[ ( )] + exp 2α / ( k B T) [ ] + exp 3α / k B T

Size: px
Start display at page:

Download "[ ( )] + exp 2α / ( k B T) [ ] + exp 3α / k B T"

Transcription

1 hermal Physics Homework #10 (optional) (19 points) 1 Your work on this homework set will not be accepted after 3 p.m. on December 4 (W) 1. (3 points) A common mistake people make when they try to calculate a partition function and a partition function of a simple system Consider a simple microscopic model for which the energy eigenstates are labeled by a quantum number n and the corresponding energy eigenvalues are given by the following table: ε n n α 3 α 4 2α 5 6 3α 7 3α 8 3α he partition function is then given by Z( ) =1 + 2 exp α / k B [ ( )] + exp 2α / ( k B ) [ ]+ 4exp[ 3α / ( k B ) ], but not by Z( ) =1 + exp α / k B [ ( )] + exp 2α / ( k B ) [ ] + exp 3α / k B [ ( )]. Don t forget that the partition function is the sum of the Boltzmann factors for all the eigenstates (i.e., the sum over the quantum number n), not the sum of the Boltzmann factors for all the distinct energy eigenvalues. Even when two or more eigenstates have the same energy eigenvalue (i.e., these eigenstates are degenerate), the Boltzmann factor for each eigenstate must contribute to the partition function.

2 Consider another microscopic model with the following nine energy eigenstates: 2 s ε s δ 3 2δ 4 δ 5 δ 6 2δ 7 δ 8 2δ 9 2δ where ε s is the energy eigenvalue for eigenstate s. (a) (1 point) Find the partition function for this model as a function of temperature. Hint: 1 + 4a + 4a 2 = 1+ 2a ( ) 2. (b) (1 point) Find the Helmholtz free energy F of this model as a function of temperature. (c) (1 point) Find the internal energy U of this model as a function of temperature. As hints, the Mathematica plots for ˆ F F δ and ˆ U U δ as functions of ˆ k B δ are shown below:

3 2. (7 points) he Helmholtz free energy for the blackbody radiation at temperature 3 When you are asked to sketch a function f(x) by hand below, make sure: (i) Label each axis with the symbol for the corresponding physical quantity. (ii) he label for each axis must also include the SI unit for the physical quantity. (iii) Clearly indicate the location of the origin for each graph. (iv) Clearly show whether the slope at x = 0 of the curve for the function is zero, positive, or negative. Electromagnetic radiation inside a container of volume V is in thermal equilibrium with the container at temperature. he container acts as a heat reservoir for the radiation. he Helmholtz free energy for the radiation is given by bv( k B ) 4 / 3, where b is a positive constant. (a) (1 point) Sketch the Helmholtz free energy as a function of for constant V. (b) (2 points) Find the internal energy of the radiation as a function of and V. Sketch the internal energy as a function of for constant V. (c) (2 points) Find the pressure of the radiation as a function of and V. Sketch the pressure as a function of for constant V. (d) (2 points) Find the entropy of the radiation as a function of and V. Sketch the entropy as a function of for constant V. 3. (4 points) he Einstein model of a crystalline solid By the end of nineteenth century, the experimental data for an elemental solid such as diamond had shown that the molar heat capacity at constant volume c v remained close to 3R at high temperatures while it approached zero as the temperature was decreased toward the absolute zero. his low-temperature behavior was especially puzzling because statistical mechanics combined with classical mechanics could not explain such behavior. In 1907, just two years after his so-called annus mirabilis (i.e., 1905, when he submitted his Ph. D. dissertation proposing a new way of determining the molecular size and published four papers: one on the Brownian motion, two on the special relativity, and one on the photoelectric effect. Well, wow!), Einstein proposed a model for a crystalline solid insulator (i.e., no free electrons) to explain the puzzling low-temperature behavior of c v.

4 he Einstein model assumes: (1) he atoms are arranged on a crystalline lattice. Einstein didn t really have an evidence for atomic lattice structure inside a solid (in 1912, Laue published the theory and experimental results for x-ray diffraction by crystalline lattices, and in the following year, W.H. Bragg and W. L. Bragg (a father and a son) analyzed crystal structures of NaCl, KCl, and KBr, etc.), and I m not even sure whether he assumed a crystal structure for the atoms in his article. However, all we need to assume in this model is that the atoms stay around fixed locations inside the solid and that they are vibrating around these locations. (2) he atoms are distinguishable in this model because each atom stays around a particular lattice location and we can label each atom by its lattice location. herefore, there is no need for a 1/N! factor in the partition function. (3) In this model, we therefore have N thermally vibrating atoms or N non-interacting 3- dimensional harmonic oscillators. o make the model even simpler, we assume that these harmonic oscillators have a common frequency ω. Assigning one common frequency for all the atoms is obviously a drastic over-simplification, and to improve on this model, we must take into account a distribution of frequencies for the vibrations of the atoms. hat was partially accomplished by the Debye model, which we will discuss later. 4 he Einstein model = 3N non-interacting harmonic oscillators with frequency ω he energy eigenstates for the Einstein model Each energy eigenstate for the Einstein model is labeled by 3N integers: n (1) x,n (1) y,n (1) z ;n (2) x,n (2) y,n (2) (N z ;...;n ) ( x n N) ( N) { y n z }, (i) where n α is the quantum number for the oscillation of the i-th atom along the α-direction (α = x, y, or z) and n (i) α = 0, 1, 2, 3,...,. he energy eigenvalues for the Einstein model he energy eigenvalue is then given by { } = ε (i ) (i ) n α = hωn α E nα (i) N i =1 α =x, y, z N i =1 α = x, y, z = hωn x (1) + hωn y (1) + hωn z (1) hωn x (N ) + hωn y (N ) + hωn z (N ) In a quantum mechanics course, you must have learned that the energy eigenvalue of a onedimensional harmonic oscillator is given by

5 # ε n = hω n + 1 & (. $ 2' 5 In the above energy eigenvalue, we set the ground state energy for each one-dimensional harmonic oscillator with n (i) α = 0 to be zero instead of ( 1 / 2)hω since we can set the zero energy wherever we want. In 1901, Planck first introduced discrete energy values for a harmonic oscillator in his study of blackbody radiation, and only six years later Einstein adopted this idea in his model for atomic vibrations in a solid insulator. he partition function for the Einstein model Since the total energy eigenvalue is simply a sum of the 3N independent energy eigenvalues as in the monatomic ideal gas model, applying the decomposition formula in Sec.12.9 of the text, we have Z, N harmonic oscillator: ( ) = Z 1 ( ) 3N, where Z 1 ( ) is the partition function for a single one-dimensional Z(, N) = & exp ε n / k B ' n =0 ( ) * [ ( )] = & exp E / ' n= 0 [ ( )] n 1 = [ 1 exp( E / ) ] 3N ( ) * 3 N 3N = & exp nhω / k B ' n= 0 [ ( )] ( ) * 3N where we have introduced the Einstein temperature defined by E hω k B that roughly divides the low-temperature regime from the high-temperature regime for this model, and we have also used the following formula: a n n=0 = 1 1 a ( if a <1). (a) (1 point) Using h ~ O( J sec), ω ~ O( rad / sec), k B ~ O J / K ( ), ( ). estimate the order of magnitude for the Einstein temperature to be E ~ O K Of course, Einstein could not estimate this temperature from an experimental value for ω because such data did not exist yet. Instead, he regarded this temperature as a parameter to be determined by fitting the experimental data for c v ( ) with the theoretical curve for c v ( ) derived from his model. He used the data for diamond and obtained E 1320 K.

6 (b) (1 point) Find the Helmholtz free energy F(, n) for the Einstein model as a function of temperature and the mole number n of the atoms (use Nk B = nr to replace N with n). As a hint, a Mathematica plot for F / ( 3nR E ) as a function of ˆ / E is shown below. he Helmholtz free energy is a decreasing function of temperature. 6 F / ( 3nR E ) vs. / E U / ( 3nR E ) vs. / E (c) (1 point) Find the internal energy U(,n) for the Einstein model as a function of temperature and the mole number n of the atoms. As a hint, a Mathematica plot for U / ( 3nR E ) as a function of ˆ / E is shown above he internal energy is an increasing function of temperature and at high temperatures ( >> E ), U 3nR. (d) (1 point)find the molar heat capacity at constant volume c v ( ) for the Einstein model as a function of temperature. As a hint, a Mathematica plot for c v R as a function of ˆ / E is shown below. he molar heat capacity at constant volume is an increasing function of temperature: it converges to zero as approaches zero while at high temperatures ( >> E ), c v 3R. c V / R vs. / E As mentioned above, the small values for c v at low temperatures was a mystery until Einstein came up with this model. But the story didn t end there, because more accurate data for the lowtemperature molar heat capacity showed c v 3, clearly in disagreement with the Einstein model. he Debye model (1912) eventually explained this low-temperature behavior.

7 c v approaches zero as the temperature approaches absolute zero, because when << E, ( ) = E / >>1 and therefore the Boltzmann factor for the first excited state for the ( ) hω / k B [ ] <<1 harmonic oscillation along a given direction for an atom is very small or exp hω / k B so that most atoms in the model would be in the ground state with zero energy and varying the temperature would not change the internal energy much (i.e., a small value for c v ). Clearly, it is the discreteness of the energy eigenvalue of a quantum harmonic oscillator or the energy gap hω between the ground state and the first excite state that is responsible for the low-temperature behavior of c v. It is remarkable that the macroscopic quantity c v had been a clue for the quantum nature at the microscopic level. In fact, the Einstein model promoted the idea of energy quantum originally proposed for the blackbody radiation by Planck. 7 Like the Einstein temperature in this model, for a given model we usually find a characteristic temperature 0 that separates the high-temperature regime from the lowtemperature regime. he characteristic temperature is also tied with a characteristic energy scale k B 0 and varies from system to system, which implies that a certain temperature deemed as a high temperature for one system may well be a low temperature for another. For example, 300 K is a low temperature for diamond with E 1320K, while the same 300 K is a high temperature for silver with E 160K. We should always ask what is the characteristic temperature or energy scale for a model or a particular phenomenon observed in a system at hand. 4. (5 points) he two-state model for the nuclei in solid gallium Consider a model for N nuclei in a solid piece of metallic gallium where each nucleus has its ground state at energy 0 and its first excited state at energy Δ. he first excited state is very close to the ground state and corresponds to a non-spherical charge distribution inside the nucleus with a non-zero nuclear quadrupole moment. Other excited states have energies much higher than Δ and will be neglected. We assume that these nuclei do not interact with each other (i.e., this is a system of N non-interacting nuclei.). Each energy eigenstate for the entire system of the N nuclei is then labeled by N integers: { n 1,n 2,n 3,..., n N }, where each n i is the quantum number for the i-th nucleus. n i = 0 corresponds to the ground state with energy ε i = 0, while n i = 1 corresponds to the first excited state with energy ε i = Δ. More succinctly, we can express ε i in terms of n i as ε i = Δn i. he energy eigenvalue for the N non-interacting nuclei is then given by

8 where E N ({ n i }) = ε i ε i = Δn i., i =1 8 Since each nucleus is fixed around a particular location inside the solid, the nuclei in this model are distinguishable (or we can label each nucleus) so that we do not need to worry about the 1/N! factor. (a) (2 points) Find the partition function for the nuclei as a function of the temperature and the number of nuclei N. (b) (1 point) Find the Helmholtz free energy F for the nuclei as a function of the temperature and the mole number n for the nuclei. Use Nk B = nr to replace N with n. Get rid of Δ in your final expression for the Helmholtz free energy by introducing the following characteristic temperature: Δ Δ / k B. As a hint, a Mathematica plot for F / ( nr Δ ) as a function of ˆ / Δ is shown below. he Helmholtz free energy is a decreasing function of temperature. F / ( nr Δ ) vs. / Δ U / ( nr Δ ) vs. / Δ (c) (1 point) Using your final expression for the Helmholtz free energy in terms of, n, R, and Δ, find the internal energy U of the nuclei as a function of and n. As a hint, a Mathematica plot for U / nr Δ ( ) as a function of ˆ internal energy is an increasing function of temperature. / Δ is shown above. he (d) (1 point) Using your final expression for the internal energy in terms of, n, R, and Δ, find the molar heat capacity at constant volume c v for the nuclei as a function of and n. As a hint, a Mathematica plot for c v / R as a function of ˆ / Δ is shown below.

9 9 c v / R vs. / Δ For >> Δ (i.e., in the high temperature regime), we get c v R # 4 $ Δ 2 & (. ' For <<120, 000 K, the molar heat capacity due to the conduction electrons in gallium is approximately γ, while for <<θ = 320 K the molar heat capacity due to the lattice waves in gallium is approximately D 3. If Δ << <<1 K, then the total molar heat capacity is given by c v R # 4 $ Δ 2 & ( + γ + D 3 R ' 4 # $ Δ 2 & ( + γ or c ' v 2 R 4 2 Δ + γ 3. where we have assumed ( R 4) ( Δ ) 2 + γ >> D 3. By using the experimental data for the molar heat capacity c v for gallium and plotting c v 2 γ = mj / ( mol K 2 ). against 3, we find Δ = K and

Thermal and Statistical Physics Department Exam Last updated November 4, L π

Thermal and Statistical Physics Department Exam Last updated November 4, L π Thermal and Statistical Physics Department Exam Last updated November 4, 013 1. a. Define the chemical potential µ. Show that two systems are in diffusive equilibrium if µ 1 =µ. You may start with F =

More information

UNIVERSITY OF MISSOURI-COLUMBIA PHYSICS DEPARTMENT. PART I Qualifying Examination. January 20, 2015, 5:00 p.m. to 8:00 p.m.

UNIVERSITY OF MISSOURI-COLUMBIA PHYSICS DEPARTMENT. PART I Qualifying Examination. January 20, 2015, 5:00 p.m. to 8:00 p.m. UNIVERSITY OF MISSOURI-COLUMBIA PHYSICS DEPARTMENT PART I Qualifying Examination January 20, 2015, 5:00 p.m. to 8:00 p.m. Instructions: The only material you are allowed in the examination room is a writing

More information

Lattice Vibrations. Chris J. Pickard. ω (cm -1 ) 200 W L Γ X W K K W

Lattice Vibrations. Chris J. Pickard. ω (cm -1 ) 200 W L Γ X W K K W Lattice Vibrations Chris J. Pickard 500 400 300 ω (cm -1 ) 200 100 L K W X 0 W L Γ X W K The Breakdown of the Static Lattice Model The free electron model was refined by introducing a crystalline external

More information

Heat Capacities, Absolute Zero, and the Third Law

Heat Capacities, Absolute Zero, and the Third Law Heat Capacities, Absolute Zero, and the hird Law We have already noted that heat capacity and entropy have the same units. We will explore further the relationship between heat capacity and entropy. We

More information

2. Fingerprints of Matter: Spectra

2. Fingerprints of Matter: Spectra 2. Fingerprints of Matter: Spectra 2.1 Measuring spectra: prism and diffraction grating Light from the sun: white light, broad spectrum (wide distribution) of wave lengths. 19th century: light assumed

More information

Thermal & Statistical Physics Study Questions for the Spring 2018 Department Exam December 6, 2017

Thermal & Statistical Physics Study Questions for the Spring 2018 Department Exam December 6, 2017 Thermal & Statistical Physics Study Questions for the Spring 018 Department Exam December 6, 017 1. a. Define the chemical potential. Show that two systems are in diffusive equilibrium if 1. You may start

More information

UNIVERSITY OF LONDON. BSc and MSci EXAMINATION 2005 DO NOT TURN OVER UNTIL TOLD TO BEGIN

UNIVERSITY OF LONDON. BSc and MSci EXAMINATION 2005 DO NOT TURN OVER UNTIL TOLD TO BEGIN UNIVERSITY OF LONDON BSc and MSci EXAMINATION 005 For Internal Students of Royal Holloway DO NOT UNTIL TOLD TO BEGIN PH610B: CLASSICAL AND STATISTICAL THERMODYNAMICS PH610B: CLASSICAL AND STATISTICAL THERMODYNAMICS

More information

Statistical Mechanics Victor Naden Robinson vlnr500 3 rd Year MPhys 17/2/12 Lectured by Rex Godby

Statistical Mechanics Victor Naden Robinson vlnr500 3 rd Year MPhys 17/2/12 Lectured by Rex Godby Statistical Mechanics Victor Naden Robinson vlnr500 3 rd Year MPhys 17/2/12 Lectured by Rex Godby Lecture 1: Probabilities Lecture 2: Microstates for system of N harmonic oscillators Lecture 3: More Thermodynamics,

More information

Lecture 10 Planck Distribution

Lecture 10 Planck Distribution Lecture 0 Planck Distribution We will now consider some nice applications using our canonical picture. Specifically, we will derive the so-called Planck Distribution and demonstrate that it describes two

More information

Orientation: what is physical chemistry about?

Orientation: what is physical chemistry about? 1 Orientation: what is physical chemistry about? Chemistry is traditionally divided into a small number of subfields, namely organic, inorganic, analytical and physical chemistry. It s fairly easy to say

More information

PHONON HEAT CAPACITY

PHONON HEAT CAPACITY Solid State Physics PHONON HEAT CAPACITY Lecture 11 A.H. Harker Physics and Astronomy UCL 4.5 Experimental Specific Heats Element Z A C p Element Z A C p J K 1 mol 1 J K 1 mol 1 Lithium 3 6.94 24.77 Rhenium

More information

Physics Qual - Statistical Mechanics ( Fall 2016) I. Describe what is meant by: (a) A quasi-static process (b) The second law of thermodynamics (c) A throttling process and the function that is conserved

More information

Particles and Waves Particles Waves

Particles and Waves Particles Waves Particles and Waves Particles Discrete and occupy space Exist in only one location at a time Position and velocity can be determined with infinite accuracy Interact by collisions, scattering. Waves Extended,

More information

Data Provided: A formula sheet and table of physical constants are attached to this paper.

Data Provided: A formula sheet and table of physical constants are attached to this paper. Data Provided: A formula sheet and table of physical constants are attached to this paper. DEPARTMENT OF PHYSICS AND ASTRONOMY Spring Semester (2016-2017) From Thermodynamics to Atomic and Nuclear Physics

More information

Thermodynamics of Solids: Harmonic and Quasi-harmonic Approximations

Thermodynamics of Solids: Harmonic and Quasi-harmonic Approximations Thermodynamics of Solids: Harmonic and Quasi-harmonic Approximations, USA, July 9-14, 2017 Alessandro Erba Dipartimento di Chimica, Università di Torino (Italy) alessandro.erba@unito.it 2017 Outline -

More information

First Problem Set for Physics 847 (Statistical Physics II)

First Problem Set for Physics 847 (Statistical Physics II) First Problem Set for Physics 847 (Statistical Physics II) Important dates: Feb 0 0:30am-:8pm midterm exam, Mar 6 9:30am-:8am final exam Due date: Tuesday, Jan 3. Review 0 points Let us start by reviewing

More information

The Atom. Result for Hydrogen. For example: the emission spectrum of Hydrogen: Screen. light. Hydrogen gas. Diffraction grating (or prism)

The Atom. Result for Hydrogen. For example: the emission spectrum of Hydrogen: Screen. light. Hydrogen gas. Diffraction grating (or prism) The Atom What was know about the atom in 1900? First, the existence of atoms was not universally accepted at this time, but for those who did think atoms existed, they knew: 1. Atoms are small, but they

More information

PHYSICS DEPARTMENT, PRINCETON UNIVERSITY PHYSICS 301 FINAL EXAMINATION. January 13, 2005, 7:30 10:30pm, Jadwin A10 SOLUTIONS

PHYSICS DEPARTMENT, PRINCETON UNIVERSITY PHYSICS 301 FINAL EXAMINATION. January 13, 2005, 7:30 10:30pm, Jadwin A10 SOLUTIONS PHYSICS DEPARTMENT, PRINCETON UNIVERSITY PHYSICS 301 FINAL EXAMINATION January 13, 2005, 7:30 10:30pm, Jadwin A10 SOLUTIONS This exam contains five problems. Work any three of the five problems. All problems

More information

Lecture 11 - Phonons II - Thermal Prop. Continued

Lecture 11 - Phonons II - Thermal Prop. Continued Phonons II - hermal Properties - Continued (Kittel Ch. 5) Low High Outline Anharmonicity Crucial for hermal expansion other changes with pressure temperature Gruneisen Constant hermal Heat ransport Phonon

More information

7.3 Heat capacities: extensive state variables (Hiroshi Matsuoka)

7.3 Heat capacities: extensive state variables (Hiroshi Matsuoka) 7.3 Heat capacities: extensive state variables (Hiroshi Matsuoka) 1 Specific heats and molar heat capacities Heat capacity for 1 g of substance is called specific heat and is useful for practical applications.

More information

Lecture 20: Spinodals and Binodals; Continuous Phase Transitions; Introduction to Statistical Mechanics

Lecture 20: Spinodals and Binodals; Continuous Phase Transitions; Introduction to Statistical Mechanics Lecture 20: 11.28.05 Spinodals and Binodals; Continuous Phase Transitions; Introduction to Statistical Mechanics Today: LAST TIME: DEFINING METASTABLE AND UNSTABLE REGIONS ON PHASE DIAGRAMS...2 Conditions

More information

Phonons II - Thermal Properties (Kittel Ch. 5)

Phonons II - Thermal Properties (Kittel Ch. 5) Phonons II - Thermal Properties (Kittel Ch. 5) Heat Capacity C T 3 Approaches classical limit 3 N k B T Physics 460 F 2006 Lect 10 1 Outline What are thermal properties? Fundamental law for probabilities

More information

Keble College - Hilary 2012 Section VI: Condensed matter physics Tutorial 2 - Lattices and scattering

Keble College - Hilary 2012 Section VI: Condensed matter physics Tutorial 2 - Lattices and scattering Tomi Johnson Keble College - Hilary 2012 Section VI: Condensed matter physics Tutorial 2 - Lattices and scattering Please leave your work in the Clarendon laboratory s J pigeon hole by 5pm on Monday of

More information

Homework Hint. Last Time

Homework Hint. Last Time Homework Hint Problem 3.3 Geometric series: ωs τ ħ e s= 0 =? a n ar = For 0< r < 1 n= 0 1 r ωs τ ħ e s= 0 1 = 1 e ħω τ Last Time Boltzmann factor Partition Function Heat Capacity The magic of the partition

More information

NUCLEAR MAGNETIC RESONANCE. The phenomenon of nuclear magnetic resonance will be used to study magnetic moments of nuclei.

NUCLEAR MAGNETIC RESONANCE. The phenomenon of nuclear magnetic resonance will be used to study magnetic moments of nuclei. 14 Sep 11 NMR.1 NUCLEAR MAGNETIC RESONANCE The phenomenon of nuclear magnetic resonance will be used to study magnetic moments of nuclei. Theory: In addition to its well-known properties of mass, charge,

More information

Atkins & de Paula: Atkins Physical Chemistry 9e Checklist of key ideas. Chapter 7: Quantum Theory: Introduction and Principles

Atkins & de Paula: Atkins Physical Chemistry 9e Checklist of key ideas. Chapter 7: Quantum Theory: Introduction and Principles Atkins & de Paula: Atkins Physical Chemistry 9e Checklist of key ideas Chapter 7: Quantum Theory: Introduction and Principles classical mechanics, the laws of motion introduced in the seventeenth century

More information

University of Michigan Physics Department Graduate Qualifying Examination

University of Michigan Physics Department Graduate Qualifying Examination Name: University of Michigan Physics Department Graduate Qualifying Examination Part II: Modern Physics Saturday 17 May 2014 9:30 am 2:30 pm Exam Number: This is a closed book exam, but a number of useful

More information

In-class exercises. Day 1

In-class exercises. Day 1 Physics 4488/6562: Statistical Mechanics http://www.physics.cornell.edu/sethna/teaching/562/ Material for Week 8 Exercises due Mon March 19 Last correction at March 5, 2018, 8:48 am c 2017, James Sethna,

More information

Intro/Review of Quantum

Intro/Review of Quantum Intro/Review of Quantum QM-1 So you might be thinking I thought I could avoid Quantum Mechanics?!? Well we will focus on thermodynamics and kinetics, but we will consider this topic with reference to the

More information

Intro/Review of Quantum

Intro/Review of Quantum Intro/Review of Quantum QM-1 So you might be thinking I thought I could avoid Quantum Mechanics?!? Well we will focus on thermodynamics and kinetics, but we will consider this topic with reference to the

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Introduction to Quantum Mechanics In order to understand the current-voltage characteristics, we need some knowledge of electron behavior in semiconductor when the electron is subjected to various potential

More information

The Dulong-Petit (1819) rule for molar heat capacities of crystalline matter c v, predicts the constant value

The Dulong-Petit (1819) rule for molar heat capacities of crystalline matter c v, predicts the constant value I believe that nobody who has a reasonably reliable sense for the experimental test of a theory will be able to contemplate these results without becoming convinced of the mighty logical power of the quantum

More information

PHYS3113, 3d year Statistical Mechanics Tutorial problems. Tutorial 1, Microcanonical, Canonical and Grand Canonical Distributions

PHYS3113, 3d year Statistical Mechanics Tutorial problems. Tutorial 1, Microcanonical, Canonical and Grand Canonical Distributions 1 PHYS3113, 3d year Statistical Mechanics Tutorial problems Tutorial 1, Microcanonical, Canonical and Grand Canonical Distributions Problem 1 The macrostate probability in an ensemble of N spins 1/2 is

More information

Module 5 : MODERN PHYSICS Lecture 23 : Particle and Waves

Module 5 : MODERN PHYSICS Lecture 23 : Particle and Waves Module 5 : MODERN PHYSICS Lecture 23 : Particle and Waves Objectives In this lecture you will learn the following Radiation (light) exhibits both wave and particle nature. Laws governing black body radiation,

More information

The Simple Harmonic Oscillator

The Simple Harmonic Oscillator The Simple Harmonic Oscillator Michael Fowler, University of Virginia Einstein s Solution of the Specific Heat Puzzle The simple harmonic oscillator, a nonrelativistic particle in a potential ½C, is a

More information

Printed Name: Signature: PHYSICS DEPARTMENT. Ph.D. Qualifying Examination, PART III

Printed Name: Signature: PHYSICS DEPARTMENT. Ph.D. Qualifying Examination, PART III Exam #: Printed Name: Signature: PHYSICS DEPARTMENT UNIVERSITY OF OREGON Ph.D. Qualifying Examination, PART III Friday, September 21, 2001, 1:00 p.m. to 5:00 p.m. The examination papers are numbered in

More information

PHYSICAL SCIENCES PART A

PHYSICAL SCIENCES PART A PHYSICAL SCIENCES PART A 1. The calculation of the probability of excitation of an atom originally in the ground state to an excited state, involves the contour integral iωt τ e dt ( t τ ) + Evaluate the

More information

Physics 213. Practice Final Exam Spring The next two questions pertain to the following situation:

Physics 213. Practice Final Exam Spring The next two questions pertain to the following situation: The next two questions pertain to the following situation: Consider the following two systems: A: three interacting harmonic oscillators with total energy 6ε. B: two interacting harmonic oscillators, with

More information

ChE 503 A. Z. Panagiotopoulos 1

ChE 503 A. Z. Panagiotopoulos 1 ChE 503 A. Z. Panagiotopoulos 1 STATISTICAL MECHANICAL ENSEMLES 1 MICROSCOPIC AND MACROSCOPIC ARIALES The central question in Statistical Mechanics can be phrased as follows: If particles (atoms, molecules,

More information

PHY 140A: Solid State Physics. Solution to Midterm #2

PHY 140A: Solid State Physics. Solution to Midterm #2 PHY 140A: Solid State Physics Solution to Midterm #2 TA: Xun Jia 1 December 4, 2006 1 Email: jiaxun@physics.ucla.edu Problem #1 (20pt)(20 points) Use the equation dp dt + p = ee for the electron momentum,

More information

Let s start by reviewing what we learned last time. Here is the basic line of reasoning for Einstein Solids

Let s start by reviewing what we learned last time. Here is the basic line of reasoning for Einstein Solids Chapter 5 In this chapter we want to review the concept of irreversibility in more detail and see how it comes from the multiplicity of states. In addition, we want to introduce the following new topics:

More information

PHYSICS 219 Homework 2 Due in class, Wednesday May 3. Makeup lectures on Friday May 12 and 19, usual time. Location will be ISB 231 or 235.

PHYSICS 219 Homework 2 Due in class, Wednesday May 3. Makeup lectures on Friday May 12 and 19, usual time. Location will be ISB 231 or 235. PHYSICS 219 Homework 2 Due in class, Wednesday May 3 Note: Makeup lectures on Friday May 12 and 19, usual time. Location will be ISB 231 or 235. No lecture: May 8 (I m away at a meeting) and May 29 (holiday).

More information

Physics Oct A Quantum Harmonic Oscillator

Physics Oct A Quantum Harmonic Oscillator Physics 301 5-Oct-2005 9-1 A Quantum Harmonic Oscillator The quantum harmonic oscillator (the only kind there is, really) has energy levels given by E n = (n + 1/2) hω, where n 0 is an integer and the

More information

3.012 PS Issued: Fall 2003 Graded problems due:

3.012 PS Issued: Fall 2003 Graded problems due: 3.012 PS 4 3.012 Issued: 10.07.03 Fall 2003 Graded problems due: 10.15.03 Graded problems: 1. Planes and directions. Consider a 2-dimensional lattice defined by translations T 1 and T 2. a. Is the direction

More information

Classical and Planck picture. Planck s constant. Question. Quantum explanation for the Wein Effect.

Classical and Planck picture. Planck s constant. Question. Quantum explanation for the Wein Effect. 6.1 Quantum Physics. Particle Nature of Light Particle nature of Light Blackbody Radiation Photoelectric Effect Properties of photons Ionizing radiation Radiation damage x-rays Compton effect X-ray diffraction

More information

Statistical Mechanics

Statistical Mechanics Statistical Mechanics Newton's laws in principle tell us how anything works But in a system with many particles, the actual computations can become complicated. We will therefore be happy to get some 'average'

More information

Final Exam, Chemistry 481, 77 December 2016

Final Exam, Chemistry 481, 77 December 2016 1 Final Exam, Chemistry 481, 77 December 216 Show all work for full credit Useful constants: h = 6.626 1 34 J s; c (speed of light) = 2.998 1 8 m s 1 k B = 1.387 1 23 J K 1 ; R (molar gas constant) = 8.314

More information

Graduate Written Examination Fall 2014 Part I

Graduate Written Examination Fall 2014 Part I Graduate Written Examination Fall 2014 Part I University of Minnesota School of Physics and Astronomy Aug. 19, 2014 Examination Instructions Part 1 of this exam consists of 10 problems of equal weight.

More information

Quantum mechanics (QM) deals with systems on atomic scale level, whose behaviours cannot be described by classical mechanics.

Quantum mechanics (QM) deals with systems on atomic scale level, whose behaviours cannot be described by classical mechanics. A 10-MINUTE RATHER QUICK INTRODUCTION TO QUANTUM MECHANICS 1. What is quantum mechanics (as opposed to classical mechanics)? Quantum mechanics (QM) deals with systems on atomic scale level, whose behaviours

More information

Lecture 8. The Second Law of Thermodynamics; Energy Exchange

Lecture 8. The Second Law of Thermodynamics; Energy Exchange Lecture 8 The Second Law of Thermodynamics; Energy Exchange The second law of thermodynamics Statistics of energy exchange General definition of temperature Why heat flows from hot to cold Reading for

More information

Unusual Entropy of Adsorbed Methane on Zeolite Templated Carbon. Supporting Information. Part 2: Statistical Mechanical Model

Unusual Entropy of Adsorbed Methane on Zeolite Templated Carbon. Supporting Information. Part 2: Statistical Mechanical Model Unusual Entropy of Adsorbed Methane on Zeolite Templated Carbon Supporting Information Part 2: Statistical Mechanical Model Nicholas P. Stadie*, Maxwell Murialdo, Channing C. Ahn, and Brent Fultz W. M.

More information

Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world,

Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world, Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world, x p h π If you try to specify/measure the exact position of a particle you

More information

Answer TWO of the three questions. Please indicate on the first page which questions you have answered.

Answer TWO of the three questions. Please indicate on the first page which questions you have answered. STATISTICAL MECHANICS June 17, 2010 Answer TWO of the three questions. Please indicate on the first page which questions you have answered. Some information: Boltzmann s constant, kb = 1.38 X 10-23 J/K

More information

Statistical Mechanics Victor Naden Robinson vlnr500 3 rd Year MPhys 17/2/12 Lectured by Rex Godby

Statistical Mechanics Victor Naden Robinson vlnr500 3 rd Year MPhys 17/2/12 Lectured by Rex Godby Statistical Mechanics Victor Naden Robinson vlnr500 3 rd Year MPhys 17/2/12 Lectured by Rex Godby Lecture 1: Probabilities Lecture 2: Microstates for system of N harmonic oscillators Lecture 3: More Thermodynamics,

More information

Physics 404: Final Exam Name (print): "I pledge on my honor that I have not given or received any unauthorized assistance on this examination.

Physics 404: Final Exam Name (print): I pledge on my honor that I have not given or received any unauthorized assistance on this examination. Physics 404: Final Exam Name (print): "I pledge on my honor that I have not given or received any unauthorized assistance on this examination." May 20, 2008 Sign Honor Pledge: Don't get bogged down on

More information

OSU Physics Department Comprehensive Examination #115

OSU Physics Department Comprehensive Examination #115 1 OSU Physics Department Comprehensive Examination #115 Monday, January 7 and Tuesday, January 8, 2013 Winter 2013 Comprehensive Examination PART 1, Monday, January 7, 9:00am General Instructions This

More information

Statistical. mechanics

Statistical. mechanics CHAPTER 15 Statistical Thermodynamics 1: The Concepts I. Introduction. A. Statistical mechanics is the bridge between microscopic and macroscopic world descriptions of nature. Statistical mechanics macroscopic

More information

FIRST PUBLIC EXAMINATION SUBJECT 3: PHYSICAL CHEMISTRY

FIRST PUBLIC EXAMINATION SUBJECT 3: PHYSICAL CHEMISTRY CCHE 4273 FIRST PUBLIC EXAMINATION Trinity Term 2005 Preliminary Examination in Chemistry SUBJECT 3: PHYSICAL CHEMISTRY Wednesday June 8 th 2005, 9:30am Time allowed: 2 ½ hours Candidates should answer

More information

Lecture Notes Set 3a: Probabilities, Microstates and Entropy

Lecture Notes Set 3a: Probabilities, Microstates and Entropy Lecture Notes Set 3a: Probabilities, Microstates and Entropy Thus far.. In Sections 1 and 2 of the module we ve covered a broad variety of topics at the heart of the thermal and statistical behaviour of

More information

Chapter 27. Quantum Physics

Chapter 27. Quantum Physics Chapter 27 Quantum Physics Need for Quantum Physics Problems remained from classical mechanics that relativity didn t explain Blackbody Radiation The electromagnetic radiation emitted by a heated object

More information

298 Chapter 6 Electronic Structure and Periodic Properties of Elements

298 Chapter 6 Electronic Structure and Periodic Properties of Elements 98 Chapter 6 Electronic Structure and Periodic Properties of Elements 6. The Bohr Model By the end of this section, you will be able to: Describe the Bohr model of the hydrogen atom Use the Rydberg equation

More information

Lecture 8. The Second Law of Thermodynamics; Energy Exchange

Lecture 8. The Second Law of Thermodynamics; Energy Exchange Lecture 8 The Second Law of Thermodynamics; Energy Exchange The second law of thermodynamics Statistics of energy exchange General definition of temperature Why heat flows from hot to cold Reading for

More information

Classical Mechanics Comprehensive Exam

Classical Mechanics Comprehensive Exam Name: Student ID: Classical Mechanics Comprehensive Exam Spring 2018 You may use any intermediate results in the textbook. No electronic devices (calculator, computer, cell phone etc) are allowed. For

More information

3.012 PS Issued: Fall 2003 Graded problems due:

3.012 PS Issued: Fall 2003 Graded problems due: 3.012 PS 4 3.012 Issued: 10.07.03 Fall 2003 Graded problems due: 10.15.03 Graded problems: 1. Planes and directions. Consider a 2-dimensional lattice defined by translations T 1 and T 2. a. Is the direction

More information

Qualifying Exam for Ph.D. Candidacy Department of Physics October 11, 2014 Part I

Qualifying Exam for Ph.D. Candidacy Department of Physics October 11, 2014 Part I Qualifying Exam for Ph.D. Candidacy Department of Physics October 11, 214 Part I Instructions: The following problems are intended to probe your understanding of basic physical principles. When answering

More information

FYS Vår 2015 (Kondenserte fasers fysikk)

FYS Vår 2015 (Kondenserte fasers fysikk) FYS410 - Vår 015 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys410/v15/index.html Pensum: Introduction to Solid State Physics by Charles Kittel (Chapters 1-9 and 17, 18, 0)

More information

10.40 Lectures 23 and 24 Computation of the properties of ideal gases

10.40 Lectures 23 and 24 Computation of the properties of ideal gases 1040 Lectures 3 and 4 Computation of the properties of ideal gases Bernhardt L rout October 16 003 (In preparation for Lectures 3 and 4 also read &M 1015-1017) Degrees of freedom Outline Computation of

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term Exam #4

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term Exam #4 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.044 Statistical Physics I Spring Term 2004 Problem (35 points) Flatland Exam #4 FLATLAND, Edwin A. Abbot, 884 Consider world, perhaps Abbot s

More information

An object capable of emitting/absorbing all frequencies of radiation uniformly

An object capable of emitting/absorbing all frequencies of radiation uniformly 1 IIT Delhi - CML 100:1 The shortfalls of classical mechanics Classical Physics 1) precise trajectories for particles simultaneous specification of position and momentum 2) any amount of energy can be

More information

Problem #1 30 points Problem #2 30 points Problem #3 30 points Problem #4 30 points Problem #5 30 points

Problem #1 30 points Problem #2 30 points Problem #3 30 points Problem #4 30 points Problem #5 30 points Name ME 5 Exam # November 5, 7 Prof. Lucht ME 55. POINT DISTRIBUTION Problem # 3 points Problem # 3 points Problem #3 3 points Problem #4 3 points Problem #5 3 points. EXAM INSTRUCTIONS You must do four

More information

Astrophysics (Physics 489) Exam 2

Astrophysics (Physics 489) Exam 2 Astrophysics (Physics 489) Exam 2 Please show all significant steps clearly in all problems. 1. Fun with dark energy. Since the dark energy is currently a total mystery, many theoretical cosmologists have

More information

Homework 04 - Electromagnetic Radiation

Homework 04 - Electromagnetic Radiation HW04 - Electromagnetic Radiation This is a preview of the published version of the quiz Started: Jul 7 at 9:43am Quiz Instructions Homework 04 - Electromagnetic Radiation Question 1-7 What is the frequency

More information

a. 4.2x10-4 m 3 b. 5.5x10-4 m 3 c. 1.2x10-4 m 3 d. 1.4x10-5 m 3 e. 8.8x10-5 m 3

a. 4.2x10-4 m 3 b. 5.5x10-4 m 3 c. 1.2x10-4 m 3 d. 1.4x10-5 m 3 e. 8.8x10-5 m 3 The following two problems refer to this situation: #1 A cylindrical chamber containing an ideal diatomic gas is sealed by a movable piston with cross-sectional area A = 0.0015 m 2. The volume of the chamber

More information

Mechanics and Statistical Mechanics Qualifying Exam Spring 2006

Mechanics and Statistical Mechanics Qualifying Exam Spring 2006 Mechanics and Statistical Mechanics Qualifying Exam Spring 2006 1 Problem 1: (10 Points) Identical objects of equal mass, m, are hung on identical springs of constant k. When these objects are displaced

More information

Physics 221 Lecture 31 Line Radiation from Atoms and Molecules March 31, 1999

Physics 221 Lecture 31 Line Radiation from Atoms and Molecules March 31, 1999 Physics 221 Lecture 31 Line Radiation from Atoms and Molecules March 31, 1999 Reading Meyer-Arendt, Ch. 20; Möller, Ch. 15; Yariv, Ch.. Demonstrations Analyzing lineshapes from emission and absorption

More information

1. Electricity and Magnetism (Fall 1995, Part 1) A metal sphere has a radius R and a charge Q.

1. Electricity and Magnetism (Fall 1995, Part 1) A metal sphere has a radius R and a charge Q. 1. Electricity and Magnetism (Fall 1995, Part 1) A metal sphere has a radius R and a charge Q. (a) Compute the electric part of the Maxwell stress tensor T ij (r) = 1 {E i E j 12 } 4π E2 δ ij both inside

More information

Preliminary Examination - Day 2 August 16, 2013

Preliminary Examination - Day 2 August 16, 2013 UNL - Department of Physics and Astronomy Preliminary Examination - Day August 16, 13 This test covers the topics of Quantum Mechanics (Topic 1) and Thermodynamics and Statistical Mechanics (Topic ). Each

More information

INSTRUCTIONS PART I : SPRING 2006 PHYSICS DEPARTMENT EXAM

INSTRUCTIONS PART I : SPRING 2006 PHYSICS DEPARTMENT EXAM INSTRUCTIONS PART I : SPRING 2006 PHYSICS DEPARTMENT EXAM Please take a few minutes to read through all problems before starting the exam. Ask the proctor if you are uncertain about the meaning of any

More information

CME 300 Properties of Materials. ANSWERS: Homework 4 October 12, 2011

CME 300 Properties of Materials. ANSWERS: Homework 4 October 12, 2011 CME 300 Properties of Materials ANSWERS: Homework 4 October 12, 2011 1) The Scherrer equation can be obtained by taking the derivative of the Bragg Equation. Perform this derivative. Begin by multiplying

More information

Properties of Light and Atomic Structure. Chapter 7. So Where are the Electrons? Electronic Structure of Atoms. The Wave Nature of Light!

Properties of Light and Atomic Structure. Chapter 7. So Where are the Electrons? Electronic Structure of Atoms. The Wave Nature of Light! Properties of Light and Atomic Structure Chapter 7 So Where are the Electrons? We know where the protons and neutrons are Nuclear structure of atoms (Chapter 2) The interaction of light and matter helps

More information

The Oxford Solid State Basics

The Oxford Solid State Basics The Oxford Solid State Basics Steven H. Simon University of Oxford OXFORD UNIVERSITY PRESS Contents 1 About Condensed Matter Physics 1 1.1 What Is Condensed Matter Physics 1 1.2 Why Do We Study Condensed

More information

Phonon II Thermal Properties

Phonon II Thermal Properties Phonon II Thermal Properties Physics, UCF OUTLINES Phonon heat capacity Planck distribution Normal mode enumeration Density of states in one dimension Density of states in three dimension Debye Model for

More information

Lecture 11 Atomic Structure

Lecture 11 Atomic Structure Lecture 11 Atomic Structure Earlier in the semester, you read about the discoveries that lead to the proposal of the nuclear atom, an atom of atomic number Z, composed of a positively charged nucleus surrounded

More information

Homework 3 Solutions Problem 1 (a) The technique is essentially that of Homework 2, problem 2. The situation is depicted in the figure:

Homework 3 Solutions Problem 1 (a) The technique is essentially that of Homework 2, problem 2. The situation is depicted in the figure: Homework 3 Solutions Problem (a) The technique is essentially that of Homework 2, problem 2. The situation is depicted in the figure: θ photon vdt A θ d Figure : The figure shows the system at time t.

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.044 Statistical Physics I Spring Term 2013 Problem 1: The Big Bang Problem Set #9 Due in hand-in box by 4;00 PM, Friday, April 19 Early in the

More information

INTRODUCTION TO THE STRUCTURE OF MATTER

INTRODUCTION TO THE STRUCTURE OF MATTER INTRODUCTION TO THE STRUCTURE OF MATTER A Course in Modern Physics John J. Brehm and William J. Mullin University of Massachusetts Amherst, Massachusetts Fachberelch 5?@8hnlsdie Hochschule Darmstadt! HochschulstraSa

More information

Unit 7. Atomic Structure

Unit 7. Atomic Structure Unit 7. Atomic Structure Upon successful completion of this unit, the students should be able to: 7.1 List the eight regions of the electromagnetic spectrum in the designated order and perform calculations

More information

FIRST PUBLIC EXAMINATION. Trinity Term Preliminary Examination in Chemistry SUBJECT 3: PHYSICAL CHEMISTRY. Time allowed: 2 ½ hours

FIRST PUBLIC EXAMINATION. Trinity Term Preliminary Examination in Chemistry SUBJECT 3: PHYSICAL CHEMISTRY. Time allowed: 2 ½ hours FIRST PUBLIC EXAMINATION Trinity Term 004 Preliminary Examination in Chemistry SUBJECT 3: PHYSICAL CHEMISTRY Wednesday, June 9 th 004, 9.30 a.m. to 1 noon Time allowed: ½ hours Candidates should answer

More information

Ph.D. Comprehensive Exam Department of Physics Georgetown University

Ph.D. Comprehensive Exam Department of Physics Georgetown University Ph.D. Comprehensive Exam Department of Physics Georgetown University Part I: Tuesday, July 10, 2018, 12:00pm - 4:00pm Proctors: Mak Paranjape and Ed Van Keuren Instructions: Please put your assigned number

More information

3. Photons and phonons

3. Photons and phonons Statistical and Low Temperature Physics (PHYS393) 3. Photons and phonons Kai Hock 2010-2011 University of Liverpool Contents 3.1 Phonons 3.2 Photons 3.3 Exercises Photons and phonons 1 3.1 Phonons Photons

More information

Imperial College London BSc/MSci EXAMINATION May 2008 THERMODYNAMICS & STATISTICAL PHYSICS

Imperial College London BSc/MSci EXAMINATION May 2008 THERMODYNAMICS & STATISTICAL PHYSICS Imperial College London BSc/MSci EXAMINATION May 2008 This paper is also taken for the relevant Examination for the Associateship THERMODYNAMICS & STATISTICAL PHYSICS For Second-Year Physics Students Wednesday,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.044 Statistical Physics I Spring Term 2013 Problem 1: Ripplons Problem Set #11 Due in hand-in box by 4:00 PM, Friday, May 10 (k) We have seen

More information

sin[( t 2 Home Problem Set #1 Due : September 10 (Wed), 2008

sin[( t 2 Home Problem Set #1 Due : September 10 (Wed), 2008 Home Problem Set #1 Due : September 10 (Wed), 008 1. Answer the following questions related to the wave-particle duality. (a) When an electron (mass m) is moving with the velocity of υ, what is the wave

More information

J10M.1 - Rod on a Rail (M93M.2)

J10M.1 - Rod on a Rail (M93M.2) Part I - Mechanics J10M.1 - Rod on a Rail (M93M.2) J10M.1 - Rod on a Rail (M93M.2) s α l θ g z x A uniform rod of length l and mass m moves in the x-z plane. One end of the rod is suspended from a straight

More information

GRADUATE WRITTEN EXAMINATION. Fall 2018 PART I

GRADUATE WRITTEN EXAMINATION. Fall 2018 PART I University of Minnesota School of Physics and Astronomy GRADUATE WRITTEN EXAMINATION Fall 2018 PART I Monday, August 20 th, 2018 9:00 am to 1:00 pm Part 1 of this exam consists of 10 problems of equal

More information

PHY4604 Introduction to Quantum Mechanics Fall 2004 Final Exam SOLUTIONS December 17, 2004, 7:30 a.m.- 9:30 a.m.

PHY4604 Introduction to Quantum Mechanics Fall 2004 Final Exam SOLUTIONS December 17, 2004, 7:30 a.m.- 9:30 a.m. PHY464 Introduction to Quantum Mechanics Fall 4 Final Eam SOLUTIONS December 7, 4, 7:3 a.m.- 9:3 a.m. No other materials allowed. If you can t do one part of a problem, solve subsequent parts in terms

More information

Quantization of Energy *

Quantization of Energy * OpenStax-CNX module: m42554 1 Quantization of Energy * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Explain Max Planck's contribution

More information

PHYSICS DEPARTMENT, PRINCETON UNIVERSITY PHYSICS 301 MIDTERM EXAMINATION. October 26, 2005, 10:00 10:50 am, Jadwin A06 SOLUTIONS

PHYSICS DEPARTMENT, PRINCETON UNIVERSITY PHYSICS 301 MIDTERM EXAMINATION. October 26, 2005, 10:00 10:50 am, Jadwin A06 SOLUTIONS PHYSICS DEPARTMENT, PRINCETON UNIVERSITY PHYSICS 301 MIDTERM EXAMINATION October 26, 2005, 10:00 10:50 am, Jadwin A06 SOLUTIONS This exam contains two problems Work both problems The problems count equally

More information

Introduction to particle physics Lecture 3: Quantum Mechanics

Introduction to particle physics Lecture 3: Quantum Mechanics Introduction to particle physics Lecture 3: Quantum Mechanics Frank Krauss IPPP Durham U Durham, Epiphany term 2010 Outline 1 Planck s hypothesis 2 Substantiating Planck s claim 3 More quantisation: Bohr

More information

Identical Particles. Bosons and Fermions

Identical Particles. Bosons and Fermions Identical Particles Bosons and Fermions In Quantum Mechanics there is no difference between particles and fields. The objects which we refer to as fields in classical physics (electromagnetic field, field

More information