Learning Objectives: Practice designing and simulating digital circuits including flip flops Experience state machine design procedure

Size: px
Start display at page:

Download "Learning Objectives: Practice designing and simulating digital circuits including flip flops Experience state machine design procedure"

Transcription

1 Lab 4: Synchronous Sae Machine Design Summary: Design and implemen synchronous sae machine circuis and es hem wih simulaions in Cadence Viruoso. Learning Objecives: Pracice designing and simulaing digial circuis including flip flops Experience sae machine design procedure Resources and Supplies: Engineering PC wih PuTTY and Xming Lab4A.x & Lab4B.x* Sae Machine Inroducion* All documens* are available on he class websie Imporan Noe Spring 203: We have made a change o he 33 Viruoso library. Before using Viruoso again, you mus re-run he seup scrip below in your ECE33/viruoso direcory o insall he new library. source $SOFT/cadence-auo Pre-lab Assignmen: Each suden mus complee his/her own pre-lab before coming o he lab. Pre-lab checkoff shees mus be urned in o he TA before saring he lab assignmen.. Read he Background secions of his lab. 2. Prin he Pre-lab 4 Check-off Shee near he end of his documen and perform he required asks. Show he compleed shee o he TA a he beginning of your lab. 3. Read hrough he enire Laboraory Assignmen secion so you know wha o expec in he lab. Background: D-ype Flip Flop Flip flops (FF) are daa sorage elemens for synchronous circuis ha have circui blocks riggered simulaneously and periodically by a clock signal. FFs are used o sore he logic sae of a signal unil he nex rising (or falling) edge of he clock signal when he oupu is reevaluaed and sored again. FFs are conrolled by a clock signal and one or wo daa inpu signals, and hey ypically have differenial (invered) oupus Q and Q. There are several variaions of FFs including JK and SR ype FFs. However, he mos common FF used in digial inegraed circuis is he D-ype FF (DFF). In a DFF, he value of inpu D is ransferred o he oupu Q a he rising (or falling) clock edge and held here unil he nex rising (or falling) edge. The sandard schemaic symbol for a DFF is shown below along wih a iming diagram for a posiive edge riggered DFF. In his lab you will use a DFF o creae sae machines. The DFF cell provided in your Viruoso cell library is a posiive edge riggered circui. Refer o ECE33 Handou 0: 230 Review for addiional background informaion on flip flops. p.

2 Synchronous sae sequencer: Unless you are very familiar wih sae machine design, you firs need o carefully read he Sae Machine Inroducion documen for a horough descripion of he implemenaion of sae machines using flip flops. Once you are familiar wih he sae machine design process, reurn here for informaion on implemening sae machines using DFFs. Figure illusraes he sae ransiions for an example 2-bi sequencer. Synchronous sae machines are ypically implemened using flip-flop circuis. In his lab you will be asked o design and implemen a sae machine using D-ype flip flops (DFF). Figure. Saes in an example 2-bi synchronous sae sequencer. To consruc he Figure sae sequencer using DFFs, you would follow he same seps as shown in he Sae Machine Inroducion documen for an SR flip flop. However, because he DFF is funcionally differen han he SR or JK flip flops, i has a differen ruh able and exciaion able resuling in a differen sae machine implemenaion. Table shows he ruh able and exciaion able for a DFF. Because he DFF only has one daa inpu, i has fewer funcions and is exciaion able is less complex han he SR or JK. This feaure generally resuls in more complex glue logic needed o implemen a sae sequencer. ruh able exciaion able D Q + acion Q Q + acion D 0 0 hold 0 0 hold 0 se 0 se 0 rese 0 rese 0 hold hold Table. Truh able and exciaion able for a DFF. Table shows he operaion of he DFF is really quie simple; he nex sae oupu, Q +, is always he same as he inpu D a he ime of he clock edge rigger. The following seps provide an example of how he sae sequencer in Figure could be designed using DFFs. p. 2

3 Sep : nex-sae exciaion able Table 2 shows each curren sae of he Figure sequencer and is associaed nex sae ha defines he sequencing of he sae machine. Using he DFF exciaion able (Table ), he required inpu values for each sae can hen be deermined, as shown in Table 2. As you should expec for a DFF implemenaion, he required inpus are simply he nex sae oupu values. I is imperaive ha you undersand how Table 2 was generaed because you will be repeaing his in he pre-lab for a more complex sequencer. curren sae nex sae Bi inpu Bi 0 inpu Q + Q + D D Table 2. Nex-sae exciaion able for Fig. sequencer. Sep 2: Inpu ruh ables The daa in Table 2 can be rearranged o show he ruh able for each inpu bi (D, D 0 ) based on he curren-sae oupu values. Table 3 shows he ruh ables for all inpus, uniquely defining he inpus needed o mach he sequence in Figure. I is imporan ha you undersand how Table 3 was generaed because you will be repeaing his in he pre-lab for a more complex sequencer. Q D Q D Table 3. Inpu ruh ables based on curren-sae oupus of Fig. sequencer. Sep 3: Minimize logic expression for all inpus Table 3 defines each flip flop inpu as a funcion of he 2-bi sae oupus (Q - ). We mus nex minimize his expression o define he simples logic circui possible for each inpu. The K-maps in describe he relaionship for each inpu and can be used o deermine he minimized logic expression shown below each K-map. Again, you mus be able o perform his sep in he pre-lab for a more complex sequencer. D Q 0 D 0 Q 0 0 D =, D 0 = Q --- p. 3

4 Sep 4: Circui implemenaion Based on he equaions from sep 3, you should now be able o skech he schemaic of he Figure 2-bi sequencer using he DFF and, as necessary, basic logic gaes. This ask will be compleed as a pre-lab exercise. Noe ha he DFF provides Q and Q oupus, so you do no need an INV gae o complemen he Q oupu. Sae machine: non-sequenced saes: Figure 2 shows he sae model of a specific 3-bi sequence generaor ha operaes only in he 00, 00, 0, 0 saes. Any of he remaining non-sequenced saes (000, 00, 0, ) should reurn o 0 so he sequencer can coninue o operae wihin he four sequenced saes. Figure 2. 3-bi sae sequencer. Laboraory Assignmen: This lab consiss of wo pars. A check-off shee is included a he end of his lab documen o record your design work and resuls. Afer you successfully finish each par of he lab, show he TA your resuls and ask him/her o sign he check-off shee. Prin he check off shee. Ask he TA o check your Pre-lab 4 workshee o ensure you have he correc design and plans for he sae sequencers. Fix any misakes and ask he TA o sign your pre-lab o indicae you have compleed he assignmen. Keep he pre-lab workshee afer he TA signs i and hen aach i o your lab repor. Imporan Noe Spring 203: We have made a change o he 33 Viruoso library. Before using Viruoso again, you mus re-run he seup scrip below in your ECE33/viruoso direcory o insall he new library. source $SOFT/cadence-auo Par : Two bi sequence generaor. In his par you will implemen he Figure 2-bi sae sequencer using D flip-flops based on your pre-lab design. p. 4

5 Implemenaion in Cadence Viruoso:. Sar Viruoso and creae a new schemaic named 2biSae in your projec library. 2. Using your design from pre-lab, insaniae he necessary gaes and DFFs o implemen your design. Make all necessary wire connecions. To make your schemaic less cluered, you can press he L key o open he label window. This allows you o label a wire. Any wires assigned o he same label as anoher wire, or an inpu pin, will ac as if he wires were conneced. This will preven you from having wires spanning he enire schemaic and cluering up he schemaic. 3. Afer you have compleed your schemaic check and save he schemaic and make sure here are no warnings or errors. Demonsraion: 4. Sar he ADE-L simulaor from he launch menu. For he 2bi sequence, use he simulus file named Lab4A.x ha you can download from he ECE 33 websie. 5. Se he run ime for 5ms. 6. Selec he CLK, Q0, and Q as he oupus o be grapghed. 7. Run he simulaion, review your resuls and answer he quesions on he check off shee. 8. Save/prin your 2biSae schemaic and simulaion plos o include in your repor. 9. Ask he TA o check your resuls and iniial your check off shee. Par 2: Sae machine design challenge. In par 2 you will design and implemen he 3-bi sae sequencer shown in Figure 2 based on your preparaion from he pre-lab. Design:. In he Lab 4 Check-off Shee, skech a schemaic showing all he circuiry needed o implemen he 3-bi sequencer from Figure 2. This circui should be based on your pre-lab preparaions and should use DFF s and any necessary basic logic gaes (included he 3-inpu AND, as noed in he pre-lab). As wih he 2-bi sequencer, he only exernal inpu o his circui should be a CLK signal. Implemenaion: 2. Creae a new schemaic named 3biSae. 3. Insaniae he necessary gaes and DFFs and add wires o implemen your pre-lab design for he 3bi sae sequencer. Remember ha you can label wires in order o keep your schemaic clear and make i easier o view. 4. Check and save he schemaic and make sure here are no errors or warnings. Demonsraion: p. 5

6 5. Sar he ADE L simulaor from he Launch menu in he schemaic window. Use he file Lab4B.x as he simulus file which you can download from he ECE33 websie. To es ha your sae machine will correcly go o sae 0 from any of he nonsequence saes, he simulus file imposes an iniial sae ha is ouside he sequence saes. 6. Se he run ime for 5ms. Selec CLK, Q0, Q, and Q2 o be graphed. 7. Run he simulaion, review your resuls and answer he quesions on he check off shee. 8. Save/prin your 3biSae schemaic and simulaion plos o include in your repor. 9. Ask he TA o check your resuls and sign your check off shee. Wrap Up Clean up your lab bench before you exi he lab. Remember, your Lab 4 repor will be due in lab nex week. Each suden mus submi his/her own lab repor. Include your check-off shee and waveform prinous wih your repor. You may wan o review he Discussion Poins below and alk o he TA abou anyhing ha is no clear o you. Discussion Poins As explained in he Lab Repor Guide, you should address hese discussion poins in a designaed secion of your repor.. How many flip flops (bis) are needed for a sequencer for 4 saes? How many are needed for 8 saes? Can you wrie a general expression relaing he number of flip flops, n, o he number of sequencer saes, m? 2. Explain why he saes 000, 00, 0 and in Par 2 mus be mapped ino a sequenial sae even hough hey are no in he desired sequence. Wha could happen if his was no done? 3. How could he 2-bi sequencer be modified o implemen an asynchronous rese, where an addiional rese signal was used o force he sae machine ino a given iniial sae (e.g., 00)? Briefly describe he required rese circuiry. 4. Oher han a sae machine, briefly describe a useful digial circui ha requires flip flops (raher han sandard logic gaes). Do you hink you have he experience need o implemen such a circui in Viruoso? If no, wha knowledge do you feel you lack? Remember o include your resuls graphs as aachmens o your repor. p. 6

7 PRE-LAB 4 Due: A he beginning of lab. Suden Name: Lab. Secion (ime): Make sure you read he Lab 4 Background before you sar he pre-lab. Afer compleing he pre-lab, please review he enire Lab 4 assignmen so you will know wha o expec when you come o lab.. To ensure you are familiar wih he basic seps of implemening a sae machine, read he Sae Machine Inroducion documen. 2. Review he example D flip flop implemenaion of he Figure sae sequencer in he Background secion. Below, record he logic expression ha define each of he sequencer inpus (D, D 0 ) as a funcion of curren-sae oupus (Q, ). D =, D 0 = 3. Based on your equaions from #2, draw a schemaic of he complee 2-sae sequencer using wo DFF cells and any necessary basic logic gaes. Noe, he only exernal inpu o his circui should be a CLK signal. You can draw your schemaic below or aach separaely. <pre-lab coninues on nex page> p. 7

8 In Par 2 of he lab, you will design and implemen he 3-bi sae sequencer shown in Figure 2. Based on he 2-bi example (from Background and earlier pre-lab quesions), complee he following seps o design he 3-bi sequencer. a. How many D flip-flops are needed for a 3-bi sequencer? b. Complee he nex-sae exciaion able below for he Figure 2 sequencer where Q 2 n Q n n are he curren saes and Q 2 n+ Q n+ n+ are he nex saes. Q 2 n Q n n Q 2 n+ Q n+ n+ D 2 D D 0 c. Complee he K-map for each flip flop inpu. Noe each K-map is assigned o a specific combinaion of D and Q 2. Q 0 D 2 Q 2 = 0 Q 0 D Q 2 = 0 Q 0 D 0 Q 2 = 0 Q 0 D 2 Q 2 = Q 0 D Q 2 = Q 0 D 0 Q 2 = d. Based on he K-maps above, deermine he minimized Boolean expressions for all inpus o he 3 flip flops. D 2 =, D =, D 0 =, Noe: A 3-inpu AND gae will be provided o simplify your design. Choose a logic funcion for each inpu ha can be implemened wih only he 3-inpu AND and he basic logic gaes used in Labs -3. You will be asked o design he schemaic o implemen hese inpu funcions during Par 2 of he in-lab assignmen. TA pre-lab sign off Iniial p. 8

9 LAB 4 CHECK-OFF SHEET Suden Name: Lab. Secion (ime): Complee his shee as you complee he lab. Remember o have he TA check off each secion of he assignmen. This shee mus be included in your lab repor. Par : Two bi sequence generaor Sep 7. Is he sae value changing wih he clock? Record he observed sae sequence (e.g., 0 0 ) Does i agree wih he correc sae sequence? Par : TA sign off Iniial Par 2: Sae machine design challenge Sep 7 Record he observed iniial sae value (Q 2,Q, ). Is he sae value changing wih he clock? Sep 7. Wha sae follows he iniial non-sequenced sae? Is his correc? Sep 7. Record he observed sae sequence (e.g., 0 0 ) Does i agree wih he desired sequence? Par 2: TA sign off Iniial p. 9

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17 EES 16A Designing Informaion Devices and Sysems I Spring 019 Lecure Noes Noe 17 17.1 apaciive ouchscreen In he las noe, we saw ha a capacior consiss of wo pieces on conducive maerial separaed by a nonconducive

More information

Lab #2: Kinematics in 1-Dimension

Lab #2: Kinematics in 1-Dimension Reading Assignmen: Chaper 2, Secions 2-1 hrough 2-8 Lab #2: Kinemaics in 1-Dimension Inroducion: The sudy of moion is broken ino wo main areas of sudy kinemaics and dynamics. Kinemaics is he descripion

More information

Topic Astable Circuits. Recall that an astable circuit has two unstable states;

Topic Astable Circuits. Recall that an astable circuit has two unstable states; Topic 2.2. Asable Circuis. Learning Objecives: A he end o his opic you will be able o; Recall ha an asable circui has wo unsable saes; Explain he operaion o a circui based on a Schmi inverer, and esimae

More information

More Digital Logic. t p output. Low-to-high and high-to-low transitions could have different t p. V in (t)

More Digital Logic. t p output. Low-to-high and high-to-low transitions could have different t p. V in (t) EECS 4 Spring 23 Lecure 2 EECS 4 Spring 23 Lecure 2 More igial Logic Gae delay and signal propagaion Clocked circui elemens (flip-flop) Wriing a word o memory Simplifying digial circuis: Karnaugh maps

More information

LabQuest 24. Capacitors

LabQuest 24. Capacitors Capaciors LabQues 24 The charge q on a capacior s plae is proporional o he poenial difference V across he capacior. We express his wih q V = C where C is a proporionaliy consan known as he capaciance.

More information

EE 301 Lab 2 Convolution

EE 301 Lab 2 Convolution EE 301 Lab 2 Convoluion 1 Inroducion In his lab we will gain some more experience wih he convoluion inegral and creae a scrip ha shows he graphical mehod of convoluion. 2 Wha you will learn This lab will

More information

Phys1112: DC and RC circuits

Phys1112: DC and RC circuits Name: Group Members: Dae: TA s Name: Phys1112: DC and RC circuis Objecives: 1. To undersand curren and volage characerisics of a DC RC discharging circui. 2. To undersand he effec of he RC ime consan.

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits EEE25 ircui Analysis I Se 4: apaciors, Inducors, and Firs-Order inear ircuis Shahriar Mirabbasi Deparmen of Elecrical and ompuer Engineering Universiy of Briish olumbia shahriar@ece.ubc.ca Overview Passive

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

A First Course on Kinetics and Reaction Engineering. Class 19 on Unit 18

A First Course on Kinetics and Reaction Engineering. Class 19 on Unit 18 A Firs ourse on Kineics and Reacion Engineering lass 19 on Uni 18 Par I - hemical Reacions Par II - hemical Reacion Kineics Where We re Going Par III - hemical Reacion Engineering A. Ideal Reacors B. Perfecly

More information

1. Kinematics I: Position and Velocity

1. Kinematics I: Position and Velocity 1. Kinemaics I: Posiion and Velociy Inroducion The purpose of his eperimen is o undersand and describe moion. We describe he moion of an objec by specifying is posiion, velociy, and acceleraion. In his

More information

EECS 2602 Winter Laboratory 3 Fourier series, Fourier transform and Bode Plots in MATLAB

EECS 2602 Winter Laboratory 3 Fourier series, Fourier transform and Bode Plots in MATLAB EECS 6 Winer 7 Laboraory 3 Fourier series, Fourier ransform and Bode Plos in MATLAB Inroducion: The objecives of his lab are o use MATLAB:. To plo periodic signals wih Fourier series represenaion. To obain

More information

LAB 5: Computer Simulation of RLC Circuit Response using PSpice

LAB 5: Computer Simulation of RLC Circuit Response using PSpice --3LabManualLab5.doc LAB 5: ompuer imulaion of RL ircui Response using Ppice PURPOE To use a compuer simulaion program (Ppice) o invesigae he response of an RL series circui o: (a) a sinusoidal exciaion.

More information

SPH3U: Projectiles. Recorder: Manager: Speaker:

SPH3U: Projectiles. Recorder: Manager: Speaker: SPH3U: Projeciles Now i s ime o use our new skills o analyze he moion of a golf ball ha was ossed hrough he air. Le s find ou wha is special abou he moion of a projecile. Recorder: Manager: Speaker: 0

More information

Problem Set 11(Practice Problems) Spring 2014

Problem Set 11(Practice Problems) Spring 2014 Issued: Wednesday April, ECE Signals and Sysems I Problem Se (Pracice Problems) Spring Due: For pracice only. No due. Reading in Oppenheim/Willsky/Nawab /9/ Secions 6.-6. // Secions 6.-6. See revised schedule

More information

Constant Acceleration

Constant Acceleration Objecive Consan Acceleraion To deermine he acceleraion of objecs moving along a sraigh line wih consan acceleraion. Inroducion The posiion y of a paricle moving along a sraigh line wih a consan acceleraion

More information

HW6: MRI Imaging Pulse Sequences (7 Problems for 100 pts)

HW6: MRI Imaging Pulse Sequences (7 Problems for 100 pts) HW6: MRI Imaging Pulse Sequences (7 Problems for 100 ps) GOAL The overall goal of HW6 is o beer undersand pulse sequences for MRI image reconsrucion. OBJECTIVES 1) Design a spin echo pulse sequence o image

More information

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4. PHY1 Elecriciy Topic 7 (Lecures 1 & 11) Elecric Circuis n his opic, we will cover: 1) Elecromoive Force (EMF) ) Series and parallel resisor combinaions 3) Kirchhoff s rules for circuis 4) Time dependence

More information

RC, RL and RLC circuits

RC, RL and RLC circuits Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

More information

Lab 10: RC, RL, and RLC Circuits

Lab 10: RC, RL, and RLC Circuits Lab 10: RC, RL, and RLC Circuis In his experimen, we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors. We will sudy he way volages and currens change in

More information

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes Some common engineering funcions 2.7 Inroducion This secion provides a caalogue of some common funcions ofen used in Science and Engineering. These include polynomials, raional funcions, he modulus funcion

More information

The equation to any straight line can be expressed in the form:

The equation to any straight line can be expressed in the form: Sring Graphs Par 1 Answers 1 TI-Nspire Invesigaion Suden min Aims Deermine a series of equaions of sraigh lines o form a paern similar o ha formed by he cables on he Jerusalem Chords Bridge. Deermine he

More information

EE100 Lab 3 Experiment Guide: RC Circuits

EE100 Lab 3 Experiment Guide: RC Circuits I. Inroducion EE100 Lab 3 Experimen Guide: A. apaciors A capacior is a passive elecronic componen ha sores energy in he form of an elecrosaic field. The uni of capaciance is he farad (coulomb/vol). Pracical

More information

04. Kinetics of a second order reaction

04. Kinetics of a second order reaction 4. Kineics of a second order reacion Imporan conceps Reacion rae, reacion exen, reacion rae equaion, order of a reacion, firs-order reacions, second-order reacions, differenial and inegraed rae laws, Arrhenius

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

The average rate of change between two points on a function is d t

The average rate of change between two points on a function is d t SM Dae: Secion: Objecive: The average rae of change beween wo poins on a funcion is d. For example, if he funcion ( ) represens he disance in miles ha a car has raveled afer hours, hen finding he slope

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

Chapter 2: Logical levels, timing and delay

Chapter 2: Logical levels, timing and delay 28.1.216 haper 2: Logical levels, iming and delay Dr.-ng. Sefan Werner Winersemeser 216/17 Table of conen haper 1: Swiching lgebra haper 2: Logical Levels, Timing & Delays haper 3: Karnaugh-Veich-Maps

More information

THE UNIVERSITY OF TEXAS AT AUSTIN McCombs School of Business

THE UNIVERSITY OF TEXAS AT AUSTIN McCombs School of Business THE UNIVERITY OF TEXA AT AUTIN McCombs chool of Business TA 7.5 Tom hively CLAICAL EAONAL DECOMPOITION - MULTIPLICATIVE MODEL Examples of easonaliy 8000 Quarerly sales for Wal-Mar for quarers a l e s 6000

More information

i L = VT L (16.34) 918a i D v OUT i L v C V - S 1 FIGURE A switched power supply circuit with diode and a switch.

i L = VT L (16.34) 918a i D v OUT i L v C V - S 1 FIGURE A switched power supply circuit with diode and a switch. 16.4.3 A SWITHED POWER SUPPY USINGA DIODE In his example, we will analyze he behavior of he diodebased swiched power supply circui shown in Figure 16.15. Noice ha his circui is similar o ha in Figure 12.41,

More information

V AK (t) I T (t) I TRM. V AK( full area) (t) t t 1 Axial turn-on. Switching losses for Phase Control and Bi- Directionally Controlled Thyristors

V AK (t) I T (t) I TRM. V AK( full area) (t) t t 1 Axial turn-on. Switching losses for Phase Control and Bi- Directionally Controlled Thyristors Applicaion Noe Swiching losses for Phase Conrol and Bi- Direcionally Conrolled Thyrisors V AK () I T () Causing W on I TRM V AK( full area) () 1 Axial urn-on Plasma spread 2 Swiching losses for Phase Conrol

More information

EECS 141: FALL 00 MIDTERM 2

EECS 141: FALL 00 MIDTERM 2 Universiy of California College of Engineering Deparmen of Elecrical Engineering and Compuer Science J. M. Rabaey TuTh9:30-11am ee141@eecs EECS 141: FALL 00 MIDTERM 2 For all problems, you can assume he

More information

Basic Circuit Elements Professor J R Lucas November 2001

Basic Circuit Elements Professor J R Lucas November 2001 Basic Circui Elemens - J ucas An elecrical circui is an inerconnecion of circui elemens. These circui elemens can be caegorised ino wo ypes, namely acive and passive elemens. Some Definiions/explanaions

More information

Biol. 356 Lab 8. Mortality, Recruitment, and Migration Rates

Biol. 356 Lab 8. Mortality, Recruitment, and Migration Rates Biol. 356 Lab 8. Moraliy, Recruimen, and Migraion Raes (modified from Cox, 00, General Ecology Lab Manual, McGraw Hill) Las week we esimaed populaion size hrough several mehods. One assumpion of all hese

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

Decimal moved after first digit = 4.6 x Decimal moves five places left SCIENTIFIC > POSITIONAL. a) g) 5.31 x b) 0.

Decimal moved after first digit = 4.6 x Decimal moves five places left SCIENTIFIC > POSITIONAL. a) g) 5.31 x b) 0. PHYSICS 20 UNIT 1 SCIENCE MATH WORKSHEET NAME: A. Sandard Noaion Very large and very small numbers are easily wrien using scienific (or sandard) noaion, raher han decimal (or posiional) noaion. Sandard

More information

FITTING EQUATIONS TO DATA

FITTING EQUATIONS TO DATA TANTON S TAKE ON FITTING EQUATIONS TO DATA CURRICULUM TIDBITS FOR THE MATHEMATICS CLASSROOM MAY 013 Sandard algebra courses have sudens fi linear and eponenial funcions o wo daa poins, and quadraic funcions

More information

PET467E-Analysis of Well Pressure Tests/2008 Spring Semester/İTÜ Midterm Examination (Duration 3:00 hours) Solutions

PET467E-Analysis of Well Pressure Tests/2008 Spring Semester/İTÜ Midterm Examination (Duration 3:00 hours) Solutions M. Onur 03.04.008 PET467E-Analysis of Well Pressure Tess/008 Spring Semeser/İTÜ Miderm Examinaion (Duraion 3:00 hours) Soluions Name of he Suden: Insrucions: Before saring he exam, wrie your name clearly

More information

Notes 04 largely plagiarized by %khc

Notes 04 largely plagiarized by %khc Noes 04 largely plagiarized by %khc Convoluion Recap Some ricks: x() () =x() x() (, 0 )=x(, 0 ) R ț x() u() = x( )d x() () =ẋ() This hen ells us ha an inegraor has impulse response h() =u(), and ha a differeniaor

More information

non-linear oscillators

non-linear oscillators non-linear oscillaors The invering comparaor operaion can be summarized as When he inpu is low, he oupu is high. When he inpu is high, he oupu is low. R b V REF R a and are given by he expressions derived

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

Overview. COMP14112: Artificial Intelligence Fundamentals. Lecture 0 Very Brief Overview. Structure of this course

Overview. COMP14112: Artificial Intelligence Fundamentals. Lecture 0 Very Brief Overview. Structure of this course OMP: Arificial Inelligence Fundamenals Lecure 0 Very Brief Overview Lecurer: Email: Xiao-Jun Zeng x.zeng@mancheser.ac.uk Overview This course will focus mainly on probabilisic mehods in AI We shall presen

More information

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3 and d = c b - b c c d = c b - b c c This process is coninued unil he nh row has been compleed. The complee array of coefficiens is riangular. Noe ha in developing he array an enire row may be divided or

More information

Physical Limitations of Logic Gates Week 10a

Physical Limitations of Logic Gates Week 10a Physical Limiaions of Logic Gaes Week 10a In a compuer we ll have circuis of logic gaes o perform specific funcions Compuer Daapah: Boolean algebraic funcions using binary variables Symbolic represenaion

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law Predaor - Prey Model Trajecories and he nonlinear conservaion law James K. Peerson Deparmen of Biological Sciences and Deparmen of Mahemaical Sciences Clemson Universiy Ocober 28, 213 Ouline Drawing Trajecories

More information

Linear Circuit Elements

Linear Circuit Elements 1/25/2011 inear ircui Elemens.doc 1/6 inear ircui Elemens Mos microwave devices can be described or modeled in erms of he hree sandard circui elemens: 1. ESISTANE () 2. INDUTANE () 3. APAITANE () For he

More information

Linear Time-invariant systems, Convolution, and Cross-correlation

Linear Time-invariant systems, Convolution, and Cross-correlation Linear Time-invarian sysems, Convoluion, and Cross-correlaion (1) Linear Time-invarian (LTI) sysem A sysem akes in an inpu funcion and reurns an oupu funcion. x() T y() Inpu Sysem Oupu y() = T[x()] An

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

EXERCISES FOR SECTION 1.5

EXERCISES FOR SECTION 1.5 1.5 Exisence and Uniqueness of Soluions 43 20. 1 v c 21. 1 v c 1 2 4 6 8 10 1 2 2 4 6 8 10 Graph of approximae soluion obained using Euler s mehod wih = 0.1. Graph of approximae soluion obained using Euler

More information

Spring Ammar Abu-Hudrouss Islamic University Gaza

Spring Ammar Abu-Hudrouss Islamic University Gaza Chaper 7 Reed-Solomon Code Spring 9 Ammar Abu-Hudrouss Islamic Universiy Gaza ١ Inroducion A Reed Solomon code is a special case of a BCH code in which he lengh of he code is one less han he size of he

More information

Single and Double Pendulum Models

Single and Double Pendulum Models Single and Double Pendulum Models Mah 596 Projec Summary Spring 2016 Jarod Har 1 Overview Differen ypes of pendulums are used o model many phenomena in various disciplines. In paricular, single and double

More information

L1, L2, N1 N2. + Vout. C out. Figure 2.1.1: Flyback converter

L1, L2, N1 N2. + Vout. C out. Figure 2.1.1: Flyback converter page 11 Flyback converer The Flyback converer belongs o he primary swiched converer family, which means here is isolaion beween in and oupu. Flyback converers are used in nearly all mains supplied elecronic

More information

HV513 8-Channel Serial to Parallel Converter with High Voltage Push-Pull Outputs, POL, Hi-Z, and Short Circuit Detect

HV513 8-Channel Serial to Parallel Converter with High Voltage Push-Pull Outputs, POL, Hi-Z, and Short Circuit Detect H513 8-Channel Serial o Parallel Converer wih High olage Push-Pull s, POL, Hi-Z, and Shor Circui Deec Feaures HCMOS echnology Operaing oupu volage of 250 Low power level shifing from 5 o 250 Shif regiser

More information

HOMEWORK # 2: MATH 211, SPRING Note: This is the last solution set where I will describe the MATLAB I used to make my pictures.

HOMEWORK # 2: MATH 211, SPRING Note: This is the last solution set where I will describe the MATLAB I used to make my pictures. HOMEWORK # 2: MATH 2, SPRING 25 TJ HITCHMAN Noe: This is he las soluion se where I will describe he MATLAB I used o make my picures.. Exercises from he ex.. Chaper 2.. Problem 6. We are o show ha y() =

More information

Chapters 6 & 7: Trigonometric Functions of Angles and Real Numbers. Divide both Sides by 180

Chapters 6 & 7: Trigonometric Functions of Angles and Real Numbers. Divide both Sides by 180 Algebra Chapers & : Trigonomeric Funcions of Angles and Real Numbers Chapers & : Trigonomeric Funcions of Angles and Real Numbers - Angle Measures Radians: - a uni (rad o measure he size of an angle. rad

More information

dy dx = xey (a) y(0) = 2 (b) y(1) = 2.5 SOLUTION: See next page

dy dx = xey (a) y(0) = 2 (b) y(1) = 2.5 SOLUTION: See next page Assignmen 1 MATH 2270 SOLUTION Please wrie ou complee soluions for each of he following 6 problems (one more will sill be added). You may, of course, consul wih your classmaes, he exbook or oher resources,

More information

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit V() R L C 513 Elecrical Circuis Tools Used in Lab 13 Series Circuis Damped Vibraions: Energy Van der Pol Circui A series circui wih an inducor, resisor, and capacior can be represened by Lq + Rq + 1, a

More information

h[n] is the impulse response of the discrete-time system:

h[n] is the impulse response of the discrete-time system: Definiion Examples Properies Memory Inveribiliy Causaliy Sabiliy Time Invariance Lineariy Sysems Fundamenals Overview Definiion of a Sysem x() h() y() x[n] h[n] Sysem: a process in which inpu signals are

More information

Dual Current-Mode Control for Single-Switch Two-Output Switching Power Converters

Dual Current-Mode Control for Single-Switch Two-Output Switching Power Converters Dual Curren-Mode Conrol for Single-Swich Two-Oupu Swiching Power Converers S. C. Wong, C. K. Tse and K. C. Tang Deparmen of Elecronic and Informaion Engineering Hong Kong Polyechnic Universiy, Hunghom,

More information

Signal and System (Chapter 3. Continuous-Time Systems)

Signal and System (Chapter 3. Continuous-Time Systems) Signal and Sysem (Chaper 3. Coninuous-Time Sysems) Prof. Kwang-Chun Ho kwangho@hansung.ac.kr Tel: 0-760-453 Fax:0-760-4435 1 Dep. Elecronics and Informaion Eng. 1 Nodes, Branches, Loops A nework wih b

More information

Matlab and Python programming: how to get started

Matlab and Python programming: how to get started Malab and Pyhon programming: how o ge sared Equipping readers he skills o wrie programs o explore complex sysems and discover ineresing paerns from big daa is one of he main goals of his book. In his chaper,

More information

Brock University Physics 1P21/1P91 Fall 2013 Dr. D Agostino. Solutions for Tutorial 3: Chapter 2, Motion in One Dimension

Brock University Physics 1P21/1P91 Fall 2013 Dr. D Agostino. Solutions for Tutorial 3: Chapter 2, Motion in One Dimension Brock Uniersiy Physics 1P21/1P91 Fall 2013 Dr. D Agosino Soluions for Tuorial 3: Chaper 2, Moion in One Dimension The goals of his uorial are: undersand posiion-ime graphs, elociy-ime graphs, and heir

More information

Let us start with a two dimensional case. We consider a vector ( x,

Let us start with a two dimensional case. We consider a vector ( x, Roaion marices We consider now roaion marices in wo and hree dimensions. We sar wih wo dimensions since wo dimensions are easier han hree o undersand, and one dimension is a lile oo simple. However, our

More information

Morning Time: 1 hour 30 minutes Additional materials (enclosed):

Morning Time: 1 hour 30 minutes Additional materials (enclosed): ADVANCED GCE 78/0 MATHEMATICS (MEI) Differenial Equaions THURSDAY JANUARY 008 Morning Time: hour 30 minues Addiional maerials (enclosed): None Addiional maerials (required): Answer Bookle (8 pages) Graph

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

Testing What You Know Now

Testing What You Know Now Tesing Wha You Know Now To bes each you, I need o know wha you know now Today we ake a well-esablished quiz ha is designed o ell me his To encourage you o ake he survey seriously, i will coun as a clicker

More information

The problem with linear regulators

The problem with linear regulators he problem wih linear regulaors i in P in = i in V REF R a i ref i q i C v CE P o = i o i B ie P = v i o o in R 1 R 2 i o i f η = P o P in iref is small ( 0). iq (quiescen curren) is small (probably).

More information

Electrical and current self-induction

Electrical and current self-induction Elecrical and curren self-inducion F. F. Mende hp://fmnauka.narod.ru/works.hml mende_fedor@mail.ru Absrac The aricle considers he self-inducance of reacive elemens. Elecrical self-inducion To he laws of

More information

1.6. Slopes of Tangents and Instantaneous Rate of Change

1.6. Slopes of Tangents and Instantaneous Rate of Change 1.6 Slopes of Tangens and Insananeous Rae of Change When you hi or kick a ball, he heigh, h, in meres, of he ball can be modelled by he equaion h() 4.9 2 v c. In his equaion, is he ime, in seconds; c represens

More information

a 10.0 (m/s 2 ) 5.0 Name: Date: 1. The graph below describes the motion of a fly that starts out going right V(m/s)

a 10.0 (m/s 2 ) 5.0 Name: Date: 1. The graph below describes the motion of a fly that starts out going right V(m/s) Name: Dae: Kinemaics Review (Honors. Physics) Complee he following on a separae shee of paper o be urned in on he day of he es. ALL WORK MUST BE SHOWN TO RECEIVE CREDIT. 1. The graph below describes he

More information

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model Modal idenificaion of srucures from roving inpu daa by means of maximum likelihood esimaion of he sae space model J. Cara, J. Juan, E. Alarcón Absrac The usual way o perform a forced vibraion es is o fix

More information

INDEX. Transient analysis 1 Initial Conditions 1

INDEX. Transient analysis 1 Initial Conditions 1 INDEX Secion Page Transien analysis 1 Iniial Condiions 1 Please inform me of your opinion of he relaive emphasis of he review maerial by simply making commens on his page and sending i o me a: Frank Mera

More information

Chapter 7: Solving Trig Equations

Chapter 7: Solving Trig Equations Haberman MTH Secion I: The Trigonomeric Funcions Chaper 7: Solving Trig Equaions Le s sar by solving a couple of equaions ha involve he sine funcion EXAMPLE a: Solve he equaion sin( ) The inverse funcions

More information

15. Bicycle Wheel. Graph of height y (cm) above the axle against time t (s) over a 6-second interval. 15 bike wheel

15. Bicycle Wheel. Graph of height y (cm) above the axle against time t (s) over a 6-second interval. 15 bike wheel 15. Biccle Wheel The graph We moun a biccle wheel so ha i is free o roae in a verical plane. In fac, wha works easil is o pu an exension on one of he axles, and ge a suden o sand on one side and hold he

More information

Math 333 Problem Set #2 Solution 14 February 2003

Math 333 Problem Set #2 Solution 14 February 2003 Mah 333 Problem Se #2 Soluion 14 February 2003 A1. Solve he iniial value problem dy dx = x2 + e 3x ; 2y 4 y(0) = 1. Soluion: This is separable; we wrie 2y 4 dy = x 2 + e x dx and inegrae o ge The iniial

More information

UNC resolution Uncertainty Learning Objectives: measurement interval ( You will turn in two worksheets and

UNC resolution Uncertainty Learning Objectives: measurement interval ( You will turn in two worksheets and UNC Uncerainy revised Augus 30, 017 Learning Objecives: During his lab, you will learn how o 1. esimae he uncerainy in a direcly measured quaniy.. esimae he uncerainy in a quaniy ha is calculaed from quaniies

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

Chapter 7 Response of First-order RL and RC Circuits

Chapter 7 Response of First-order RL and RC Circuits Chaper 7 Response of Firs-order RL and RC Circuis 7.- The Naural Response of RL and RC Circuis 7.3 The Sep Response of RL and RC Circuis 7.4 A General Soluion for Sep and Naural Responses 7.5 Sequenial

More information

Chapter 8 The Complete Response of RL and RC Circuits

Chapter 8 The Complete Response of RL and RC Circuits Chaper 8 The Complee Response of RL and RC Circuis Seoul Naional Universiy Deparmen of Elecrical and Compuer Engineering Wha is Firs Order Circuis? Circuis ha conain only one inducor or only one capacior

More information

AP Chemistry--Chapter 12: Chemical Kinetics

AP Chemistry--Chapter 12: Chemical Kinetics AP Chemisry--Chaper 12: Chemical Kineics I. Reacion Raes A. The area of chemisry ha deals wih reacion raes, or how fas a reacion occurs, is called chemical kineics. B. The rae of reacion depends on he

More information

Synthesis of Reversible Synchronous Counters

Synthesis of Reversible Synchronous Counters Porland Sae Universiy PDXScholar Elecrical and ompuer Engineering Faculy Publicaions and Presenaions Elecrical and ompuer Engineering 5-2 Synhesis of Reversible Synchronous ouners Marek Perkowski Porland

More information

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A.

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A. Universià degli Sudi di Roma Tor Vergaa Diparimeno di Ingegneria Eleronica Analogue Elecronics Paolo Colanonio A.A. 2015-16 Diode circui analysis The non linearbehaviorofdiodesmakesanalysisdifficul consider

More information

ADDITIONAL PROBLEMS (a) Find the Fourier transform of the half-cosine pulse shown in Fig. 2.40(a). Additional Problems 91

ADDITIONAL PROBLEMS (a) Find the Fourier transform of the half-cosine pulse shown in Fig. 2.40(a). Additional Problems 91 ddiional Problems 9 n inverse relaionship exiss beween he ime-domain and freuency-domain descripions of a signal. Whenever an operaion is performed on he waveform of a signal in he ime domain, a corresponding

More information

first-order circuit Complete response can be regarded as the superposition of zero-input response and zero-state response.

first-order circuit Complete response can be regarded as the superposition of zero-input response and zero-state response. Experimen 4:he Sdies of ransiional processes of 1. Prpose firs-order circi a) Use he oscilloscope o observe he ransiional processes of firs-order circi. b) Use he oscilloscope o measre he ime consan of

More information

IB Physics Kinematics Worksheet

IB Physics Kinematics Worksheet IB Physics Kinemaics Workshee Wrie full soluions and noes for muliple choice answers. Do no use a calculaor for muliple choice answers. 1. Which of he following is a correc definiion of average acceleraion?

More information

13.3 Term structure models

13.3 Term structure models 13.3 Term srucure models 13.3.1 Expecaions hypohesis model - Simples "model" a) shor rae b) expecaions o ge oher prices Resul: y () = 1 h +1 δ = φ( δ)+ε +1 f () = E (y +1) (1) =δ + φ( δ) f (3) = E (y +)

More information

You must fully interpret your results. There is a relationship doesn t cut it. Use the text and, especially, the SPSS Manual for guidance.

You must fully interpret your results. There is a relationship doesn t cut it. Use the text and, especially, the SPSS Manual for guidance. POLI 30D SPRING 2015 LAST ASSIGNMENT TRUMPETS PLEASE!!!!! Due Thursday, December 10 (or sooner), by 7PM hrough TurnIIn I had his all se up in my mind. You would use regression analysis o follow up on your

More information

RL Lecture 7: Eligibility Traces. R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1

RL Lecture 7: Eligibility Traces. R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1 RL Lecure 7: Eligibiliy Traces R. S. Suon and A. G. Baro: Reinforcemen Learning: An Inroducion 1 N-sep TD Predicion Idea: Look farher ino he fuure when you do TD backup (1, 2, 3,, n seps) R. S. Suon and

More information

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions Muli-Period Sochasic Models: Opimali of (s, S) Polic for -Convex Objecive Funcions Consider a seing similar o he N-sage newsvendor problem excep ha now here is a fixed re-ordering cos (> 0) for each (re-)order.

More information

Chapter 3 Kinematics in Two Dimensions

Chapter 3 Kinematics in Two Dimensions Chaper 3 KINEMATICS IN TWO DIMENSIONS PREVIEW Two-dimensional moion includes objecs which are moing in wo direcions a he same ime, such as a projecile, which has boh horizonal and erical moion. These wo

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring Experiment 9: Faraday s Law of Induction

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring Experiment 9: Faraday s Law of Induction MASSACHUSETTS INSTITUTE OF TECHNOLOY Deparmen of Physics 8.02 Spring 2005 OBJECTIVES Experimen 9: Faraday s Law of Inducion 1. To become familiar wih he conceps of changing magneic flux and induced curren

More information

STATE-SPACE MODELLING. A mass balance across the tank gives:

STATE-SPACE MODELLING. A mass balance across the tank gives: B. Lennox and N.F. Thornhill, 9, Sae Space Modelling, IChemE Process Managemen and Conrol Subjec Group Newsleer STE-SPACE MODELLING Inroducion: Over he pas decade or so here has been an ever increasing

More information

LAB 6: SIMPLE HARMONIC MOTION

LAB 6: SIMPLE HARMONIC MOTION 1 Name Dae Day/Time of Lab Parner(s) Lab TA Objecives LAB 6: SIMPLE HARMONIC MOTION To undersand oscillaion in relaion o equilibrium of conservaive forces To manipulae he independen variables of oscillaion:

More information

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode.

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode. ECE 445 Analysis and Design of Power Elecronic Circuis Problem Se 7 Soluions Problem PS7.1 Erickson, Problem 5.1 Soluion (a) Firs, recall he operaion of he buck-boos converer in he coninuous conducion

More information

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems.

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems. Mah 2250-004 Week 4 April 6-20 secions 7.-7.3 firs order sysems of linear differenial equaions; 7.4 mass-spring sysems. Mon Apr 6 7.-7.2 Sysems of differenial equaions (7.), and he vecor Calculus we need

More information

Lesson 3.1 Recursive Sequences

Lesson 3.1 Recursive Sequences Lesson 3.1 Recursive Sequences 1) 1. Evaluae he epression 2(3 for each value of. a. 9 b. 2 c. 1 d. 1 2. Consider he sequence of figures made from riangles. Figure 1 Figure 2 Figure 3 Figure a. Complee

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

Random Walk with Anti-Correlated Steps

Random Walk with Anti-Correlated Steps Random Walk wih Ani-Correlaed Seps John Noga Dirk Wagner 2 Absrac We conjecure he expeced value of random walks wih ani-correlaed seps o be exacly. We suppor his conjecure wih 2 plausibiliy argumens and

More information