Physics 310 Lecture 8a Digital Circuits

Size: px
Start display at page:

Download "Physics 310 Lecture 8a Digital Circuits"

Transcription

1 Mon. 3/2 Wed. 3/4 Thurs. 3/5 Fri. 3/6 h : Digial ircuis h s & 2: Digial ircuis Lab 8: Digial ircuis More of e same Quiz h s & 2 Physics 30 Mon. 3/29 h 4.,.6-.0; pp (Sampling Frequency); 2.6: AD & DA Projec Proposal HW 8: h Pr.2,8,9*; h2 Pr,5 Lab 8 Noebook Projec Proposals Due Nex Monday Sudy Lis for Quiz #8:. gic gaes: AND, NAND, OR, NOR, XOR, XNOR, and NOT (inverer). 2. Know how o use e ru ables for logic gaes. 3. Daa and JK Flip-Flops gic Gaes Symbols Tru Tables TTL & MOS oolean Algebra can make anying wi NAND or NOR gaes! De Morgan s eorem Numbering sysems & codes decimal, binary, D (Open collecor & ree-sae logic NO TIM!) Flip-Flops RS locked RS also e differen ypes of clocking Daa coun-by-wo cirui JK coun-o-6 circui D-o-decimal Decoder & Seven-segmen Display oun-by-3 circui design (e decade couner is similar!) Synchronous vs. ripple couners. ould you please go over e NOR and NAND gaes? I m no sure I really undersand how ey work and wha eir purpose is. 2. ould you go over e differen logic lines? 3. Why are ere so many differen ypes of flip-flops? 4.. ould you go over or explain e Schmi Trigger inverer as a simple low power oscillaor? Wha are componens in e logic line acually used for? Jus a premade "circui" o supply a cerain volage o an insrumen?

2 Working wi oolean Algebra, like solving eorems 0 o 7. I don' undersand how ey work. 9. an we go over an example of power dissipaion and how you figure ou e power requiremens of a logic device. o appreciae why ere are muliple families ou ere, i s wor appreciaing e power dissipaion issue, bu we won ge ino really calculaing i. 0.. How ese logic lines e only ones ere are or can more be discovered and creaed? These are cerainly e big ones a ge used a lo; perhaps ere are some oer ones, bu ey are no as prevalen (and for e sake of compaibiliy, one doesn wan oo much diversiy.) 2. an we jus go over idenifying and building differen logic lines? 3. ould we ry o work rough some examples of boolean algebra on our own or wi parners? hapers & 2 Inroducion. You ve already me e circuiry a performs e basics of wha I ll call coninuous maemaics adding (or subracing), inegraing, and differeniaing (yes, ere are even mulipliers / dividers). u ere s a whole oer side o maemaics discree logic. You may be mos familiar wi is side in e ougrow of Maemaic in wha became ompuer Science all ose IF Then, or Do Unil, or And, Or, No, Jus as ere are elecronic componens o do e coninuous kind of ma, ere are componens o do e discree kind. For a maer, jus as e coninuous ma componens are buil of mosly ransisors, so are e discree ma componens. The 555 imer provided our firs occasion o ink more in erms of discree logic saes of a signal ( or ) raer an e specific values e signal may assume. There are a handful devices a have been designed o perform e basic logical operaions like you migh employ when wriing code or doing an online search AND, OR, NOT, NOR, and NAND, in addiion o ese, e flip-flop rounds ou e building blocks of a logic, a.k.a., digial circui. These are e subjec of chapers and 2 of our ex. Digial ircuiry is all abou manipulaing wo saes and only wo saes. In eir naive ongue (a of volages), ese saes may be a volage (someing near e posiive rail) and a volage (someing near ground). Depending on conex, ese wo saes are variously referred o as ON HI True volage near posiive rail usually OFF False 0 ground

3 -2 Gaes The devices a handle ose logical connecors, are called logic gaes, or jus plain gaes. Here s a quick survey of e basics. AND: The oupu is rue / volage only if bo of e wo inpus are rue / volage; oerwise, e oupu is false / volage. Of course a s e same way AND works in nglish oo: True or False: I have an apple AND a banana:. efore slide: work ou ru able for Apple AND anana. Tru Table Simplified inner workings Symbol + Inpu A Inpu pu a b Inpu a Inpu b AND pu ou I presen e simplified inner workings no because we re going o focus a much under e hood of ese gaes a is momen, bu so you can appreciae a gaes can be made of ransisors and have a passing familiariy wi how. Thinking rough e inner workings, each ransisor s base volage needs o be above is emier s volage for e ransisor o urn on and conduc curren; so as long as one or e oer base volage is grounded, negligible curren passes rough e resisor, and so ou is essenially ground. OR: The oupu is rue / volage if eier one or e oer (or bo) inpu is rue /. Of course, is is how OR is used in nglish oo: True or False: I have an apple OR a banana:. efore slide, work ou ru able for Apple OR anana Tru Table Simplified Inner Workings Symbol Inpu a Inpu b pu a + b ou Inpu a Inpu b OR OR pu

4 Thinking rough e inner workings, if eier one of e ransisors bases is se o a high volage, en a one will allow curren o pass rough e resisor and us allow ou o be a higher volage an ground. Now, in nglish, ere s some ambiguiy o or : do you have an apple or a banana? wha if you have bo is e answer yes or no? X-OR: (exclusive OR). The oupu is rue / volage if one or e oer inpu is rue / volage, bu no if bo are. In nglish, we usually jus use or for is and judge by e conex; for example, le me know if you ve seleced your frui; eier an apple or a banana. Tru Table Symbol Inpu a Inpu b pu Inpu a 0 OR X-OR pu 0 Inpu b 0 NOT: pu is e opposie of e single inpu. Again, is is e same way we can (juvenilely) use NOT in nglish: I is True a I have an apple.not. Tru Table Simplified Inner Workings Symbol Inpu pu ou When in series wi anoer gae, or in Oerwise, Inpu NOT pu Anoer name for a NOT gae is an Inverer. follower no do Three useful gaes are made by acking a No on e end of an AND, an OR, and an X-OR. NAND: pu is rue / volage as long as a leas one of e inpus is false /. In nglish: i s rue a you don have bo an apple and a banana isn i? Tru Table Simplified Inner Workings Symbol Inpu a Inpu b pu ou 0 Inpu a a 0 NAND Noice a is is e opposie Inpu b pu as for an AND; i.e., i s Wha you d ge if you followed an b AND wi a NOT. pu

5 NOR: pu is rue if neier of e wo inpus is rue. nglish example: Is i rue a I have neier an apple NOR a banana? efore slide, work ou ru able. Tru Table Simplified Inner Workings Symbol Inpu a Inpu b pu a Noice a is is e opposie oupu As for an OR; i.e., i s wha you d Ge if you followed an OR wi a NOT. + b ou Inpu a Inpu b OR NOR pu X-NOR: (exclusive NOR). The oupu is rue / volage as long as e inpus are e same as each oer. Tru Table Symbol Inpu a Inpu b pu Inpu a 0 0 X-NOR 0 0 Inpu b pu 0 0

6 Schmi Trigger & Hyseresis Saying a ese are wo-sae devices is all good and well, bu i s no like ey really deal in s and 0 s; ey really deal in volages which have a coninuum of possible values. Jus as wi e comparaors, ere needs o be a reshold value; any volage higher an i couns as / True, or, and any volage lower an i couns as / False or 0. eer ye, o be a lile insulaed from noise on e inpus, ese devices should be Schmi riggered. Tha is o say, ey should have wo resholds; if e inpu crosses e upper one on e way up, i couns as or crosses e lower one on e way down i couns as. We can see a play ou for a sine-wave inpu o a NOT gae / inverer. Inpu NOT pu in ou Someone asked, so jus go over firs par: As has already been seen, in haper0, inverers wi hyseresis can be used o generae square waves. Here s one more example. + A ou resh- resh T T o / R A( o) ( e ) o Rln Rln

7 ( A o ) ( e ( o )/ R ) o Rln Rln Rln Rln ( )/ R A( ) e Rln T Rln Rln Rln Rln Zoom in / Zoom ou. efore we ge o inking abou really using ese gaes, ere are wo disinc areas of background we should explore. While you re somewha familiar wi coninuous maemaics, you may no have a lo of pracice wi discree / logic maemaics; so we ll pull back and survey oolean Algebra. efore we do a ough, we ll zoom in and consider some of e real deails of ese logic gaes, wha s really under e hood so we can appreciae a) how ey relae o oer circuiry devices and principles we ve already me and b) how differen design choices impac eir exac behavior wha s a cheap gae design, wha s a fas gae design, -3 Survey of I Gaes Now i s ime o look under e hood: no all AND s are creaed equal. When you selec a vehicle, firs you decide if i s going o be a bike, a car, a plane Afer a, you sill have choices of makes and models. Similarly, when you selec a logic device, firs you decide if i s going o be an AND or an X-OR, bu en you sill have wo differen lines (TTL & MOS) and differen families wiin em TTL: 74, 74L, 74LS, 74ALS from which o choose. Here are e key disinguishing feaures. Fanou: How many oer similar chips can be conneced before e signal degrades oo much. To be more specific, ese are all ransisor based devices, and as you re familiar, ere are inheren diode-volage drops on e order of 0.6. If you sring oo many of ese in series, ere s a chance a e oupu of e las one won be a high anymore.

8 Threshold Level: For a maer, wha couns as and wha couns as? Above/below 2.5, above 5, above 0,? Acually, one given device may have four answers o a quesion. On is inpu, a TTL componen powered by a +5 rail (and ground) may recognize < 0.8 > 2.0, while on is oupu i may produce =0.4 = 2.4 jus o give a lile margin for error and for volage drops along e way from one componen o e nex. Propagaion Delay, T d : How long afer e inpu flips values will e oupu flip? Power Dissipaion, P d : When deciding how o power a circui, e dissipaion of each componen needs o be considered so you don undersize e power supply (jus can source as much curren as all e devices wan o suck ou of i.) We won ge ino e deails here, bu e basic quesion is usually how much curren is drawn by a circui (depends on e volages and impedances o ground) and a secondary one is how ho will i ge (depends on how much curren passes rough each resisor.) Table.6 gives you an idea of e differen qualiies of e differen lines and families. To ge a lile bi of an appreciaion why ere should be ese differences and more generally how ese work, we ll peek under e hood of a few logic gaes. You need undersand em only enough so a ey re plausible. You won be modeling em. Transisor-Transisor gic (TTL): Q : This shows a peculiar device, a ransisor wi wo emiers. Taking a lierally, e device is a chunk of semiconducor buil like a Y : e ollecor is a e boom, e ase is in e middle, and en ere are wo differen branches o miers. Here s e acual schemaic followed by e mechanical-swich version for e wo possibiliies. a b Q Q 2 Q 3 Q 4 To draw curren, need emier lower an base volage; in is design, e base is conneced o e + rail, so a s aken care of, now we need o conrol e emier volage o urn onn and off e ransisor.

9 If one Q mier is held Then i can draw curren. I only akes one emier o draw curren rough Q. Q is on, and so pulling is ollecor / Q 2 s ase below i s emier, and so urn off Q 2. Then Q 3 s base floas and so i urns On and Q4 s base floa s low and i s off. a= b Q Q 2 Q 3 Q 4 I do is one If bo Q mier s are Then i can draw curren; Q is off, and i s collecor / Q 2 s base is allowed o floa up rough Q s collecor and base oward cc, so Q 2 urns on. Tha allows i o pull Q 4 s base up o abou 0.6 / urn Q 4 on, and meanwhile pull Q 3 s base down o 0.6 which is roughly where i s emier is if Q 4 is, us Q 3 is off. a= b= Q Q 2 Q 3 Q 4 Thus, is circui has e behavior of a NAND. Inpu a Inpu b pu ig volage swings, long ime o respond. One imporan poin abou TTL circuis like is is a e volage drops across e ransisors erminals vary from nearly 0 vols o nearly e rail. In so doing, like wi a charging up capacior, opposie charges build up across e juncions beween e n-ype and p-ype slabs in e ransisors. As wi a capacior, e more you wan o charge i up, e longer i akes.

10 Open ollecor-pu (from -7). Alernaively, e 74-series TTL gaes don have e equivalen of Q 3. Wha a means is e oupu eier ges pulled down o ground when Q 4 is on or i s like a loose wire. In order o ge e oupu o be high en, e user needs o include a pull-up resisor on e oupu. For example: You migh wonder why someone would ever use such a chip, bu ere s a real virue. ach of ese chips only handle wo inpu signals, bu wha if you wan o handle more; say, you wan o flag when A,,, AND D are all. You can do is by using muliple gaes in parallel, bu en you can have em fighing over e oupu s value + A D A,,, AND D Three-Sae gic (from -7) Anoer approach o leing muliple gaes run in parallel is aking urns acivaing eir oupus. Three-Sae or ri-sae chips have an exra inpu a simply ells i when o connec is oupu. Tha way each of a number of gaes can ake urns conrolling e shared oupu line. mier-coupled gic (L) mier-coupled devices minimize is effec by using ransisors in a way a doesn so dramaically change e volages across em. Thus L devices can responded more quickly. Here s e L version of a NOR. Q 4 A Q Q 2 Q 3 Q 5 While e suble way in which e ransisors are always held near e brink of ransiion may no be obvious, e basic operaion should be clear:

11 Wi no volage applied o A or, e respecive ransisors are off and Q5 s base volage is pulled up, us having i on and pulling e pu, as is appropriae for a NOR. In conras, if eier A or is, en e respecive ransisor is on and Q5 s base is pulled which urns i off and allows e oupu o be pulled. The book noes a is design is very quick o respond, ( sub-nanosecond ), bu such quick swiching can generae high frequency noise in a circui which can cause oer problems. omplemenary meal Oxide Semiconducor (MOS) gic ack when we firs me ransisors we didn spend ime on MOS ransisors, so here s e key: Wheer or no curren can pass beween e Source and e Drain depends on e volage difference beween e Gae and e ase. The greaer is volage difference, e more easily curren passes beween Source and Drain. Think of is as a rubber pipe and increasing G is like sreching i wider. The down side is a ese rely on e fairly slow process of charging up and discharging e gae, so MOS isn paricularly quick. On e upside, e Gae barely draws any curren, so MOS is fairly efficien. Inverer In G G DD S D D S I do is one In= DD ey do is one In= DD When e inpu is, en ere s lile G- volage for e op, bu large G- volage for e boom ransisor, so oupu is pulled. When e inpu is, en ere s lile G- volage for e boom, bu large G- volage for e op ransisor, so oupu is pulled A NOR DD

12 I do is one DD ey do is one DD A= A= = = ey do is one DD ey do is one DD A= A= = = This brief survey should give you a sense of e differences beween differen lines of logic gaes.

13 -8 Family Inerfacing In general, once you choose a family of gaes, you wan o sick wi i since ey have differen inpu and oupu impedances, differen volage resholds, and even differen rail volages. Sill, someimes you ve go o inerface MOS and TTL family chips. Going from open-collecor TTL o MOS is easies. The TTL is more an able o supply e minimal curren a e MOS will draw, and using a pull-up resisor on e oupu allows you o se is value where ever you need o communicae wi e MOS. Going e oer way is a lile rickier; e TTL may draw more curren an e MOS can provide and is reshold can be significanly differen from a for e MOS. For is purpose an inermediae buffer makes e ransiion from one logic level o e nex and can source e required curren. Now closing e hoods again, le s ink abou wha you can do wi em.

Physical Limitations of Logic Gates Week 10a

Physical Limitations of Logic Gates Week 10a Physical Limiaions of Logic Gaes Week 10a In a compuer we ll have circuis of logic gaes o perform specific funcions Compuer Daapah: Boolean algebraic funcions using binary variables Symbolic represenaion

More information

Topic Astable Circuits. Recall that an astable circuit has two unstable states;

Topic Astable Circuits. Recall that an astable circuit has two unstable states; Topic 2.2. Asable Circuis. Learning Objecives: A he end o his opic you will be able o; Recall ha an asable circui has wo unsable saes; Explain he operaion o a circui based on a Schmi inverer, and esimae

More information

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17 EES 16A Designing Informaion Devices and Sysems I Spring 019 Lecure Noes Noe 17 17.1 apaciive ouchscreen In he las noe, we saw ha a capacior consiss of wo pieces on conducive maerial separaed by a nonconducive

More information

EE100 Lab 3 Experiment Guide: RC Circuits

EE100 Lab 3 Experiment Guide: RC Circuits I. Inroducion EE100 Lab 3 Experimen Guide: A. apaciors A capacior is a passive elecronic componen ha sores energy in he form of an elecrosaic field. The uni of capaciance is he farad (coulomb/vol). Pracical

More information

Learning Objectives: Practice designing and simulating digital circuits including flip flops Experience state machine design procedure

Learning Objectives: Practice designing and simulating digital circuits including flip flops Experience state machine design procedure Lab 4: Synchronous Sae Machine Design Summary: Design and implemen synchronous sae machine circuis and es hem wih simulaions in Cadence Viruoso. Learning Objecives: Pracice designing and simulaing digial

More information

U(t) (t) -U T 1. (t) (t)

U(t) (t) -U T 1. (t) (t) Prof. Dr.-ng. F. Schuber Digial ircuis Exercise. () () A () - T T The highpass is driven by he square pulse (). alculae and skech A (). = µf, = KΩ, = 5 V, T = T = ms. Exercise. () () A () T T The highpass

More information

More Digital Logic. t p output. Low-to-high and high-to-low transitions could have different t p. V in (t)

More Digital Logic. t p output. Low-to-high and high-to-low transitions could have different t p. V in (t) EECS 4 Spring 23 Lecure 2 EECS 4 Spring 23 Lecure 2 More igial Logic Gae delay and signal propagaion Clocked circui elemens (flip-flop) Wriing a word o memory Simplifying digial circuis: Karnaugh maps

More information

non-linear oscillators

non-linear oscillators non-linear oscillaors The invering comparaor operaion can be summarized as When he inpu is low, he oupu is high. When he inpu is high, he oupu is low. R b V REF R a and are given by he expressions derived

More information

Semiconductor Devices. C. Hu: Modern Semiconductor Devices for Integrated Circuits Chapter 6

Semiconductor Devices. C. Hu: Modern Semiconductor Devices for Integrated Circuits Chapter 6 Semiconducor Devices C. Hu: Modern Semiconducor Devices for Inegraed Circuis Chaper 6 For hose of you who are sudying a bachelor level and need he old course S-69.2111 Mikro- ja nanoelekroniikan perusee

More information

Non Linear Op Amp Circuits.

Non Linear Op Amp Circuits. Non Linear Op Amp ircuis. omparaors wih 0 and non zero reference volage. omparaors wih hyseresis. The Schmid Trigger. Window comparaors. The inegraor. Waveform conversion. Sine o ecangular. ecangular o

More information

L1, L2, N1 N2. + Vout. C out. Figure 2.1.1: Flyback converter

L1, L2, N1 N2. + Vout. C out. Figure 2.1.1: Flyback converter page 11 Flyback converer The Flyback converer belongs o he primary swiched converer family, which means here is isolaion beween in and oupu. Flyback converers are used in nearly all mains supplied elecronic

More information

Physics 310 Lecture 7b Waveform Generators & Timers

Physics 310 Lecture 7b Waveform Generators & Timers Physics 0 Lecure 7b Waveform Generaors & imers Wed. /0 hurs. / Fri. / Ch 0: Oscillaors & imers - Beginning Ch 0: Oscillaors & imers es of; Lab 7: Oscillaors & imers Lab 7: Oscillaors & imers; Quiz Ch 0

More information

EECS 141: FALL 00 MIDTERM 2

EECS 141: FALL 00 MIDTERM 2 Universiy of California College of Engineering Deparmen of Elecrical Engineering and Compuer Science J. M. Rabaey TuTh9:30-11am ee141@eecs EECS 141: FALL 00 MIDTERM 2 For all problems, you can assume he

More information

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p.

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p. ECE MS I DC Power P I = Inroducion o AC Power, MS I AC Power P =? A Solp //9, // // correced p4 '4 v( ) = p cos( ω ) v( ) p( ) Couldn' we define an "effecive" volage ha would allow us o use he same relaionships

More information

Chapter 2: Logical levels, timing and delay

Chapter 2: Logical levels, timing and delay 28.1.216 haper 2: Logical levels, iming and delay Dr.-ng. Sefan Werner Winersemeser 216/17 Table of conen haper 1: Swiching lgebra haper 2: Logical Levels, Timing & Delays haper 3: Karnaugh-Veich-Maps

More information

Outline. Chapter 2: DC & Transient Response. Introduction to CMOS VLSI. DC Response. Transient Response Delay Estimation

Outline. Chapter 2: DC & Transient Response. Introduction to CMOS VLSI. DC Response. Transient Response Delay Estimation Inroducion o CMOS VLSI Design Chaper : DC & Transien Response David Harris, 004 Updaed by Li Chen, 010 Ouline DC Response Logic Levels and Noise Margins Transien Response Delay Esimaion Slide 1 Aciviy

More information

Silicon Controlled Rectifiers UNIT-1

Silicon Controlled Rectifiers UNIT-1 Silicon Conrolled Recifiers UNIT-1 Silicon Conrolled Recifier A Silicon Conrolled Recifier (or Semiconducor Conrolled Recifier) is a four layer solid sae device ha conrols curren flow The name silicon

More information

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4. PHY1 Elecriciy Topic 7 (Lecures 1 & 11) Elecric Circuis n his opic, we will cover: 1) Elecromoive Force (EMF) ) Series and parallel resisor combinaions 3) Kirchhoff s rules for circuis 4) Time dependence

More information

Chapter 7 Response of First-order RL and RC Circuits

Chapter 7 Response of First-order RL and RC Circuits Chaper 7 Response of Firs-order RL and RC Circuis 7.- The Naural Response of RL and RC Circuis 7.3 The Sep Response of RL and RC Circuis 7.4 A General Soluion for Sep and Naural Responses 7.5 Sequenial

More information

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode.

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode. ECE 445 Analysis and Design of Power Elecronic Circuis Problem Se 7 Soluions Problem PS7.1 Erickson, Problem 5.1 Soluion (a) Firs, recall he operaion of he buck-boos converer in he coninuous conducion

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

Sequential Logic. Digital Integrated Circuits A Design Perspective. Latch versus Register. Naming Conventions. Designing Sequential Logic Circuits

Sequential Logic. Digital Integrated Circuits A Design Perspective. Latch versus Register. Naming Conventions. Designing Sequential Logic Circuits esigning Sequenial Logic Circuis Adaped from Chaper 7 of igial egraed Circuis A esign Perspecive Jan M. Rabaey e al. Copyrigh 23 Prenice Hall/Pearson Sequenial Logic pus Curren Sae COMBINATIONAL LOGIC

More information

Chapter 5-4 Operational amplifier Department of Mechanical Engineering

Chapter 5-4 Operational amplifier Department of Mechanical Engineering MEMS08 Chaper 5-4 Operaional amplifier Deparmen of Mechanical Engineering Insrumenaion amplifier Very high inpu impedance Large common mode rejecion raio (CMRR) Capabiliy o amplify low leel signals Consisen

More information

LabQuest 24. Capacitors

LabQuest 24. Capacitors Capaciors LabQues 24 The charge q on a capacior s plae is proporional o he poenial difference V across he capacior. We express his wih q V = C where C is a proporionaliy consan known as he capaciance.

More information

555 Timer. Digital Electronics

555 Timer. Digital Electronics 555 Timer Digial Elecronics This presenaion will Inroduce he 555 Timer. 555 Timer Derive he characerisic equaions for he charging and discharging of a capacior. Presen he equaions for period, frequency,

More information

Cosmic Feb 06, 2007 by Raja Reddy P

Cosmic Feb 06, 2007 by Raja Reddy P osmic ircuis@iisc, Feb 6, 7 by aja eddy P. ou() i() alculae ou(s)/(s). plo o(). calculae ime consan and pole frequency. ou ( e τ ) ou (s) ( s) Time consan (/) Pole frequency : ω p. i() n he above circui

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

Direct Current Circuits. February 19, 2014 Physics for Scientists & Engineers 2, Chapter 26 1

Direct Current Circuits. February 19, 2014 Physics for Scientists & Engineers 2, Chapter 26 1 Direc Curren Circuis February 19, 2014 Physics for Scieniss & Engineers 2, Chaper 26 1 Ammeers and Volmeers! A device used o measure curren is called an ammeer! A device used o measure poenial difference

More information

Timer 555. Digital Electronics

Timer 555. Digital Electronics Timer 555 Digial Elecronics This presenaion will Inroduce he 555 Timer. 555 Timer Derive he characerisic equaions for he charging and discharging of a capacior. Presen he equaions for period, frequency,

More information

6.01: Introduction to EECS I Lecture 8 March 29, 2011

6.01: Introduction to EECS I Lecture 8 March 29, 2011 6.01: Inroducion o EES I Lecure 8 March 29, 2011 6.01: Inroducion o EES I Op-Amps Las Time: The ircui Absracion ircuis represen sysems as connecions of elemens hrough which currens (hrough variables) flow

More information

Matlab and Python programming: how to get started

Matlab and Python programming: how to get started Malab and Pyhon programming: how o ge sared Equipping readers he skills o wrie programs o explore complex sysems and discover ineresing paerns from big daa is one of he main goals of his book. In his chaper,

More information

h[n] is the impulse response of the discrete-time system:

h[n] is the impulse response of the discrete-time system: Definiion Examples Properies Memory Inveribiliy Causaliy Sabiliy Time Invariance Lineariy Sysems Fundamenals Overview Definiion of a Sysem x() h() y() x[n] h[n] Sysem: a process in which inpu signals are

More information

EE141. EE141-Spring 2006 Digital Integrated Circuits. Administrative Stuff. Challenges in Digital Design. Last Lecture. This Class

EE141. EE141-Spring 2006 Digital Integrated Circuits. Administrative Stuff. Challenges in Digital Design. Last Lecture. This Class -Spring 006 Digial Inegraed Circuis Lecure Design Merics Adminisraive Suff Labs and discussions sar in week Homework # is due nex hursday Everyone should have an EECS insrucional accoun hp://wwwins.eecs.berkeley.edu/~ins/newusers.hml

More information

- If one knows that a magnetic field has a symmetry, one may calculate the magnitude of B by use of Ampere s law: The integral of scalar product

- If one knows that a magnetic field has a symmetry, one may calculate the magnitude of B by use of Ampere s law: The integral of scalar product 11.1 APPCATON OF AMPEE S AW N SYMMETC MAGNETC FEDS - f one knows ha a magneic field has a symmery, one may calculae he magniude of by use of Ampere s law: The inegral of scalar produc Closed _ pah * d

More information

Application Note AN Software release of SemiSel version 3.1. New semiconductor available. Temperature ripple at low inverter output frequencies

Application Note AN Software release of SemiSel version 3.1. New semiconductor available. Temperature ripple at low inverter output frequencies Applicaion Noe AN-8004 Revision: Issue Dae: Prepared by: 00 2008-05-21 Dr. Arend Winrich Ke y Words: SemiSel, Semiconducor Selecion, Loss Calculaion Sofware release of SemiSel version 3.1 New semiconducor

More information

Math 333 Problem Set #2 Solution 14 February 2003

Math 333 Problem Set #2 Solution 14 February 2003 Mah 333 Problem Se #2 Soluion 14 February 2003 A1. Solve he iniial value problem dy dx = x2 + e 3x ; 2y 4 y(0) = 1. Soluion: This is separable; we wrie 2y 4 dy = x 2 + e x dx and inegrae o ge The iniial

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Sysems Prof. Mark Fowler Noe Se # Wha are Coninuous-Time Signals??? /6 Coninuous-Time Signal Coninuous Time (C-T) Signal: A C-T signal is defined on he coninuum of ime values. Tha is:

More information

Notes 04 largely plagiarized by %khc

Notes 04 largely plagiarized by %khc Noes 04 largely plagiarized by %khc Convoluion Recap Some ricks: x() () =x() x() (, 0 )=x(, 0 ) R ț x() u() = x( )d x() () =ẋ() This hen ells us ha an inegraor has impulse response h() =u(), and ha a differeniaor

More information

Lab 10: RC, RL, and RLC Circuits

Lab 10: RC, RL, and RLC Circuits Lab 10: RC, RL, and RLC Circuis In his experimen, we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors. We will sudy he way volages and currens change in

More information

Lecture 1 Overview. course mechanics. outline & topics. what is a linear dynamical system? why study linear systems? some examples

Lecture 1 Overview. course mechanics. outline & topics. what is a linear dynamical system? why study linear systems? some examples EE263 Auumn 27-8 Sephen Boyd Lecure 1 Overview course mechanics ouline & opics wha is a linear dynamical sysem? why sudy linear sysems? some examples 1 1 Course mechanics all class info, lecures, homeworks,

More information

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t... Mah 228- Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger

More information

EE 435 Lecture 42. Phased Locked Loops and VCOs

EE 435 Lecture 42. Phased Locked Loops and VCOs EE 435 Lecure 42 d Locked Loops and VCOs Basis PLL Archiecure Loop Filer (LF) Volage Conrolled Oscillaor (VCO) Frequency Divider N Applicaions include: Frequency Demodulaion Frequency Synhesis Clock Synchronizaion

More information

Phys1112: DC and RC circuits

Phys1112: DC and RC circuits Name: Group Members: Dae: TA s Name: Phys1112: DC and RC circuis Objecives: 1. To undersand curren and volage characerisics of a DC RC discharging circui. 2. To undersand he effec of he RC ime consan.

More information

ES 250 Practice Final Exam

ES 250 Practice Final Exam ES 50 Pracice Final Exam. Given ha v 8 V, a Deermine he values of v o : 0 Ω, v o. V 0 Firs, v o 8. V 0 + 0 Nex, 8 40 40 0 40 0 400 400 ib i 0 40 + 40 + 40 40 40 + + ( ) 480 + 5 + 40 + 8 400 400( 0) 000

More information

The problem with linear regulators

The problem with linear regulators he problem wih linear regulaors i in P in = i in V REF R a i ref i q i C v CE P o = i o i B ie P = v i o o in R 1 R 2 i o i f η = P o P in iref is small ( 0). iq (quiescen curren) is small (probably).

More information

Module 10 SCR. 2. To understand two Transistor Static and Transient Models. 3. To learn the SCR Turn-on and Turn-off methods

Module 10 SCR. 2. To understand two Transistor Static and Transient Models. 3. To learn the SCR Turn-on and Turn-off methods 1 Module 1 SR 1. Inroducion 2. SR characerisics 3. Two ransisor saic and ransien models 4. SR urnon mehods 5. SR urnoff mehods 6. SR proecion and Triggering circuis 7. ae proecion circuis 8. Summary Learning

More information

Constant Acceleration

Constant Acceleration Objecive Consan Acceleraion To deermine he acceleraion of objecs moving along a sraigh line wih consan acceleraion. Inroducion The posiion y of a paricle moving along a sraigh line wih a consan acceleraion

More information

i L = VT L (16.34) 918a i D v OUT i L v C V - S 1 FIGURE A switched power supply circuit with diode and a switch.

i L = VT L (16.34) 918a i D v OUT i L v C V - S 1 FIGURE A switched power supply circuit with diode and a switch. 16.4.3 A SWITHED POWER SUPPY USINGA DIODE In his example, we will analyze he behavior of he diodebased swiched power supply circui shown in Figure 16.15. Noice ha his circui is similar o ha in Figure 12.41,

More information

EE 330 Lecture 40. Digital Circuits. Propagation Delay With Multiple Levels of Logic Overdrive

EE 330 Lecture 40. Digital Circuits. Propagation Delay With Multiple Levels of Logic Overdrive EE 330 Lecure 0 Digial ircuis Propagaion Delay Wih Muliple Levels of Logic Overdrive Review from Las Time Propagaion Delay in Saic MOS Family F Propagaion hrough k levels of logic + + + + HL HLn LH(n-1)

More information

Chapter 7: Solving Trig Equations

Chapter 7: Solving Trig Equations Haberman MTH Secion I: The Trigonomeric Funcions Chaper 7: Solving Trig Equaions Le s sar by solving a couple of equaions ha involve he sine funcion EXAMPLE a: Solve he equaion sin( ) The inverse funcions

More information

1. Kinematics I: Position and Velocity

1. Kinematics I: Position and Velocity 1. Kinemaics I: Posiion and Velociy Inroducion The purpose of his eperimen is o undersand and describe moion. We describe he moion of an objec by specifying is posiion, velociy, and acceleraion. In his

More information

EE 330 Lecture 41. Digital Circuits. Propagation Delay With Multiple Levels of Logic Overdrive

EE 330 Lecture 41. Digital Circuits. Propagation Delay With Multiple Levels of Logic Overdrive EE 330 Lecure 41 Digial ircuis Propagaion Delay Wih Muliple Levels of Logic Overdrive Review from Las Time The Reference Inverer Reference Inverer V DD R =R PD PU = IN= 4OX WMIN LMIN V IN M 2 M 1 L VTn.2VDD

More information

A FAMILY OF THREE-LEVEL DC-DC CONVERTERS

A FAMILY OF THREE-LEVEL DC-DC CONVERTERS A FAMIY OF THREE-EVE DC-DC CONVERTERS Anonio José Beno Boion, Ivo Barbi Federal Universiy of Sana Caarina - UFSC, Power Elecronics Insiue - INEP PO box 5119, ZIP code 88040-970, Florianópolis, SC, BRAZI

More information

Section 5: Chain Rule

Section 5: Chain Rule Chaper The Derivaive Applie Calculus 11 Secion 5: Chain Rule There is one more ype of complicae funcion ha we will wan o know how o iffereniae: composiion. The Chain Rule will le us fin he erivaive of

More information

RC, RL and RLC circuits

RC, RL and RLC circuits Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

More information

Chapter 4. Circuit Characterization and Performance Estimation

Chapter 4. Circuit Characterization and Performance Estimation VLSI Design Chaper 4 Circui Characerizaion and Performance Esimaion Jin-Fu Li Chaper 4 Circui Characerizaion and Performance Esimaion Resisance & Capaciance Esimaion Swiching Characerisics Transisor Sizing

More information

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits EEE25 ircui Analysis I Se 4: apaciors, Inducors, and Firs-Order inear ircuis Shahriar Mirabbasi Deparmen of Elecrical and ompuer Engineering Universiy of Briish olumbia shahriar@ece.ubc.ca Overview Passive

More information

Chapter 15: Phenomena. Chapter 15 Chemical Kinetics. Reaction Rates. Reaction Rates R P. Reaction Rates. Rate Laws

Chapter 15: Phenomena. Chapter 15 Chemical Kinetics. Reaction Rates. Reaction Rates R P. Reaction Rates. Rate Laws Chaper 5: Phenomena Phenomena: The reacion (aq) + B(aq) C(aq) was sudied a wo differen emperaures (98 K and 35 K). For each emperaure he reacion was sared by puing differen concenraions of he 3 species

More information

Chapter 6 MOSFET in the On-state

Chapter 6 MOSFET in the On-state Chaper 6 MOSFET in he On-sae The MOSFET (MOS Field-Effec Transisor) is he building block of Gb memory chips, GHz microprocessors, analog, and RF circuis. Mach he following MOSFET characerisics wih heir

More information

Lecture 28: Single Stage Frequency response. Context

Lecture 28: Single Stage Frequency response. Context Lecure 28: Single Sage Frequency response Prof J. S. Sih Conex In oday s lecure, we will coninue o look a he frequency response of single sage aplifiers, saring wih a ore coplee discussion of he CS aplifier,

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

Physics 1402: Lecture 22 Today s Agenda

Physics 1402: Lecture 22 Today s Agenda Physics 142: ecure 22 Today s Agenda Announcemens: R - RV - R circuis Homework 6: due nex Wednesday Inducion / A curren Inducion Self-Inducance, R ircuis X X X X X X X X X long solenoid Energy and energy

More information

Biol. 356 Lab 8. Mortality, Recruitment, and Migration Rates

Biol. 356 Lab 8. Mortality, Recruitment, and Migration Rates Biol. 356 Lab 8. Moraliy, Recruimen, and Migraion Raes (modified from Cox, 00, General Ecology Lab Manual, McGraw Hill) Las week we esimaed populaion size hrough several mehods. One assumpion of all hese

More information

Chapter 28 - Circuits

Chapter 28 - Circuits Physics 4B Lecure Noes Chaper 28 - Circuis Problem Se #7 - due: Ch 28 -, 9, 4, 7, 23, 38, 47, 53, 57, 66, 70, 75 Lecure Ouline. Kirchoff's ules 2. esisors in Series 3. esisors in Parallel 4. More Complex

More information

Basic Principles of Sinusoidal Oscillators

Basic Principles of Sinusoidal Oscillators Basic Principles of Sinusoidal Oscillaors Linear oscillaor Linear region of circui : linear oscillaion Nonlinear region of circui : ampliudes sabilizaion Barkhausen crierion X S Amplifier A X O X f Frequency-selecive

More information

( ) = Q 0. ( ) R = R dq. ( t) = I t

( ) = Q 0. ( ) R = R dq. ( t) = I t ircuis onceps The addiion of a simple capacior o a circui of resisors allows wo relaed phenomena o occur The observaion ha he ime-dependence of a complex waveform is alered by he circui is referred o as

More information

Hall effect. Formulae :- 1) Hall coefficient RH = cm / Coulumb. 2) Magnetic induction BY 2

Hall effect. Formulae :- 1) Hall coefficient RH = cm / Coulumb. 2) Magnetic induction BY 2 Page of 6 all effec Aim :- ) To deermine he all coefficien (R ) ) To measure he unknown magneic field (B ) and o compare i wih ha measured by he Gaussmeer (B ). Apparaus :- ) Gauss meer wih probe ) Elecromagne

More information

Chapter 8 The Complete Response of RL and RC Circuits

Chapter 8 The Complete Response of RL and RC Circuits Chaper 8 The Complee Response of RL and RC Circuis Seoul Naional Universiy Deparmen of Elecrical and Compuer Engineering Wha is Firs Order Circuis? Circuis ha conain only one inducor or only one capacior

More information

Chapter Floating Point Representation

Chapter Floating Point Representation Chaper 01.05 Floaing Poin Represenaion Afer reading his chaper, you should be able o: 1. conver a base- number o a binary floaing poin represenaion,. conver a binary floaing poin number o is equivalen

More information

Today: Falling. v, a

Today: Falling. v, a Today: Falling. v, a Did you ge my es email? If no, make sure i s no in your junk box, and add sbs0016@mix.wvu.edu o your address book! Also please email me o le me know. I will be emailing ou pracice

More information

Reading. Lecture 28: Single Stage Frequency response. Lecture Outline. Context

Reading. Lecture 28: Single Stage Frequency response. Lecture Outline. Context Reading Lecure 28: Single Sage Frequency response Prof J. S. Sih Reading: We are discussing he frequency response of single sage aplifiers, which isn reaed in he ex unil afer uli-sae aplifiers (beginning

More information

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder#

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder# .#W.#Erickson# Deparmen#of#Elecrical,#Compuer,#and#Energy#Engineering# Universiy#of#Colorado,#Boulder# Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance,

More information

Testing What You Know Now

Testing What You Know Now Tesing Wha You Know Now To bes each you, I need o know wha you know now Today we ake a well-esablished quiz ha is designed o ell me his To encourage you o ake he survey seriously, i will coun as a clicker

More information

Fishing limits and the Logistic Equation. 1

Fishing limits and the Logistic Equation. 1 Fishing limis and he Logisic Equaion. 1 1. The Logisic Equaion. The logisic equaion is an equaion governing populaion growh for populaions in an environmen wih a limied amoun of resources (for insance,

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Sysems Prof. Mark Fowler Noe Se #2 Wha are Coninuous-Time Signals??? Reading Assignmen: Secion. of Kamen and Heck /22 Course Flow Diagram The arrows here show concepual flow beween ideas.

More information

= ( ) ) or a system of differential equations with continuous parametrization (T = R

= ( ) ) or a system of differential equations with continuous parametrization (T = R XIII. DIFFERENCE AND DIFFERENTIAL EQUATIONS Ofen funcions, or a sysem of funcion, are paramerized in erms of some variable, usually denoed as and inerpreed as ime. The variable is wrien as a funcion of

More information

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers Universiy of Cyprus Biomedical Imaging and Applied Opics Appendix DC Circuis Capaciors and Inducors AC Circuis Operaional Amplifiers Circui Elemens An elecrical circui consiss of circui elemens such as

More information

10/10/2011. Signals and Systems EE235. Today s menu. Chicken

10/10/2011. Signals and Systems EE235. Today s menu. Chicken Signals and Sysems EE35 Today s menu Homework 1 Due omorrow Ocober 14 h Lecure will be online Sysem properies Lineariy Time invariance Sabiliy Inveribiliy Causaliy Los of examples! Chicken Why did he chicken

More information

6/27/2012. Signals and Systems EE235. Chicken. Today s menu. Why did the chicken cross the Möbius Strip? To get to the other er um

6/27/2012. Signals and Systems EE235. Chicken. Today s menu. Why did the chicken cross the Möbius Strip? To get to the other er um Signals and Sysems EE35 Chicken Why did he chicken cross he Möbius Srip? To ge o he oher er um Today s menu Sysem properies Lineariy Time invariance Sabiliy Inveribiliy Causaliy Los of examples! 1 Sysem

More information

HV513 8-Channel Serial to Parallel Converter with High Voltage Push-Pull Outputs, POL, Hi-Z, and Short Circuit Detect

HV513 8-Channel Serial to Parallel Converter with High Voltage Push-Pull Outputs, POL, Hi-Z, and Short Circuit Detect H513 8-Channel Serial o Parallel Converer wih High olage Push-Pull s, POL, Hi-Z, and Shor Circui Deec Feaures HCMOS echnology Operaing oupu volage of 250 Low power level shifing from 5 o 250 Shif regiser

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

SOLUTIONS TO ECE 3084

SOLUTIONS TO ECE 3084 SOLUTIONS TO ECE 384 PROBLEM 2.. For each sysem below, specify wheher or no i is: (i) memoryless; (ii) causal; (iii) inverible; (iv) linear; (v) ime invarian; Explain your reasoning. If he propery is no

More information

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit V() R L C 513 Elecrical Circuis Tools Used in Lab 13 Series Circuis Damped Vibraions: Energy Van der Pol Circui A series circui wih an inducor, resisor, and capacior can be represened by Lq + Rq + 1, a

More information

Basic Circuit Elements Professor J R Lucas November 2001

Basic Circuit Elements Professor J R Lucas November 2001 Basic Circui Elemens - J ucas An elecrical circui is an inerconnecion of circui elemens. These circui elemens can be caegorised ino wo ypes, namely acive and passive elemens. Some Definiions/explanaions

More information

8.022 (E&M) Lecture 9

8.022 (E&M) Lecture 9 8.0 (E&M) Lecure 9 Topics: circuis Thevenin s heorem Las ime Elecromoive force: How does a baery work and is inernal resisance How o solve simple circuis: Kirchhoff s firs rule: a any node, sum of he currens

More information

Chapter 4 AC Network Analysis

Chapter 4 AC Network Analysis haper 4 A Nework Analysis Jaesung Jang apaciance Inducance and Inducion Time-Varying Signals Sinusoidal Signals Reference: David K. heng, Field and Wave Elecromagneics. Energy Sorage ircui Elemens Energy

More information

(b) (a) (d) (c) (e) Figure 10-N1. (f) Solution:

(b) (a) (d) (c) (e) Figure 10-N1. (f) Solution: Example: The inpu o each of he circuis shown in Figure 10-N1 is he volage source volage. The oupu of each circui is he curren i( ). Deermine he oupu of each of he circuis. (a) (b) (c) (d) (e) Figure 10-N1

More information

Lecture 33: November 29

Lecture 33: November 29 36-705: Inermediae Saisics Fall 2017 Lecurer: Siva Balakrishnan Lecure 33: November 29 Today we will coninue discussing he boosrap, and hen ry o undersand why i works in a simple case. In he las lecure

More information

Chapter 2: Principles of steady-state converter analysis

Chapter 2: Principles of steady-state converter analysis Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance, capacior charge balance, and he small ripple approximaion 2.3. Boos converer example 2.4. Cuk converer

More information

2.4 Cuk converter example

2.4 Cuk converter example 2.4 Cuk converer example C 1 Cuk converer, wih ideal swich i 1 i v 1 2 1 2 C 2 v 2 Cuk converer: pracical realizaion using MOSFET and diode C 1 i 1 i v 1 2 Q 1 D 1 C 2 v 2 28 Analysis sraegy This converer

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

Chapter Q1. We need to understand Classical wave first. 3/28/2004 H133 Spring

Chapter Q1. We need to understand Classical wave first. 3/28/2004 H133 Spring Chaper Q1 Inroducion o Quanum Mechanics End of 19 h Cenury only a few loose ends o wrap up. Led o Relaiviy which you learned abou las quarer Led o Quanum Mechanics (1920 s-30 s and beyond) Behavior of

More information

( ) a system of differential equations with continuous parametrization ( T = R + These look like, respectively:

( ) a system of differential equations with continuous parametrization ( T = R + These look like, respectively: XIII. DIFFERENCE AND DIFFERENTIAL EQUATIONS Ofen funcions, or a sysem of funcion, are paramerized in erms of some variable, usually denoed as and inerpreed as ime. The variable is wrien as a funcion of

More information

dv 7. Voltage-current relationship can be obtained by integrating both sides of i = C :

dv 7. Voltage-current relationship can be obtained by integrating both sides of i = C : EECE202 NETWORK ANALYSIS I Dr. Charles J. Kim Class Noe 22: Capaciors, Inducors, and Op Amp Circuis A. Capaciors. A capacior is a passive elemen designed o sored energy in is elecric field. 2. A capacior

More information

Chapter 5: Discontinuous conduction mode. Introduction to Discontinuous Conduction Mode (DCM)

Chapter 5: Discontinuous conduction mode. Introduction to Discontinuous Conduction Mode (DCM) haper 5. The isconinuous onducion Mode 5.. Origin of he disconinuous conducion mode, and mode boundary 5.. Analysis of he conversion raio M(,K) 5.3. Boos converer example 5.4. Summary of resuls and key

More information

Physics 1502: Lecture 20 Today s Agenda

Physics 1502: Lecture 20 Today s Agenda Physics 152: Lecure 2 Today s Agenda Announcemens: Chap.27 & 28 Homework 6: Friday nducion Faraday's Law ds N S v S N v 1 A Loop Moving Through a Magneic Field ε() =? F() =? Φ() =? Schemaic Diagram of

More information

Position, Velocity, and Acceleration

Position, Velocity, and Acceleration rev 06/2017 Posiion, Velociy, and Acceleraion Equipmen Qy Equipmen Par Number 1 Dynamic Track ME-9493 1 Car ME-9454 1 Fan Accessory ME-9491 1 Moion Sensor II CI-6742A 1 Track Barrier Purpose The purpose

More information

MC74HC138A. 1 of 8 Decoder/ Demultiplexer. High Performance Silicon Gate CMOS

MC74HC138A. 1 of 8 Decoder/ Demultiplexer. High Performance Silicon Gate CMOS of 8 Decoder/ Demuliplexer High Performance Silicon Gae CMOS The is idenical in pinou o he LS8. The device inpus are compaible wih sandard CMOS oupus; wih pullup resisors, hey are compaible wih LSTTL oupus.

More information

EE 330 Lecture 23. Small Signal Analysis Small Signal Modelling

EE 330 Lecture 23. Small Signal Analysis Small Signal Modelling EE 330 Lecure 23 Small Signal Analysis Small Signal Modelling Exam 2 Friday March 9 Exam 3 Friday April 13 Review Session for Exam 2: 6:00 p.m. on Thursday March 8 in Room Sweeney 1116 Review from Las

More information

3~ Rectifier Bridge, half-controlled (high-side) + Brake Unit + NTC /20 NTC. Features / Advantages: Applications: Package: E2-Pack

3~ Rectifier Bridge, half-controlled (high-side) + Brake Unit + NTC /20 NTC. Features / Advantages: Applications: Package: E2-Pack ZB3-6ioX hyrisor Module M = 6 I = D FSM = 7 I 3~ ecifier Brake hopper ES = 2 I = 2 2 E(sa) =,8 3~ ecifier Bridge, half-conrolled (high-side) + Brake Uni + N Par number ZB3-6ioX Backside: isolaed / 3 2

More information