gun energy measurement Measure space charge limit to determine E field at cathode (Q vs laser energy) Simulate beam with large correlated energy spread Electro-optic pulse length measurement

22 Laser Upgrade Installing a dual pass amplifier after the regen amplifier to boost IR energy > 10 mj. Installing an optical apodizer which produces a flat-top transverse profile without wasting energy. Improving transport losses and clipping to preserve optical image produced in the laser room. Complete Spring 2002

23 Control System Upgrade New Labview control system utilizing a single PC. Multiple frame grabbers allows simultaneous acquisition of laser and e-beam images. All hardware will be computer controlled for fast data acquisition and analysis. Complete Spring 2002

24 FY 2002 Plans Test laser uniformity/energy up to 1 nc Compare YAG and OTR resolution Remeasure longitudinal emittance Install new solenoid Measure gun field balance Winter Winter Winter Spring Spring Measure emittance with temporally shaped laser pulses - expect 1 mm-mrad at 1 nc Summer Measure transverse and longitudinal emittance directly exiting gun Fall Klystron/modulator upgrade Fall

25 Conclusions Measured 1.5 mm-mrad at 100 A (200 pc) Measured 8 % correlated energy spread exiting gun Laser upgrade to generate 1 nc in progress Control system upgrade to speed data acquisition in progress Install new solenoid and improve laser profile to decrease emittance

26 Drift with Space Charge Spot Size vs drift distance Distance (m) x - no space charge x - with space charge y - no space charge y - with space charge RMS spot size (µm) Spot Size vs drift distance Distance (m) x - no space charge x - with space charge y - no space charge y - with space charge RMS spot size (µm) Q = 0 Q = 280 pc with t = 4 ps FWHM

Longitudinal Measurements at the SLAC Gun Test Facility*

Longitudinal Measurements at the SLAC Gun Test Facility* SLAC-PUB-9541 September Longitudinal Measurements at the SLAC Gun Test Facility* D. H. Dowell, P. R. Bolton, J.E. Clendenin, P. Emma, S.M. Gierman, C.G. Limborg, B.F. Murphy, J.F. Schmerge Stanford Linear

More information

Transverse emittance measurements on an S-band photocathode rf electron gun * Abstract

Transverse emittance measurements on an S-band photocathode rf electron gun * Abstract SLAC PUB 8963 LCLS-01-06 October 2001 Transverse emittance measurements on an S-band photocathode rf electron gun * J.F. Schmerge, P.R. Bolton, J.E. Clendenin, F.-J. Decker, D.H. Dowell, S.M. Gierman,

More information

LCLS Injector Prototyping at the GTF

LCLS Injector Prototyping at the GTF LCLS Injector Prototyping at at the GTF John John Schmerge, SLAC SLAC November 3, 3, 23 23 GTF GTF Description Summary of of Previous Measurements Longitudinal Emittance Transverse Emittance Active LCLS

More information

Simulations for photoinjectors C.Limborg

Simulations for photoinjectors C.Limborg Simulations for photoinjectors C.Limborg 1- GTF Simulations Parmela modeling improvements Comparison to experimental results: 2ps & 4ps Sensitivity study Plans for future simulations 2- LCLS Injector Simulations

More information

GTF Transverse and Longitudinal Emittance Data Analysis Technique * J.F. Schmerge, J.E. Clendenin, D.H. Dowell and S.M. Gierman

GTF Transverse and Longitudinal Emittance Data Analysis Technique * J.F. Schmerge, J.E. Clendenin, D.H. Dowell and S.M. Gierman LCLS-TN-5-19 July 5 GTF Transverse and Longitudinal Emittance Data Analysis Technique * J.F. Schmerge, J.E. Clendenin, D.H. Dowell and S.M. Gierman Abstract The SSRL Gun Test Facility (GTF) was built to

More information

Emittance and Quantum Efficiency Measurements from a 1.6 cell S- Band Photocathode RF Gun with Mg Cathode *

Emittance and Quantum Efficiency Measurements from a 1.6 cell S- Band Photocathode RF Gun with Mg Cathode * LCLS-TN-4-3 SLAC PUB 763 September, 4 Emittance and Quantum Efficiency Measurements from a.6 cell S- Band Photocathode RF Gun with Mg Cathode * J.F. Schmerge, J.M. Castro, J.E. Clendenin, D.H. Dowell,

More information

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site 1 Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site Sakhorn Rimjaem (on behalf of the PITZ team) Motivation Photo Injector Test Facility at

More information

Photoinjector design for the LCLS

Photoinjector design for the LCLS SLAC-PUB-8962 LCLS-TN-01-05 Revised November 2001 Photoinjector design for the LCLS P.R. Bolton a, J.E. Clendenin a, D.H. Dowell a, M. Ferrario b, A.S. Fisher a, S.M. Gierman a, R.E. Kirby a, P. Krejcik

More information

Dark Current at Injector. Jang-Hui Han 27 November 2006 XFEL Beam Dynamics Meeting

Dark Current at Injector. Jang-Hui Han 27 November 2006 XFEL Beam Dynamics Meeting Dark Current at Injector Jang-Hui Han 27 November 2006 XFEL Beam Dynamics Meeting Considerations for the guns Ultra-low slice emittance of electron beams higher gradient at the gun cavity solenoid field

More information

Tolerances for magnetic fields in the Gun-To-Linac region of the LCLS Injector *

Tolerances for magnetic fields in the Gun-To-Linac region of the LCLS Injector * Tolerances for magnetic fields in the Gun-To-Linac region of the LCLS Injector * C.Limborg-Deprey January 10, 2006 Abstract In this technical note, we review the computations which led to the tolerances

More information

Alignment requirement for the SRF cavities of the LCLS-II injector LCLSII-TN /16/2014

Alignment requirement for the SRF cavities of the LCLS-II injector LCLSII-TN /16/2014 Alignment requirement for the SRF cavities of the LCLS-II injector LCLS-II TN-14-16 12/16/2014 R. K. Li, C. Papadopoulos, T. O. Raubenheimer, J. F. Schmerge, and F. Zhou December 16, 2014 LCLSII-TN-14-16

More information

Femto-second FEL Generation with Very Low Charge at LCLS

Femto-second FEL Generation with Very Low Charge at LCLS Femto-second FEL Generation with Very Low Charge at LCLS Yuantao Ding, For the LCLS commissioning team X-ray Science at the Femtosecond to Attosecond Frontier workshop May 18-20, 2009, UCLA SLAC-PUB-13525;

More information

LCLS Injector Straight Ahead Spectrometer C.Limborg-Deprey Stanford Linear Accelerator Center 8 th June 2005

LCLS Injector Straight Ahead Spectrometer C.Limborg-Deprey Stanford Linear Accelerator Center 8 th June 2005 LCLS Injector Straight Ahead Spectrometer C.Limborg-Deprey Stanford Linear Accelerator Center 8 th June 2005 Summary The spectrometer design was modified to allow the measurement of uncorrelated energy

More information

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR)

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR) Case Study of IR/THz source for Pump-Probe Experiment at the European XFEL Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR) Introduction Outline Simulations of High-gain FEL (SASE) Simulation

More information

Low slice emittance preservation during bunch compression

Low slice emittance preservation during bunch compression Low slice emittance preservation during bunch compression S. Bettoni M. Aiba, B. Beutner, M. Pedrozzi, E. Prat, S. Reiche, T. Schietinger Outline. Introduction. Experimental studies a. Measurement procedure

More information

Diagnostic Systems for High Brightness Electron Injectors

Diagnostic Systems for High Brightness Electron Injectors Diagnostic Systems for High Brightness Electron Injectors Henrik Loos 48 th ICFA Advanced Beam Dynamics Workshop on Future Light Sources SLAC 2010 1 1 Henrik Loos LCLS Injector Injector Diagnostics Characterize

More information

Generation and characterization of ultra-short electron and x-ray x pulses

Generation and characterization of ultra-short electron and x-ray x pulses Generation and characterization of ultra-short electron and x-ray x pulses Zhirong Huang (SLAC) Compact XFEL workshop July 19-20, 2010, Shanghai, China Ultra-bright Promise of XFELs Ultra-fast LCLS Methods

More information

SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE*

SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE* SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE* E. Panofski #, A. Jankowiak, T. Kamps, Helmholtz-Zentrum Berlin, Berlin, Germany P.N. Lu, J. Teichert, Helmholtz-Zentrum Dresden-Rossendorf,

More information

Microbunching Workshop 2010 March 24, 2010, Frascati, Italy. Zhirong Huang

Microbunching Workshop 2010 March 24, 2010, Frascati, Italy. Zhirong Huang Measurements of the LCLS Laser Heater and its impact on the LCLS FEL Performance Z. Huang for the LCLS commissioning team LCLS 1 1 Outline Introduction LCLS setup and measurements Effects on FEL performance

More information

FACET-II Design Update

FACET-II Design Update FACET-II Design Update October 17-19, 2016, SLAC National Accelerator Laboratory Glen White FACET-II CD-2/3A Director s Review, August 9, 2016 Planning for FACET-II as a Community Resource FACET-II Photo

More information

Observation of Coherent Optical Transition Radiation in the LCLS Linac

Observation of Coherent Optical Transition Radiation in the LCLS Linac Observation of Coherent Optical Transition Radiation in the LCLS Linac Henrik Loos, Ron Akre, Franz-Josef Decker, Yuantao Ding, David Dowell, Paul Emma,, Sasha Gilevich, Gregory R. Hays, Philippe Hering,

More information

Short Pulse, Low charge Operation of the LCLS. Josef Frisch for the LCLS Commissioning Team

Short Pulse, Low charge Operation of the LCLS. Josef Frisch for the LCLS Commissioning Team Short Pulse, Low charge Operation of the LCLS Josef Frisch for the LCLS Commissioning Team 1 Normal LCLS Parameters First Lasing in April 10, 2009 Beam to AMO experiment August 18 2009. Expect first user

More information

Simulations of the IR/THz source at PITZ (SASE FEL and CTR)

Simulations of the IR/THz source at PITZ (SASE FEL and CTR) Simulations of the IR/THz source at PITZ (SASE FEL and CTR) Introduction Outline Simulations of SASE FEL Simulations of CTR Summary Issues for Discussion Mini-Workshop on THz Option at PITZ DESY, Zeuthen

More information

Introduction to the benchmark problem

Introduction to the benchmark problem Introduction to the benchmark problem M. Krasilnikov (DESY) Working group 4: Low emittance electron guns 37th ICFA Beam Dynamics Workshop Future Light Sources 15 19 May 6 DESY, Hamburg, Germany Outline

More information

Introduction. Thermoionic gun vs RF photo gun Magnetic compression vs Velocity bunching. Probe beam design options

Introduction. Thermoionic gun vs RF photo gun Magnetic compression vs Velocity bunching. Probe beam design options Introduction Following the 19/05/04 meeting at CERN about the "CTF3 accelerated programme", a possible french contribution has been envisaged to the 200 MeV Probe Beam Linac Two machine options were suggested,

More information

LOLA: Past, present and future operation

LOLA: Past, present and future operation LOLA: Past, present and future operation FLASH Seminar 1/2/29 Christopher Gerth, DESY 8/5/29 FLASH Seminar Christopher Gerth 1 Outline Past Present Future 8/5/29 FLASH Seminar Christopher Gerth 2 Past

More information

EXPERIMENTAL STUDIES WITH SPATIAL GAUSSIAN-CUT LASER FOR THE LCLS PHOTOCATHODE GUN*

EXPERIMENTAL STUDIES WITH SPATIAL GAUSSIAN-CUT LASER FOR THE LCLS PHOTOCATHODE GUN* SLAC-PUB-14571 EXPERIMETAL STUDIES WITH SPATIAL GAUSSIA-CUT LASER FOR THE LCLS PHOTOCATHODE GU* F. Zhou +, A. Brachmann, P. Emma, S. Gilevich, and Z. Huang SLAC ational Accelerator Laboratory, 575 Sand

More information

Experimental Measurements of the ORION Photoinjector Drive Laser Oscillator Subsystem

Experimental Measurements of the ORION Photoinjector Drive Laser Oscillator Subsystem Experimental Measurements of the ORION Photoinjector Drive Laser Oscillator Subsystem D.T Palmer and R. Akre Laser Issues for Electron RF Photoinjectors October 23-25, 2002 Stanford Linear Accelerator

More information

The New Superconducting RF Photoinjector a High-Average Current & High-Brightness Gun

The New Superconducting RF Photoinjector a High-Average Current & High-Brightness Gun The New Superconducting RF Photoinjector a High-Average Current & High-Brightness Gun Jochen Teichert for the BESSY-DESY-FZD-MBI collaboration and the ELBE crew High-Power Workshop, UCLA, Los Angeles 14

More information

X-band Photoinjector Beam Dynamics

X-band Photoinjector Beam Dynamics X-band Photoinjector Beam Dynamics Feng Zhou SLAC Other contributors: C. Adolphsen, Y. Ding, Z. Li, T. Raubenheimer, and A. Vlieks, Thank Ji Qiang (LBL) for help of using ImpactT code ICFA FLS2010, SLAC,

More information

RF-Gun Experience at PITZ - Longitudinal Phase Space

RF-Gun Experience at PITZ - Longitudinal Phase Space - Collaboration meeting 9th of October 2006 Hamburg University Juliane Rönsch 1 Motivation special device to measure the longitudinal phase space at low momentum typical high energy diagnostics can not

More information

Analysis of Slice Transverse Emittance Evolution in a Photocathode RF Gun. Abstract

Analysis of Slice Transverse Emittance Evolution in a Photocathode RF Gun. Abstract SLAC PUB 868 October 7 Analysis of Slice Transverse Emittance Evolution in a Photocathode RF Gun Z. Huang, Y. Ding Stanford Linear Accelerator Center, Stanford, CA 9439 J. Qiang Lawrence Berkeley National

More information

Development of Soft X-rayX using Laser Compton Scattering

Development of Soft X-rayX using Laser Compton Scattering 26 th Advanced ICFA Beam Dynamics Workshop on Nanometre-Size Colliding Beams September 2-6, 2002 at Lausanne Development of Soft X-rayX Source using Laser Compton Scattering R. Kuroda*, S. Kashiwagi*,

More information

Accelerator Physics Issues of ERL Prototype

Accelerator Physics Issues of ERL Prototype Accelerator Physics Issues of ERL Prototype Ivan Bazarov, Geoffrey Krafft Cornell University TJNAF ERL site visit (Mar 7-8, ) Part I (Bazarov). Optics. Space Charge Emittance Compensation in the Injector

More information

ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ

ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ Orlova Ksenia Lomonosov Moscow State University GSP-, Leninskie Gory, Moscow, 11999, Russian Federation Email: ks13orl@list.ru

More information

Juliane Rönsch Hamburg University. Investigations of the longitudinal phase space at a photo injector for the X-FEL

Juliane Rönsch Hamburg University. Investigations of the longitudinal phase space at a photo injector for the X-FEL Juliane Rönsch Hamburg University Investigations of the longitudinal phase space at a photo injector for the X-FEL Juliane Rönsch 1/15/28 1 Contents Introduction PITZ Longitudinal phase space of a photoinjector

More information

Femto second X ray Pulse Generation by Electron Beam Slicing. F. Willeke, L.H. Yu, NSLSII, BNL, Upton, NY 11973, USA

Femto second X ray Pulse Generation by Electron Beam Slicing. F. Willeke, L.H. Yu, NSLSII, BNL, Upton, NY 11973, USA Femto second X ray Pulse Generation by Electron Beam Slicing F. Willeke, L.H. Yu, NSLSII, BNL, Upton, NY 11973, USA r 2 r 1 y d x z v Basic Idea: When short electron bunch from linac (5MeV, 50pC,100fs)

More information

R&D experiments at BNL to address the associated issues in the Cascading HGHG scheme

R&D experiments at BNL to address the associated issues in the Cascading HGHG scheme R&D experiments at BNL to address the associated issues in the Cascading HGHG scheme Li Hua Yu for DUV-FEL Team National Synchrotron Light Source Brookhaven National Laboratory FEL2004 Outline The DUVFEL

More information

6.5 Electron Beamline System Description

6.5 Electron Beamline System Description 6.5 Electron Beamline 6.5.1 System Description The electron beamline for the photoinjector consists of the rf gun (see Section 6.3), Linac 0 (L0, also commonly called the booster accelerator), and the

More information

Multiparameter optimization of an ERL. injector

Multiparameter optimization of an ERL. injector Multiparameter optimization of an ERL injector R. Hajima a, R. Nagai a a Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki 319 1195 Japan Abstract We present multiparameter optimization of an

More information

6 Injector TECHNICAL SYNOPSIS

6 Injector TECHNICAL SYNOPSIS 6 Injector TECHNICAL SYNOPSIS The injector for the LCLS is required to produce a single 15-MeV bunch of charge 1. nc and 1 A peak current at a repetition rate of 12 Hz with a normalized rms transverse

More information

Commissioning of the new Injector Laser System for the Short Pulse Project at FLASH

Commissioning of the new Injector Laser System for the Short Pulse Project at FLASH Commissioning of the new Injector Laser System for the Short Pulse Project at FLASH Uni Hamburg tim.plath@desy.de 05.11.2013 Supported by BMBF under contract 05K10GU2 & FS FLASH 301 Motivation short pulses

More information

Investigations on the electron bunch distribution in the longitudinal phase space at a laser driven RF-electron source for the European X-FEL

Investigations on the electron bunch distribution in the longitudinal phase space at a laser driven RF-electron source for the European X-FEL Juliane Rönsch Universität Hamburg / DESY Investigations on the electron bunch distribution in the longitudinal phase space at a laser driven RF-electron source for the European X-FEL 5/27/2009 1 Contents

More information

Projected and slice emittance measurements using multi-quadrupole scan and streak readout at PITZ

Projected and slice emittance measurements using multi-quadrupole scan and streak readout at PITZ Projected and slice emittance measurements using multi-quadrupole scan and streak readout at PITZ R. Spesyvtsev, DESY, Zeuthen site September 14, 29 1 Introduction The Photo Injector Test Facility at DESY,

More information

LCLS-II SCRF start-to-end simulations and global optimization as of September Abstract

LCLS-II SCRF start-to-end simulations and global optimization as of September Abstract SLAC National Accelerator Lab LCLS-II TN-17-4 February 217 LCLS-II SCRF start-to-end simulations and global optimization as of September 216 G. Marcus SLAC, Menlo Park, CA 9425 J. Qiang LBNL, Berkeley,

More information

ICFA ERL Workshop Jefferson Laboratory March 19-23, 2005 Working Group 1 summary Ilan Ben-Zvi & Ivan Bazarov

ICFA ERL Workshop Jefferson Laboratory March 19-23, 2005 Working Group 1 summary Ilan Ben-Zvi & Ivan Bazarov ICFA ERL Workshop Jefferson Laboratory March 19-23, 2005 Working Group 1 summary Ilan Ben-Zvi & Ivan Bazarov Sincere thanks to all WG1 participants: Largest group, very active participation. This summary

More information

VELA/CLARA as Advanced Accelerator Studies Test-bed at Daresbury Lab.

VELA/CLARA as Advanced Accelerator Studies Test-bed at Daresbury Lab. VELA/CLARA as Advanced Accelerator Studies Test-bed at Daresbury Lab. Yuri Saveliev on behalf of VELA and CLARA teams STFC, ASTeC, Cockcroft Institute Daresbury Lab., UK Outline VELA (Versatile Electron

More information

FACET-II Design, Parameters and Capabilities

FACET-II Design, Parameters and Capabilities FACET-II Design, Parameters and Capabilities 217 FACET-II Science Workshop, October 17-2, 217 Glen White Overview Machine design overview Electron systems Injector, Linac & Bunch compressors, Sector 2

More information

Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ

Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ Introduction Outline Optimization of Electron Beams Calculations of CTR/CDR Pulse Energy Summary & Outlook Prach Boonpornprasert

More information

The design for the LCLS rf photo-injector

The design for the LCLS rf photo-injector SLAC-PUB-8054 January 1999 The design for the LCLS rf photo-injector R. Alley, V. Bharadwaj, J. Clendenin, P. Emma, A. Fisher, J. Frisch, T. Kotseroglou, R. Miller, D. T. Palmer, J. Schmerge, J. C. Sheppard,

More information

RF Gun Photo-Emission Model for Metal Cathodes Including Time Dependent Emission

RF Gun Photo-Emission Model for Metal Cathodes Including Time Dependent Emission RF Gun Photo-Emission Model for Metal Cathodes Including Time Dependent Emission SLAC-PUB-117 February 6 (A) J. F. SCHMERGE, J. E. CLENDENIN, D. H. DOWELL, AND S. M. GIERMAN SLAC, Stanford University,

More information

PAL LINAC UPGRADE FOR A 1-3 Å XFEL

PAL LINAC UPGRADE FOR A 1-3 Å XFEL PAL LINAC UPGRADE FOR A 1-3 Å XFEL J. S. Oh, W. Namkung, Pohang Accelerator Laboratory, POSTECH, Pohang 790-784, Korea Y. Kim, Deutsches Elektronen-Synchrotron DESY, D-603 Hamburg, Germany Abstract With

More information

RF Design for the Linac Coherent Light Source (LCLS) Injector *

RF Design for the Linac Coherent Light Source (LCLS) Injector * SLAC PUB 1767 September, 24 RF Design for the Linac Coherent Light Source (LCLS) Injector * D.H. Dowell, L. Bentson, R.F. Boyce, S.M. Gierman, J. Hodgson, Z. Li, C. Limborg-Deprey, J.F. Schmerge, L. Xiao,

More information

Motivation of emission studies at PITZ

Motivation of emission studies at PITZ Motivation of emission studies at PITZ PITZ activities to understand the discrepancies between measurements and simulations in: Transverse phase space Optimum machine parameters Auxiliary measurements

More information

THERMAL EMITTANCE MEASUREMENTS AT THE SwissFEL INJECTOR TEST FACILITY

THERMAL EMITTANCE MEASUREMENTS AT THE SwissFEL INJECTOR TEST FACILITY THERMAL EMITTANCE MEASUREMENTS AT THE SwissFEL INJECTOR TEST FACILITY E. Prat, S. Bettoni, H. H. Braun, M. C. Divall, R. Ganter, T. Schietinger, A. Trisorio, C. Vicario PSI, Villigen, Switzerland C. P.

More information

What have we learned from the LCLS injector?*

What have we learned from the LCLS injector?* SLAC-PUB-14644 LCLS-TN-11-4 October 19, 2011 What have we learned from the LCLS injector?* Feng Zhou and Axel Brachmann for the LCLS injector team The LCLS injector reliably delivered a high quality electron

More information

FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE*

FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE* Proceedings of FEL014, Basel, Switzerland FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE* F. Zhou, K. Bane, Y. Ding, Z. Huang, and H. Loos, SLAC, Menlo Park, CA 9405, USA Abstract Coherent optical transition

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHYS2443 Beating the shot-noise limit Supplementary Materials Append. S1. Coulomb expansion rate of bunches with excess density of charged particles Here we show

More information

Optimum beam creation in photoinjectors using spacecharge expansion II: experiment

Optimum beam creation in photoinjectors using spacecharge expansion II: experiment Optimum beam creation in photoinjectors using spacecharge expansion II: experiment J. Rosenzweig, A. Cook, M. Dunning, R.J. England, G. Travish, UCLA P. Musumeci, C. Vicario, D. Filippetto, M. Ferrario,

More information

TTF and VUV-FEL Injector Commissioning

TTF and VUV-FEL Injector Commissioning TESLA Collaboration Meeting Sep. 6-8, 2004 Orsay TTF and VUV-FEL Injector Commissioning Siegfried Schreiber, Klaus Floettmann DESY Brief description of the injector Basic measurements Preliminary results

More information

Excitements and Challenges for Future Light Sources Based on X-Ray FELs

Excitements and Challenges for Future Light Sources Based on X-Ray FELs Excitements and Challenges for Future Light Sources Based on X-Ray FELs 26th ADVANCED ICFA BEAM DYNAMICS WORKSHOP ON NANOMETRE-SIZE COLLIDING BEAMS Kwang-Je Kim Argonne National Laboratory and The University

More information

Potential use of erhic s ERL for FELs and light sources ERL: Main-stream GeV e - Up-gradable to 20 + GeV e -

Potential use of erhic s ERL for FELs and light sources ERL: Main-stream GeV e - Up-gradable to 20 + GeV e - Potential use of erhic s ERL for FELs and light sources Place for doubling energy linac ERL: Main-stream - 5-10 GeV e - Up-gradable to 20 + GeV e - RHIC Electron cooling Vladimir N. Litvinenko and Ilan

More information

ERL FOR LOW ENERGY ELECTRON COOLING AT RHIC (LEREC)*

ERL FOR LOW ENERGY ELECTRON COOLING AT RHIC (LEREC)* ERL FOR LOW ENERGY ELECTRON COOLING AT RHIC (LEREC)* J. Kewisch, M. Blaskiewicz, A. Fedotov, D. Kayran, C. Montag, V. Ranjbar Brookhaven National Laboratory, Upton, New York Abstract Low-energy RHIC Electron

More information

LCLS Commissioning Status

LCLS Commissioning Status LCLS Commissioning Status Paul Emma (for the LCLS Commissioning Team) June 20, 2008 LCLS ANL LLNL UCLA FEL Principles Electrons slip behind EM wave by λ 1 per undulator period ( (λ u ) x K/γ e λ u v x

More information

Emittance and energy spread measurements of relativistic electrons from laser-driven accelerator

Emittance and energy spread measurements of relativistic electrons from laser-driven accelerator Emittance and energy spread measurements of relativistic electrons from laser-driven accelerator OUTLINE ALPHA-X Project Introduction on laser wakefield accelerator (LWFA) LWFA as a light source Electron

More information

Multi-quadrupole scan for emittance determination at PITZ

Multi-quadrupole scan for emittance determination at PITZ Multi-quadrupole scan for emittance determination at PITZ Susan Skelton University of St Andrews, Scotland Email: ses@st-andrews.ac.uk DESY Zeuthen Summer Student Program th th July 5 September 8 7 PITZ

More information

Lab Report TEMF - TU Darmstadt

Lab Report TEMF - TU Darmstadt Institut für Theorie Elektromagnetischer Felder Lab Report TEMF - TU Darmstadt W. Ackermann, R. Hampel, M. Kunze T. Lau, W.F.O. Müller, S. Setzer, T. Weiland, I. Zagorodnov TESLA Collaboration Meeting

More information

SwissFEL INJECTOR DESIGN: AN AUTOMATIC PROCEDURE

SwissFEL INJECTOR DESIGN: AN AUTOMATIC PROCEDURE Proceedings of FEL03, New York, NY, USA SwissFEL INJECTOR DESIGN: AN AUTOMATIC PROCEDURE S. Bettoni, M. Pedrozzi, S. Reiche, PSI, Villigen, Switzerland Abstract The first section of FEL injectors driven

More information

Start-to-End Simulations

Start-to-End Simulations AKBP 9.3 Case Study for 100 µm SASE FEL Based on PITZ Accelerator for Pump-Probe Experiment at the European XFEL Start-to-End Simulations Outline Introduction Beam Optimization Beam Transport Simulation

More information

Simulation of transverse emittance measurements using the single slit method

Simulation of transverse emittance measurements using the single slit method Simulation of transverse emittance measurements using the single slit method Rudolf Höfler Vienna University of Technology DESY Zeuthen Summer Student Program 007 Abstract Emittance measurements using

More information

Excitements and Challenges for Future Light Sources Based on X-Ray FELs

Excitements and Challenges for Future Light Sources Based on X-Ray FELs Excitements and Challenges for Future Light Sources Based on X-Ray FELs 26th ADVANCED ICFA BEAM DYNAMICS WORKSHOP ON NANOMETRE-SIZE COLLIDING BEAMS Kwang-Je Kim Argonne National Laboratory and The University

More information

Using IMPACT T to perform an optimization of a DC gun system Including merger

Using IMPACT T to perform an optimization of a DC gun system Including merger Using IMPACT T to perform an optimization of a DC gun system Including merger Xiaowei Dong and Michael Borland Argonne National Laboratory Presented at ERL09 workshop June 10th, 2009 Introduction An energy

More information

Physical design of FEL injector based on performance-enhanced EC-ITC RF gun

Physical design of FEL injector based on performance-enhanced EC-ITC RF gun Accepted by Chinese Physics C Physical design of FEL injector based on performance-enhanced EC-ITC RF gun HU Tong-ning( 胡桐宁 ) 1, CHEN Qu-shan( 陈曲珊 ) 1, PEI Yuan-ji( 裴元吉 ) 2; 1), LI Ji( 李骥 ) 2, QIN Bin(

More information

Laser acceleration of electrons at Femilab/Nicadd photoinjector

Laser acceleration of electrons at Femilab/Nicadd photoinjector Laser acceleration of electrons at Femilab/Nicadd photoinjector P. Piot (FermiLab), R. Tikhoplav (University of Rochester) and A.C. Melissinos (University of Rochester) FNPL energy upgrade Laser acceleration

More information

Lecture 4: Emittance Compensation. J.B. Rosenzweig USPAS, UW-Madision 6/30/04

Lecture 4: Emittance Compensation. J.B. Rosenzweig USPAS, UW-Madision 6/30/04 Lecture 4: Emittance Compensation J.B. Rosenzweig USPAS, UW-Madision 6/30/04 Emittance minimization in the RF photoinjector Thermal emittance limit Small transverse beam size Avoid metal cathodes? n,th

More information

Modeling of the secondary electron emission in rf photocathode guns

Modeling of the secondary electron emission in rf photocathode guns Modeling of the secondary electron emission in rf photocathode guns J.-H. Han, DESY Zeuthen 8 June 2004 Joint Uni. Hamburg and DESY Accelerator Physics Seminar Contents 1. Necessity of secondary electron

More information

Low energy high brilliance beam characterization

Low energy high brilliance beam characterization Low energy high brilliance beam characterization J. Bähr, DESY, Zeuthen, Germany Abstract Low energy high brilliance beam characterization plays an important role for electron sources and injectors of

More information

Experimental study of nonlinear laser-beam Thomson scattering

Experimental study of nonlinear laser-beam Thomson scattering Experimental study of nonlinear laser-beam Thomson scattering T. Kumita, Y. Kamiya, T. Hirose Department of Physics, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan I.

More information

Laser Heater Integration into XFEL. Update. Yauhen Kot XFEL Beam Dynamics Meeting

Laser Heater Integration into XFEL. Update. Yauhen Kot XFEL Beam Dynamics Meeting Laser Heater Integration into XFEL. Update. Yauhen Kot XFEL Beam Dynamics Meeting 5..8 Outline Overview about the main components and space margins Optics at the laser heater and diagnostics - FODO + parabola-like

More information

LCLS Accelerator Parameters and Tolerances for Low Charge Operations

LCLS Accelerator Parameters and Tolerances for Low Charge Operations LCLS-TN-99-3 May 3, 1999 LCLS Accelerator Parameters and Tolerances for Low Charge Operations P. Emma SLAC 1 Introduction An option to control the X-ray FEL output power of the LCLS [1] by reducing the

More information

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center Free-electron laser SACLA and its basic Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center Light and Its Wavelength, Sizes of Material Virus Mosquito Protein Bacteria Atom

More information

Photo Injector Test facility at DESY, Zeuthen site

Photo Injector Test facility at DESY, Zeuthen site Photo Injector Test facility at DESY, Zeuthen site PITZ EXPERIENCE ON THE EXPERIMENTAL OPTIMIZATION OF THE RF PHOTO INJECTOR FOR THE EUROPEAN XFEL Mikhail Krasilnikov (DESY) for the PITZ Team FEL 2013

More information

Generation and Dynamics of Magnetized Beams for High-Energy Electron Cooling *

Generation and Dynamics of Magnetized Beams for High-Energy Electron Cooling * Northern Illinois Center for Accelerator and Detector Development Generation and Dynamics of Magnetized Beams for High-Energy Electron Cooling * Philippe Piot, Department of Physics and Northern Illinois

More information

High Gradient Tests of Dielectric Wakefield Accelerating Structures

High Gradient Tests of Dielectric Wakefield Accelerating Structures High Gradient Tests of Dielectric Wakefield Accelerating Structures John G. Power, Sergey Antipov, Manoel Conde, Felipe Franchini, Wei Gai, Feng Gao, Chunguang Jing, Richard Konecny, Wanming Liu, Jidong

More information

X-Band RF Harmonic Compensation for Linear Bunch Compression in the LCLS

X-Band RF Harmonic Compensation for Linear Bunch Compression in the LCLS SLAC-TN-5- LCLS-TN-1-1 November 1,1 X-Band RF Harmonic Compensation for Linear Bunch Compression in the LCLS Paul Emma SLAC November 1, 1 ABSTRACT An X-band th harmonic RF section is used to linearize

More information

Emittance Compensation. J.B. Rosenzweig ERL Workshop, Jefferson Lab 3/20/05

Emittance Compensation. J.B. Rosenzweig ERL Workshop, Jefferson Lab 3/20/05 Emittance Compensation J.B. Rosenzweig ERL Workshop, Jefferson Lab 3//5 Emittance minimization in the RF photoinjector Thermal emittance limit Small transverse beam size Avoid metal cathodes? " n,th #

More information

High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory

High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory J. Duris 1, L. Ho 1, R. Li 1, P. Musumeci 1, Y. Sakai 1, E. Threlkeld 1, O. Williams 1, M. Babzien 2,

More information

1. Beam based alignment Laser alignment Solenoid alignment 2. Dark current 3. Thermal emittance

1. Beam based alignment Laser alignment Solenoid alignment 2. Dark current 3. Thermal emittance Beam based alignment, Dark current and Thermal emittance measurements J-H.Han,M.Krasilnikov,V.Miltchev, PITZ, DESY, Zeuthen 1. Beam based alignment Laser alignment Solenoid alignment 2. Dark current 3.

More information

UV laser pulse temporal profile requirements for the LCLS injector - Part I - Fourier Transform limit for a temporal zero slope flattop

UV laser pulse temporal profile requirements for the LCLS injector - Part I - Fourier Transform limit for a temporal zero slope flattop UV laser pulse temporal profile requirements for the LCLS injector - Part I - Fourier Transform limit for a temporal zero slope flattop C. Limborg-Deprey and P.R. Bolton, Stanford Linear Accelerator Center,

More information

START-TO-END SIMULATIONS FOR IR/THZ UNDULATOR RADIATION AT PITZ

START-TO-END SIMULATIONS FOR IR/THZ UNDULATOR RADIATION AT PITZ Proceedings of FEL2014, Basel, Switzerland MOP055 START-TO-END SIMULATIONS FOR IR/THZ UNDULATOR RADIATION AT PITZ P. Boonpornprasert, M. Khojoyan, M. Krasilnikov, F. Stephan, DESY, Zeuthen, Germany B.

More information

Linac optimisation for the New Light Source

Linac optimisation for the New Light Source Linac optimisation for the New Light Source NLS source requirements Electron beam requirements for seeded cascade harmonic generation LINAC optimisation (2BC vs 3 BC) CSR issues energy chirp issues jitter

More information

High quality beam generation and its application at Waseda University

High quality beam generation and its application at Waseda University High quality beam generation and its application at Waseda University Shigeru Kashiwagi, Yoshimasa Hama, Hiroki Ishikawa, Ryunosuke Kuroda, Takashi Oshima, Masakazu Washio, Akira Yada Advanced Rsearch

More information

X-band RF driven hard X-ray FELs. Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012

X-band RF driven hard X-ray FELs. Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012 X-band RF driven hard X-ray FELs Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012 Motivations & Contents Motivations Develop more compact (hopefully cheaper) FEL drivers, L S C X-band (successful

More information

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration SPARCLAB Source For Plasma Accelerators and Radiation Compton with Laser And Beam On behalf of SPARCLAB collaboration EMITTANCE X X X X X X X X 2 BRIGHTNESS (electrons) B n 2I nx ny A m 2 rad 2 The current

More information

Towards a Low Emittance X-ray FEL at PSI

Towards a Low Emittance X-ray FEL at PSI Towards a Low Emittance X-ray FEL at PSI A. Adelmann, A. Anghel, R.J. Bakker, M. Dehler, R. Ganter, C. Gough, S. Ivkovic, F. Jenni, C. Kraus, S.C. Leemann, A. Oppelt, F. Le Pimpec, K. Li, P. Ming, B. Oswald,

More information

Beam Dynamics and SASE Simulations for XFEL. Igor Zagorodnov DESY

Beam Dynamics and SASE Simulations for XFEL. Igor Zagorodnov DESY Beam Dynamics and SASE Simulations for XFEL Igor Zagorodnov 4.. DESY Beam dynamics simulations for the European XFEL Full 3D simulation method ( CPU, ~ hours) Gun LH M, M,3 E = 3 MeV E = 7 MeV E 3 = 4

More information

Medical Applications of Compact Laser-Compton Light Source

Medical Applications of Compact Laser-Compton Light Source Medical Applications of Compact Laser-Compton Light Source Y. Hwang 1, D. J. Gibson 2, R. A. Marsh 2, G. G. Anderson 2, T. Tajima 1, C. P. J. Barty 2 1 University of California, Irvine 2 Lawrence Livermore

More information

Time resolved transverse and longitudinal phase space measurements at the high brightness photo injector PITZ

Time resolved transverse and longitudinal phase space measurements at the high brightness photo injector PITZ Time resolved transverse and longitudinal phase space measurements at the high brightness photo injector PITZ 1. Motivation 2. Transverse deflecting structure 3. Longitudinal phase space tomography 4.

More information

Beam dynamics studies for PITZ using a 3D full-wave Lienard-Wiechert PP code

Beam dynamics studies for PITZ using a 3D full-wave Lienard-Wiechert PP code Beam dynamics studies for PITZ using a 3D full-wave Lienard-Wiechert PP code Y. Chen, E. Gjonaj, H. De Gersem, T. Weiland TEMF, Technische Universität Darmstadt, Germany DESY-TEMF Collaboration Meeting

More information

Development of Cs 2 Te photocathode RF gun system for compact THz SASE-FEL

Development of Cs 2 Te photocathode RF gun system for compact THz SASE-FEL Development of Cs 2 Te photocathode RF gun system for compact THz SASE-FEL R. Kuroda, H. Ogawa, N. Sei, H. Toyokawa, K. Yagi-Watanabe, M. Yasumoto, M. Koike, K. Yamada, T. Yanagida*, T. Nakajyo*, F. Sakai*

More information