Imperial College London BSc/MSci EXAMINATION May 2008 THERMODYNAMICS & STATISTICAL PHYSICS

Size: px
Start display at page:

Download "Imperial College London BSc/MSci EXAMINATION May 2008 THERMODYNAMICS & STATISTICAL PHYSICS"

Transcription

1 Imperial College London BSc/MSci EXAMINATION May 2008 This paper is also taken for the relevant Examination for the Associateship THERMODYNAMICS & STATISTICAL PHYSICS For Second-Year Physics Students Wednesday, 28th May 2008: 14:00 to 16:00 Answer ALL parts of Section A, ONE question from Section B and ONE question from Section C. Marks shown on this paper are indicative of those the Examiners anticipate assigning. General Instructions Write your CANDIDATE NUMBER clearly on each of the four answer books provided. If an electronic calculator is used, write its serial number in the box at the top right hand corner of the front cover of each answer book. USE ONE ANSWER BOOK FOR EACH QUESTION. Enter the number of each question attempted in the horizontal box on the front cover of its corresponding answer book. Hand in four answer books even if they have not all been used. You are reminded that Examiners attach great importance to legibility, accuracy and clarity of expression. c Imperial College London /P.2/2 1 Turn over for questions

2 SECTION A 1. (i) Enthalpy is defined as H = U + PV. By using the fundamental equation of thermodynamics, show that T = ( H S ) P and V = ( H P ) S. (ii) A box is partitioned into a part filled with an ideal gas initially at T = T o and a vacuum part. The partition is removed and the ideal gas experiences a free adiabatic expansion until a new equilibrium is reached [NB: No calculations are needed to answer the following questions]. (a) What is the change of internal energy of the gas in the process? (b) What is the temperature change of the gas? (c) Is the entropy of the gas constant in this experiment? [5 marks] (iii) A box of temperature T and fixed volume V is filled with a photon gas. The box and the photon gas are in equilibrium. By considering a reversible heat exchange between the box/photon gas system and a reservoir at a temperature T + dt (dt being very small), show that the entropy of the photon gas has a cubic dependence upon T. [Information: the heat capacity at constant volume of a photon gas is C V = 16σV T 3 /c, σ being the Stefan constant and c the speed of light.] [Total 12 marks] 2008/P.2/2 2 Please turn over

3 2. (i) Two systems A and B have the same temperature T A = T B but different chemical potentials µ A > µ B. What happens when you put them in contact so that they can exchange particles and energy? (ii) (a) Explain the meanings of the terms macrostate, microstate and single-particle state. Give an example of a possible macrostate, microstate and single-particle state in a system of your choice. (b) What is meant by the occupation number n r of a single-particle state r? What values can it have in a system of indistinguishable bosons? What values can it have in a system of indistinguishable fermions? [Total 8 marks] 2008/P.2/2 3 Please turn over

4 SECTION B 3. Carnot cycle. (i) On a PV diagram show the four stages of a Carnot cycle operating between a hot reservoir at T H and a cold reservoir at T C. Denote by A,B,C,D the intersection between the needed isotherms and adiabats. Interpret the area A PV defined by the cycle in terms of work done / received by the working substance of the Carnot Cycle. (ii) Redo question (i) for a T S diagram instead of a PV diagram. Indicate the position of A,B,C,D in this new coordinate system and interpret the area A T S defined by the cycle in terms of heating / cooling of the working substance. (iii) Show that A PV = A T S. (iv) Give, in words, the definition of the efficiency η of a heat engine. By using the T S diagram drawn in (ii) and the result (iii), show that the efficiency of a Carnot engine is η = 1 T C /T H. [Hint: you do not need to make any assumptions about the nature of the working substance (e.g., ideal gas). The algebra should be elementary and short.] (v) Application to the ocean circulation. The oceans are sometimes said to behave like a Carnot engine operating between the hot tropics and the cold polar regions. By acknowledging that heating and cooling of the ocean only occur at the sea surface, show that, in order for the ocean to operate as an engine, its surface pressure must be higher in the tropics than in polar regions. [Hint: use the PV diagram from (i)]. 2008/P.2/2 4 Please turn over

5 4. Fourier s law. Two cubes made of the same material but at initially different temperature (T 2 and T 1, with T 2 > T 1 ) are put in contact. We study the second law in action by using a simple model for the heat transfer between the two cubes, the so-called Fourier s law. We will consider the volume of the cubes to be constant and we will neglect any heat transfer between the cubes and the surroundings (thermally and mechanically isolated cubes). (i) In an infinitesimal time interval, the heat entering cube 1 is written as q. Denoting by U 1 the internal energy of cube 1, show that the first law applied to cube 1 can be written as du 1 / = q. Write a similar equation for the second cube. What is the rate of change of total internal energy d(u 1 +U 2 )/? (ii) By using the fundamental equation of thermodynamics show that the rate of change of entropy is given by ds 1 ds 2 = q T 1 (cube 1) (1) = q T 2 (cube 2) (2) (iii) Using (ii), write the equation for the total entropy change and discuss its sign. [NB: You are expected to discuss its sign qualitatively from the second law and also by forming the equation for d(s 1 + S 2 )/]. (iv) We assume that for small temperature difference the heat flux satisfies q = K(T 2 T 1 ) in which K is a constant heat transfer coefficient (Fourier s law). By writing T 1 = T o + θ 1 and T 2 = T o + θ 2 in which T o is a reference temperature and θ 1 and θ 2 are small deviations from it (θ 1 /T o 1 and θ 2 /T o 1), show that the rate of entropy change for cube 1 can be approximated by ds 1 K(θ 2 θ 1 )(T o θ 1 ) T 2 o [Hint: you might use the result that 1/(1+x) 1 x for small x.] (3) (v) Write a similar expression for cube 2 and hence prove that the total entropy change is d(s 1 + S 2 ) K(θ 2 θ 1 ) 2 To 2 (4) What sign must K have for Fourier s law to satisfy the second law? Does this represent a heat transfer from hot to cold? 2008/P.2/2 5 Please turn over

6 SECTION C 5. Consider a gas of free electrons at temperature T and chemical potential µ. Their equilibrium state is described by the Fermi-Dirac distribution n FD (ε) = 1 e (ε µ)/k BT + 1, where ε is the energy of a single-particle state and k B is Boltzmann s constant. (i) (a) Explain what is meant by a degenerate fermion gas and the Fermi energy. (b) Explain briefly the origin of the degeneracy pressure, and discuss its temperature dependence, comparing it with a classical ideal gas. (c) Give an example of a physical system in which electrons are degenerate. [1 mark] (ii) Let us assume that the particles are ultrarelativistic, so that ε = cp, where c is the speed of light and p is the momentum of the particle. The density of states is then f(ε) = 8πV h 3 c 3 ε2, where h is Planck s constant and V is the volume of the system. (a) Show that at zero temperature and a given fixed chemical potential µ, the number density n = N/V of electrons is n = 8πµ3 3h 3 c 3. (b) What is the Fermi energy ε F of the system as a function of n? (c) Calculate the internal energy density u = U/V at zero temperature, expressing it as a function of ε F. Show that in terms of n, it is u = 3 4 ( ) 3 1/3 hcn 4/3. 8π (d) How high does the internal energy density u have to be for the assumption that the electrons are ultrarelativistic to be valid? Convert this into mass density using E = mc 2, and give a numerical answer in units of kg/m /P.2/2 6 Please turn over

7 6. (i) Explain briefly the difference between distinguishable and indistinguishable particles, and how it affects the counting of microstates. Give an example of a situation in which particles are distinguishable and a situation in which they are indistinguishable. (ii) Consider N identical but distinguishable harmonic oscillators in thermal equilibrium with a heat bath at temperature T. The single-particle states are labelled by a non-negative integer r = 0,1,..., and have energies ε r = hωr. (a) Calculate the canonical partition function of a single oscillator. (b) Calculate the canonical partition function of the whole system. (c) Calculate the temperature at which half of the particles are in the ground state. (iii) Consider now a system of N 1 indistinguishable bosonic oscillators at temperature T and chemical potential µ. The equilibrium state is described by the Bose- Einstein distribution 1 n BE (ε) = e (ε µ)/kbt 1, where ε is the energy of a single-particle state and k B is Boltzmann s constant. (a) If T hω/k B, the sum over states with r > 0 can be replaced by an integral. Show that the number of oscillators is then given by N = n dε hω 0 e (ε µ)/kbt 1, where n 0 is the mean occupation number of the ground state. (b) Using 1 ( ) dε 0 e (ε µ)/kbt 1 = k BT ln 1 e µ/k BT, show that you can write N as N = n 0 + k BT hω ln(n 0 + 1). (c) Sketch the two terms on the right hand side of the above equation against n 0 at constant temperature. Which term dominates at low N, and which one at high N? (d) For given N, calculate the temperature at which half of the particles are in the ground state. Is the assumption T hω/k B valid at this temperature? 2008/P.2/2 7 End of examination paper

UNIVERSITY OF LONDON. BSc and MSci EXAMINATION 2005 DO NOT TURN OVER UNTIL TOLD TO BEGIN

UNIVERSITY OF LONDON. BSc and MSci EXAMINATION 2005 DO NOT TURN OVER UNTIL TOLD TO BEGIN UNIVERSITY OF LONDON BSc and MSci EXAMINATION 005 For Internal Students of Royal Holloway DO NOT UNTIL TOLD TO BEGIN PH610B: CLASSICAL AND STATISTICAL THERMODYNAMICS PH610B: CLASSICAL AND STATISTICAL THERMODYNAMICS

More information

Imperial College London BSc/MSci EXAMINATION May 2014

Imperial College London BSc/MSci EXAMINATION May 2014 Imperial College London BSc/MSci EXAMINATION May 2014 This paper is also taken for the relevant Examination for the Associateship MOCK-EXAM QUESTIONS: QUANTUM THEORY OF MATTER For 4th-Year Physics Students

More information

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:-

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:- UNIVERSITY COLLEGE LONDON University of London EXAMINATION FOR INTERNAL STUDENTS For The Following Qualifications:- B.Sc. M.Sci. Statistical Thermodynamics COURSE CODE : PHAS2228 UNIT VALUE : 0.50 DATE

More information

Thermodynamics & Statistical Mechanics SCQF Level 9, U03272, PHY-3-ThermStat. Thursday 24th April, a.m p.m.

Thermodynamics & Statistical Mechanics SCQF Level 9, U03272, PHY-3-ThermStat. Thursday 24th April, a.m p.m. College of Science and Engineering School of Physics H T O F E E U D N I I N V E B R U S I R T Y H G Thermodynamics & Statistical Mechanics SCQF Level 9, U03272, PHY-3-ThermStat Thursday 24th April, 2008

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS2024W1 SEMESTER 2 EXAMINATION 2011/12 Quantum Physics of Matter Duration: 120 MINS VERY IMPORTANT NOTE Section A answers MUST BE in a separate blue answer book. If any blue

More information

STRUCTURE OF MATTER, VIBRATIONS & WAVES and QUANTUM PHYSICS

STRUCTURE OF MATTER, VIBRATIONS & WAVES and QUANTUM PHYSICS UNIVERSITY OF LONDON BSc/MSci EXAMINATION June 2007 for Internal Students of Imperial College of Science, Technology and Medicine This paper is also taken for the relevant Examination for the Associateship

More information

Thermal and Statistical Physics Department Exam Last updated November 4, L π

Thermal and Statistical Physics Department Exam Last updated November 4, L π Thermal and Statistical Physics Department Exam Last updated November 4, 013 1. a. Define the chemical potential µ. Show that two systems are in diffusive equilibrium if µ 1 =µ. You may start with F =

More information

Thermal & Statistical Physics Study Questions for the Spring 2018 Department Exam December 6, 2017

Thermal & Statistical Physics Study Questions for the Spring 2018 Department Exam December 6, 2017 Thermal & Statistical Physics Study Questions for the Spring 018 Department Exam December 6, 017 1. a. Define the chemical potential. Show that two systems are in diffusive equilibrium if 1. You may start

More information

Summary Part Thermodynamic laws Thermodynamic processes. Fys2160,

Summary Part Thermodynamic laws Thermodynamic processes. Fys2160, ! Summary Part 2 21.11.2018 Thermodynamic laws Thermodynamic processes Fys2160, 2018 1 1 U is fixed ) *,,, -(/,,), *,, -(/,,) N, 3 *,, - /,,, 2(3) Summary Part 1 Equilibrium statistical systems CONTINUE...

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS1013W1 SEMESTER 2 EXAMINATION 2014-2015 ENERGY AND MATTER Duration: 120 MINS (2 hours) This paper contains 8 questions. Answers to Section A and Section B must be in separate

More information

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES Content-Thermodynamics & Statistical Mechanics 1. Kinetic theory of gases..(1-13) 1.1 Basic assumption of kinetic theory 1.1.1 Pressure exerted by a gas 1.2 Gas Law for Ideal gases: 1.2.1 Boyle s Law 1.2.2

More information

MATHS & STATISTICS OF MEASUREMENT

MATHS & STATISTICS OF MEASUREMENT Imperial College London BSc/MSci EXAMINATION June 2008 This paper is also taken for the relevant Examination for the Associateship MATHS & STATISTICS OF MEASUREMENT For Second-Year Physics Students Tuesday,

More information

BLACK HOLES (ADVANCED GENERAL RELATIV- ITY)

BLACK HOLES (ADVANCED GENERAL RELATIV- ITY) Imperial College London MSc EXAMINATION May 2015 BLACK HOLES (ADVANCED GENERAL RELATIV- ITY) For MSc students, including QFFF students Wednesday, 13th May 2015: 14:00 17:00 Answer Question 1 (40%) and

More information

6.730 Physics for Solid State Applications

6.730 Physics for Solid State Applications 6.730 Physics for Solid State Applications Lecture 25: Chemical Potential and Equilibrium Outline Microstates and Counting System and Reservoir Microstates Constants in Equilibrium Temperature & Chemical

More information

a. 4.2x10-4 m 3 b. 5.5x10-4 m 3 c. 1.2x10-4 m 3 d. 1.4x10-5 m 3 e. 8.8x10-5 m 3

a. 4.2x10-4 m 3 b. 5.5x10-4 m 3 c. 1.2x10-4 m 3 d. 1.4x10-5 m 3 e. 8.8x10-5 m 3 The following two problems refer to this situation: #1 A cylindrical chamber containing an ideal diatomic gas is sealed by a movable piston with cross-sectional area A = 0.0015 m 2. The volume of the chamber

More information

Lecture 8. The Second Law of Thermodynamics; Energy Exchange

Lecture 8. The Second Law of Thermodynamics; Energy Exchange Lecture 8 The Second Law of Thermodynamics; Energy Exchange The second law of thermodynamics Statistics of energy exchange General definition of temperature Why heat flows from hot to cold Reading for

More information

Physics 607 Final Exam

Physics 607 Final Exam Physics 67 Final Exam Please be well-organized, and show all significant steps clearly in all problems. You are graded on your work, so please do not just write down answers with no explanation! Do all

More information

(i) T, p, N Gibbs free energy G (ii) T, p, µ no thermodynamic potential, since T, p, µ are not independent of each other (iii) S, p, N Enthalpy H

(i) T, p, N Gibbs free energy G (ii) T, p, µ no thermodynamic potential, since T, p, µ are not independent of each other (iii) S, p, N Enthalpy H Solutions exam 2 roblem 1 a Which of those quantities defines a thermodynamic potential Why? 2 points i T, p, N Gibbs free energy G ii T, p, µ no thermodynamic potential, since T, p, µ are not independent

More information

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:-

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:- UNIVERSITY COLLEGE LONDON University of London EXAMINATION FOR INTERNAL STUDENTS For The Following Qualifications:- B. Sc. M. Sci. Physics 2B28: Statistical Thermodynamics and Condensed Matter Physics

More information

STRUCTURE OF MATTER, VIBRATIONS AND WAVES, AND QUANTUM PHYSICS

STRUCTURE OF MATTER, VIBRATIONS AND WAVES, AND QUANTUM PHYSICS Imperial College London BSc/MSci EXAMINATION June 2008 This paper is also taken for the relevant Examination for the Associateship STRUCTURE OF MATTER, VIBRATIONS AND WAVES, AND QUANTUM PHYSICS For 1st-Year

More information

International Physics Course Entrance Examination Questions

International Physics Course Entrance Examination Questions International Physics Course Entrance Examination Questions (May 2010) Please answer the four questions from Problem 1 to Problem 4. You can use as many answer sheets you need. Your name, question numbers

More information

Data Provided: A formula sheet and table of physical constants are attached to this paper.

Data Provided: A formula sheet and table of physical constants are attached to this paper. Data Provided: A formula sheet and table of physical constants are attached to this paper. DEPARTMENT OF PHYSICS AND ASTRONOMY Spring Semester (2016-2017) From Thermodynamics to Atomic and Nuclear Physics

More information

Irreversible Processes

Irreversible Processes Lecture 15 Heat Engines Review & Examples p p b b Hot reservoir at T h p a a c adiabats Heat leak Heat pump Q h Q c W d V 1 V 2 V Cold reservoir at T c Lecture 15, p 1 Irreversible Processes Entropy-increasing

More information

Lecture 8. The Second Law of Thermodynamics; Energy Exchange

Lecture 8. The Second Law of Thermodynamics; Energy Exchange Lecture 8 The Second Law of Thermodynamics; Energy Exchange The second law of thermodynamics Statistics of energy exchange General definition of temperature Why heat flows from hot to cold Reading for

More information

Statistical Mechanics

Statistical Mechanics Statistical Mechanics Newton's laws in principle tell us how anything works But in a system with many particles, the actual computations can become complicated. We will therefore be happy to get some 'average'

More information

Identical Particles. Bosons and Fermions

Identical Particles. Bosons and Fermions Identical Particles Bosons and Fermions In Quantum Mechanics there is no difference between particles and fields. The objects which we refer to as fields in classical physics (electromagnetic field, field

More information

Distinguish between an isothermal process and an adiabatic process as applied to an ideal gas (2)

Distinguish between an isothermal process and an adiabatic process as applied to an ideal gas (2) 1. This question is about thermodynamic processes. (a) Distinguish between an isothermal process and an adiabatic process as applied to an ideal gas.......... An ideal gas is held in a container by a moveable

More information

Part II: Statistical Physics

Part II: Statistical Physics Chapter 7: Quantum Statistics SDSMT, Physics 2013 Fall 1 Introduction 2 The Gibbs Factor Gibbs Factor Several examples 3 Quantum Statistics From high T to low T From Particle States to Occupation Numbers

More information

Irreversible Processes

Irreversible Processes Lecture 15 Heat Engines Review & Examples p p b b Hot reservoir at T h p a a c adiabats Heat leak Heat pump Q h Q c W d V 1 V 2 V Cold reservoir at T c Lecture 15, p 1 Irreversible Processes Entropy-increasing

More information

1 Fluctuations of the number of particles in a Bose-Einstein condensate

1 Fluctuations of the number of particles in a Bose-Einstein condensate Exam of Quantum Fluids M1 ICFP 217-218 Alice Sinatra and Alexander Evrard The exam consists of two independant exercises. The duration is 3 hours. 1 Fluctuations of the number of particles in a Bose-Einstein

More information

140a Final Exam, Fall 2006., κ T 1 V P. (? = P or V ), γ C P C V H = U + PV, F = U TS G = U + PV TS. T v. v 2 v 1. exp( 2πkT.

140a Final Exam, Fall 2006., κ T 1 V P. (? = P or V ), γ C P C V H = U + PV, F = U TS G = U + PV TS. T v. v 2 v 1. exp( 2πkT. 40a Final Exam, Fall 2006 Data: P 0 0 5 Pa, R = 8.34 0 3 J/kmol K = N A k, N A = 6.02 0 26 particles/kilomole, T C = T K 273.5. du = TdS PdV + i µ i dn i, U = TS PV + i µ i N i Defs: 2 β ( ) V V T ( )

More information

21 Lecture 21: Ideal quantum gases II

21 Lecture 21: Ideal quantum gases II 2. LECTURE 2: IDEAL QUANTUM GASES II 25 2 Lecture 2: Ideal quantum gases II Summary Elementary low temperature behaviors of non-interacting particle systems are discussed. We will guess low temperature

More information

Final Exam for Physics 176. Professor Greenside Wednesday, April 29, 2009

Final Exam for Physics 176. Professor Greenside Wednesday, April 29, 2009 Print your name clearly: Signature: I agree to neither give nor receive aid during this exam Final Exam for Physics 76 Professor Greenside Wednesday, April 29, 2009 This exam is closed book and will last

More information

Thermodynamics & Statistical Mechanics

Thermodynamics & Statistical Mechanics hysics GRE: hermodynamics & Statistical Mechanics G. J. Loges University of Rochester Dept. of hysics & Astronomy xkcd.com/66/ c Gregory Loges, 206 Contents Ensembles 2 Laws of hermodynamics 3 hermodynamic

More information

PHY214 Thermal & Kinetic Physics Duration: 2 hours 30 minutes

PHY214 Thermal & Kinetic Physics Duration: 2 hours 30 minutes BSc Examination by course unit. Friday 5th May 01 10:00 1:30 PHY14 Thermal & Kinetic Physics Duration: hours 30 minutes YOU ARE NOT PERMITTED TO READ THE CONTENTS OF THIS QUESTION PAPER UNTIL INSTRUCTED

More information

Statistical Physics. The Second Law. Most macroscopic processes are irreversible in everyday life.

Statistical Physics. The Second Law. Most macroscopic processes are irreversible in everyday life. Statistical Physics he Second Law ime s Arrow Most macroscopic processes are irreversible in everyday life. Glass breaks but does not reform. Coffee cools to room temperature but does not spontaneously

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS1013W1 SEMESTER 2 EXAMINATION 2014-2015 ENERGY AND MATTER Duration: 120 MINS (2 hours) This paper contains 8 questions. Answers to Section A and Section B must be in separate

More information

Part II Statistical Physics

Part II Statistical Physics Part II Statistical Physics Theorems Based on lectures by H. S. Reall Notes taken by Dexter Chua Lent 2017 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

(prev) (top) (next) (Throughout, we will assume the processes involve an ideal gas with constant n.)

(prev) (top) (next) (Throughout, we will assume the processes involve an ideal gas with constant n.) 1 of 9 8/22/12 9:51 PM (prev) (top) (next) Thermodynamics 1 Thermodynamic processes can be: 2 isothermal processes, ΔT = 0 (so P ~ 1 / V); isobaric processes, ΔP = 0 (so T ~ V); isovolumetric or isochoric

More information

PHYS3113, 3d year Statistical Mechanics Tutorial problems. Tutorial 1, Microcanonical, Canonical and Grand Canonical Distributions

PHYS3113, 3d year Statistical Mechanics Tutorial problems. Tutorial 1, Microcanonical, Canonical and Grand Canonical Distributions 1 PHYS3113, 3d year Statistical Mechanics Tutorial problems Tutorial 1, Microcanonical, Canonical and Grand Canonical Distributions Problem 1 The macrostate probability in an ensemble of N spins 1/2 is

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSIY OF SOUHAMPON PHYS1013W1 SEMESER 2 EXAMINAION 2013-2014 Energy and Matter Duration: 120 MINS (2 hours) his paper contains 9 questions. Answers to Section A and Section B must be in separate answer

More information

Statistical Mechanics Notes. Ryan D. Reece

Statistical Mechanics Notes. Ryan D. Reece Statistical Mechanics Notes Ryan D. Reece August 11, 2006 Contents 1 Thermodynamics 3 1.1 State Variables.......................... 3 1.2 Inexact Differentials....................... 5 1.3 Work and Heat..........................

More information

PHYSICS DEPARTMENT, PRINCETON UNIVERSITY PHYSICS 301 FINAL EXAMINATION. January 13, 2005, 7:30 10:30pm, Jadwin A10 SOLUTIONS

PHYSICS DEPARTMENT, PRINCETON UNIVERSITY PHYSICS 301 FINAL EXAMINATION. January 13, 2005, 7:30 10:30pm, Jadwin A10 SOLUTIONS PHYSICS DEPARTMENT, PRINCETON UNIVERSITY PHYSICS 301 FINAL EXAMINATION January 13, 2005, 7:30 10:30pm, Jadwin A10 SOLUTIONS This exam contains five problems. Work any three of the five problems. All problems

More information

Chapter 3. The Second Law Fall Semester Physical Chemistry 1 (CHM2201)

Chapter 3. The Second Law Fall Semester Physical Chemistry 1 (CHM2201) Chapter 3. The Second Law 2011 Fall Semester Physical Chemistry 1 (CHM2201) Contents The direction of spontaneous change 3.1 The dispersal of energy 3.2 The entropy 3.3 Entropy changes accompanying specific

More information

STATISTICAL MECHANICS & THERMODYNAMICS

STATISTICAL MECHANICS & THERMODYNAMICS UVA PHYSICS DEPARTMENT PHD QUALIFYING EXAM PROBLEM FILE STATISTICAL MECHANICS & THERMODYNAMICS UPDATED: OCTOBER 8 1. (a) For a gas of free electrons in d dimensions, compute the isothermal compressibility,

More information

Minimum Bias Events at ATLAS

Minimum Bias Events at ATLAS Camille Bélanger-Champagne Lehman McGill College University City University of New York Thermodynamics Charged Particle and Correlations Statistical Mechanics in Minimum Bias Events at ATLAS Statistical

More information

Physics 408 Final Exam

Physics 408 Final Exam Physics 408 Final Exam Name You are graded on your work, with partial credit where it is deserved. Please give clear, well-organized solutions. 1. Consider the coexistence curve separating two different

More information

How to please the rulers of NPL-213 the geese

How to please the rulers of NPL-213 the geese http://www.walkingmountains. org/2015/03/reintroduction-ofthe-canada-goose/ How to please the rulers of NPL-213 the geese (Entropy and the 2 nd Law of Thermodynamics) Physics 116 2017 Tues. 3/21, Thurs

More information

The non-interacting Bose gas

The non-interacting Bose gas Chapter The non-interacting Bose gas Learning goals What is a Bose-Einstein condensate and why does it form? What determines the critical temperature and the condensate fraction? What changes for trapped

More information

Worksheet for Exploration 21.1: Engine Efficiency W Q H U

Worksheet for Exploration 21.1: Engine Efficiency W Q H U Worksheet for Exploration 21.1: Engine Efficiency In this animation, N = nr (i.e., k B = 1). This, then, gives the ideal gas law as PV = NT. Assume an ideal monatomic gas. The efficiency of an engine is

More information

5. Systems in contact with a thermal bath

5. Systems in contact with a thermal bath 5. Systems in contact with a thermal bath So far, isolated systems (micro-canonical methods) 5.1 Constant number of particles:kittel&kroemer Chap. 3 Boltzmann factor Partition function (canonical methods)

More information

Lecture. Polymer Thermodynamics 0331 L First and Second Law of Thermodynamics

Lecture. Polymer Thermodynamics 0331 L First and Second Law of Thermodynamics 1 Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science Institute of Chemical Engineering Department of hermodynamics Lecture Polymer hermodynamics 0331 L 337 2.1. First Law of hermodynamics

More information

Section 3 Entropy and Classical Thermodynamics

Section 3 Entropy and Classical Thermodynamics Section 3 Entropy and Classical Thermodynamics 3.1 Entropy in thermodynamics and statistical mechanics 3.1.1 The Second Law of Thermodynamics There are various statements of the second law of thermodynamics.

More information

Physics 112 Second Midterm Exam February 22, 2000

Physics 112 Second Midterm Exam February 22, 2000 Physics 112 Second Midterm Exam February 22, 2000 MIDTERM EXAM INSTRUCTIONS: You have 90 minutes to complete this exam. This is a closed book exam, although you are permitted to consult two sheets of handwritten

More information

TB [103 marks] The damping of the system is now increased. Which describes the change in ƒ 0 and the change in A 0?

TB [103 marks] The damping of the system is now increased. Which describes the change in ƒ 0 and the change in A 0? TB [103 marks] 1. A periodic driving force of frequency ƒ acts on a system which undergoes forced oscillations of amplitude A. The graph below shows the variation with ƒ of A. The maximum amplitude A 0

More information

Physics 576 Stellar Astrophysics Prof. James Buckley. Lecture 14 Relativistic Quantum Mechanics and Quantum Statistics

Physics 576 Stellar Astrophysics Prof. James Buckley. Lecture 14 Relativistic Quantum Mechanics and Quantum Statistics Physics 576 Stellar Astrophysics Prof. James Buckley Lecture 14 Relativistic Quantum Mechanics and Quantum Statistics Reading/Homework Assignment Read chapter 3 in Rose. Midterm Exam, April 5 (take home)

More information

Lecture 2 Entropy and Second Law

Lecture 2 Entropy and Second Law Lecture 2 Entropy and Second Law Etymology: Entropy, entropie in German. En from energy and trope turning toward Turning to energy Motivation for a Second Law!! First law allows us to calculate the energy

More information

1. A measure of a medium s stiffness (it s resistance to compression) is given in terms of the bulk modulus, B, defined by

1. A measure of a medium s stiffness (it s resistance to compression) is given in terms of the bulk modulus, B, defined by 1. A measure of a medium s stiffness (it s resistance to compression) is given in terms of the bulk modulus, B, defined by B V P V a) Assuming isothermal compression, derive a formula for the bulk modulus

More information

Statistical Mechanics Victor Naden Robinson vlnr500 3 rd Year MPhys 17/2/12 Lectured by Rex Godby

Statistical Mechanics Victor Naden Robinson vlnr500 3 rd Year MPhys 17/2/12 Lectured by Rex Godby Statistical Mechanics Victor Naden Robinson vlnr500 3 rd Year MPhys 17/2/12 Lectured by Rex Godby Lecture 1: Probabilities Lecture 2: Microstates for system of N harmonic oscillators Lecture 3: More Thermodynamics,

More information

Classical thermodynamics

Classical thermodynamics Classical thermodynamics More about irreversibility chap. 6 Isentropic expansion of an ideal gas Sudden expansion of a gas into vacuum cf Kittel and Kroemer end of Cyclic engines cf Kittel and Kroemer

More information

3. Photons and phonons

3. Photons and phonons Statistical and Low Temperature Physics (PHYS393) 3. Photons and phonons Kai Hock 2010-2011 University of Liverpool Contents 3.1 Phonons 3.2 Photons 3.3 Exercises Photons and phonons 1 3.1 Phonons Photons

More information

Table of Contents [ttc]

Table of Contents [ttc] Table of Contents [ttc] 1. Equilibrium Thermodynamics I: Introduction Thermodynamics overview. [tln2] Preliminary list of state variables. [tln1] Physical constants. [tsl47] Equations of state. [tln78]

More information

...Thermodynamics. Lecture 15 November 9, / 26

...Thermodynamics. Lecture 15 November 9, / 26 ...Thermodynamics Conjugate variables Positive specific heats and compressibility Clausius Clapeyron Relation for Phase boundary Phase defined by discontinuities in state variables Lecture 15 November

More information

Write your CANDIDATE NUMBER clearly on each of the THREE answer books provided. Hand in THREE answer books even if they have not all been used.

Write your CANDIDATE NUMBER clearly on each of the THREE answer books provided. Hand in THREE answer books even if they have not all been used. UNIVERSITY OF LONDON BSc/MSci EXAMINATION May 2007 for Internal Students of Imperial College of Science, Technology and Medicine This paper is also taken for the relevant Examination for the Associateship

More information

Math Questions for the 2011 PhD Qualifier Exam 1. Evaluate the following definite integral 3" 4 where! ( x) is the Dirac! - function. # " 4 [ ( )] dx x 2! cos x 2. Consider the differential equation dx

More information

Physics 101: Lecture 28 Thermodynamics II

Physics 101: Lecture 28 Thermodynamics II Physics 101: Lecture 28 Thermodynamics II Final Today s lecture will cover Textbook Chapter 15.6-15.9 Check Final Exam Room Assignment! Bring ID! Be sure to check your gradebook! Physics 101: Lecture 28,

More information

First Problem Set for Physics 847 (Statistical Physics II)

First Problem Set for Physics 847 (Statistical Physics II) First Problem Set for Physics 847 (Statistical Physics II) Important dates: Feb 0 0:30am-:8pm midterm exam, Mar 6 9:30am-:8am final exam Due date: Tuesday, Jan 3. Review 0 points Let us start by reviewing

More information

Physics 607 Final Exam

Physics 607 Final Exam Physics 607 Final Exam Please show all significant steps clearly in all problems. 1. Let E,S,V,T, and P be the internal energy, entropy, volume, temperature, and pressure of a system in thermodynamic equilibrium

More information

Physics 4230 Final Exam, Spring 2004 M.Dubson This is a 2.5 hour exam. Budget your time appropriately. Good luck!

Physics 4230 Final Exam, Spring 2004 M.Dubson This is a 2.5 hour exam. Budget your time appropriately. Good luck! 1 Physics 4230 Final Exam, Spring 2004 M.Dubson This is a 2.5 hour exam. Budget your time appropriately. Good luck! For all problems, show your reasoning clearly. In general, there will be little or no

More information

Physics 4230 Final Examination 10 May 2007

Physics 4230 Final Examination 10 May 2007 Physics 43 Final Examination May 7 In each problem, be sure to give the reasoning for your answer and define any variables you create. If you use a general formula, state that formula clearly before manipulating

More information

Graduate Written Examination Fall 2014 Part I

Graduate Written Examination Fall 2014 Part I Graduate Written Examination Fall 2014 Part I University of Minnesota School of Physics and Astronomy Aug. 19, 2014 Examination Instructions Part 1 of this exam consists of 10 problems of equal weight.

More information

Handout 12: Thermodynamics. Zeroth law of thermodynamics

Handout 12: Thermodynamics. Zeroth law of thermodynamics 1 Handout 12: Thermodynamics Zeroth law of thermodynamics When two objects with different temperature are brought into contact, heat flows from the hotter body to a cooler one Heat flows until the temperatures

More information

12 The Laws of Thermodynamics

12 The Laws of Thermodynamics June 14, 1998 12 The Laws of Thermodynamics Using Thermal Energy to do Work Understanding the laws of thermodynamics allows us to use thermal energy in a practical way. The first law of thermodynamics

More information

Thermodynamic system is classified into the following three systems. (ii) Closed System It exchanges only energy (not matter) with surroundings.

Thermodynamic system is classified into the following three systems. (ii) Closed System It exchanges only energy (not matter) with surroundings. 1 P a g e The branch of physics which deals with the study of transformation of heat energy into other forms of energy and vice-versa. A thermodynamical system is said to be in thermal equilibrium when

More information

For QFFF MSc Students Monday, 9th January 2017: 14:00 to 16:00. Marks shown on this paper are indicative of those the Examiners anticipate assigning.

For QFFF MSc Students Monday, 9th January 2017: 14:00 to 16:00. Marks shown on this paper are indicative of those the Examiners anticipate assigning. Imperial College London QFFF MSc TEST January 017 QUANTUM FIELD THEORY TEST For QFFF MSc Students Monday, 9th January 017: 14:00 to 16:00 Answer ALL questions. Please answer each question in a separate

More information

Set 3: Thermal Physics

Set 3: Thermal Physics Set 3: Thermal Physics Equilibrium Thermal physics describes the equilibrium distribution of particles for a medium at temperature T Expect that the typical energy of a particle by equipartition is E kt,

More information

Thermodynamics and Statistical Physics. Preliminary Ph.D. Qualifying Exam. Summer 2009

Thermodynamics and Statistical Physics. Preliminary Ph.D. Qualifying Exam. Summer 2009 Thermodynamics and Statistical Physics Preliminary Ph.D. Qualifying Exam Summer 2009 (Choose 4 of the following 6 problems) -----------------------------------------------------------------------------------------------------------

More information

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble Recall from before: Internal energy (or Entropy): &, *, - (# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble & = /01Ω maximized Ω: fundamental statistical quantity

More information

Preliminary Examination - Day 2 August 16, 2013

Preliminary Examination - Day 2 August 16, 2013 UNL - Department of Physics and Astronomy Preliminary Examination - Day August 16, 13 This test covers the topics of Quantum Mechanics (Topic 1) and Thermodynamics and Statistical Mechanics (Topic ). Each

More information

Potential Descending Principle, Dynamic Law of Physical Motion and Statistical Theory of Heat

Potential Descending Principle, Dynamic Law of Physical Motion and Statistical Theory of Heat Potential Descending Principle, Dynamic Law of Physical Motion and Statistical Theory of Heat Tian Ma and Shouhong Wang Supported in part by NSF, ONR and Chinese NSF http://www.indiana.edu/ fluid Outline

More information

Inconsistency of Carnot Principle and Second Law of Thermodynamics. Charanjeet Singh Bansrao. Abstract

Inconsistency of Carnot Principle and Second Law of Thermodynamics. Charanjeet Singh Bansrao. Abstract Inconsistency of Carnot Principle and Second Law of Thermodynamics Charanjeet Singh Bansrao bansraos@yahoo.co.in Abstract We know that internal energy of an ideal gas is a state function and it solely

More information

Chapter 12. The Laws of Thermodynamics. First Law of Thermodynamics

Chapter 12. The Laws of Thermodynamics. First Law of Thermodynamics Chapter 12 The Laws of Thermodynamics First Law of Thermodynamics The First Law of Thermodynamics tells us that the internal energy of a system can be increased by Adding energy to the system Doing work

More information

Chapter 2: Equation of State

Chapter 2: Equation of State Introduction Chapter 2: Equation of State The Local Thermodynamic Equilibrium The Distribution Function Black Body Radiation Fermi-Dirac EoS The Complete Degenerate Gas Application to White Dwarfs Temperature

More information

Physics 101: Lecture 28 Thermodynamics II

Physics 101: Lecture 28 Thermodynamics II Physics 101: Lecture 28 Thermodynamics II Final Today s lecture will cover Textbook Chapter 15.6-15.9 Check Final Exam Room Assignment! Bring ID! Be sure to check your gradebook! Physics 101: Lecture 28,

More information

Chapter 20. Heat Engines, Entropy and the Second Law of Thermodynamics. Dr. Armen Kocharian

Chapter 20. Heat Engines, Entropy and the Second Law of Thermodynamics. Dr. Armen Kocharian Chapter 20 Heat Engines, Entropy and the Second Law of Thermodynamics Dr. Armen Kocharian First Law of Thermodynamics Review Review: The first law states that a change in internal energy in a system can

More information

Irreversible Processes

Irreversible Processes Irreversible Processes Examples: Block sliding on table comes to rest due to friction: KE converted to heat. Heat flows from hot object to cold object. Air flows into an evacuated chamber. Reverse process

More information

Insigh,ul Example. E i = n i E, n i =0, 1, 2,..., 8. N(n 0,n 1,n 2,..., n 8 )= n 1!n 2!...n 8!

Insigh,ul Example. E i = n i E, n i =0, 1, 2,..., 8. N(n 0,n 1,n 2,..., n 8 )= n 1!n 2!...n 8! STATISTICS Often the number of particles in a system is prohibitively large to solve detailed state (from Schrodinger equation) or predict exact motion (using Newton s laws). Bulk properties (pressure,

More information

PHYSICS 210A : EQUILIBRIUM STATISTICAL PHYSICS HW ASSIGNMENT #4 SOLUTIONS

PHYSICS 210A : EQUILIBRIUM STATISTICAL PHYSICS HW ASSIGNMENT #4 SOLUTIONS PHYSICS 0A : EQUILIBRIUM STATISTICAL PHYSICS HW ASSIGNMENT #4 SOLUTIONS () For a noninteracting quantum system with single particle density of states g(ε) = A ε r (with ε 0), find the first three virial

More information

Introduction Statistical Thermodynamics. Monday, January 6, 14

Introduction Statistical Thermodynamics. Monday, January 6, 14 Introduction Statistical Thermodynamics 1 Molecular Simulations Molecular dynamics: solve equations of motion Monte Carlo: importance sampling r 1 r 2 r n MD MC r 1 r 2 2 r n 2 3 3 4 4 Questions How can

More information

Physics 101: Lecture 28 Thermodynamics II

Physics 101: Lecture 28 Thermodynamics II Physics 101: Lecture 28 Thermodynamics II Final Today s lecture will cover Textbook Chapter 15.6-15.9 Check Final Exam Room Assignment! Bring ID! Be sure to check your gradebook! (send me your net ID if

More information

18.13 Review & Summary

18.13 Review & Summary 5/2/10 10:04 PM Print this page 18.13 Review & Summary Temperature; Thermometers Temperature is an SI base quantity related to our sense of hot and cold. It is measured with a thermometer, which contains

More information

- HH Photons and Planck Radiation Law Hsiu-Hau Lin (Oct 23, 2012)

- HH Photons and Planck Radiation Law Hsiu-Hau Lin (Oct 23, 2012) - HH64 - Photons and Planck Radiation Law Hsiu-Hau Lin hsiuhau.lin@gmail.com (Oct 23, 212) Quantum theory begins with the Planck radiation law for thermal radiation at di erent frequencies, u! = ~ 2 c

More information

13. Ideal Quantum Gases I: Bosons

13. Ideal Quantum Gases I: Bosons University of Rhode Island DigitalCommons@URI Equilibrium Statistical Physics Physics Course Materials 5 3. Ideal Quantum Gases I: Bosons Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative

More information

Appendix 1: Normal Modes, Phase Space and Statistical Physics

Appendix 1: Normal Modes, Phase Space and Statistical Physics Appendix : Normal Modes, Phase Space and Statistical Physics The last line of the introduction to the first edition states that it is the wide validity of relatively few principles which this book seeks

More information

Lecture 15. Available Work and Free Energy. Lecture 15, p 1

Lecture 15. Available Work and Free Energy. Lecture 15, p 1 Lecture 15 Available Work and Free Energy U F F U -TS Lecture 15, p 1 Helpful Hints in Dealing with Engines and Fridges Sketch the process (see figures below). Define and Q c and W by (or W on ) as positive

More information

Lecture Notes Set 4c: Heat engines and the Carnot cycle

Lecture Notes Set 4c: Heat engines and the Carnot cycle ecture Notes Set 4c: eat engines and the Carnot cycle Introduction to heat engines In the following sections the fundamental operating principles of the ideal heat engine, the Carnot engine, will be discussed.

More information

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in LONDON BEIJING HONG TSINGHUA Report and Review in Physics Vol2 PRINCIPLES OF PHYSICS From Quantum Field Theory to Classical Mechanics Ni Jun Tsinghua University, China NEW JERSEY \Hp SINGAPORE World Scientific

More information

ADVANCED QUANTUM FIELD THEORY

ADVANCED QUANTUM FIELD THEORY Imperial College London MSc EXAMINATION May 2016 This paper is also taken for the relevant Examination for the Associateship ADVANCED QUANTUM FIELD THEORY For Students in Quantum Fields and Fundamental

More information

Qualifying Exam for Ph.D. Candidacy Department of Physics October 11, 2014 Part I

Qualifying Exam for Ph.D. Candidacy Department of Physics October 11, 2014 Part I Qualifying Exam for Ph.D. Candidacy Department of Physics October 11, 214 Part I Instructions: The following problems are intended to probe your understanding of basic physical principles. When answering

More information

Lecture Notes Set 3b: Entropy and the 2 nd law

Lecture Notes Set 3b: Entropy and the 2 nd law Lecture Notes Set 3b: Entropy and the 2 nd law 3.5 Entropy and the 2 nd law of thermodynamics The st law of thermodynamics is simply a restatement of the conservation of energy principle and may be concisely

More information