Topic Page: Central tendency

Size: px
Start display at page:

Download "Topic Page: Central tendency"

Transcription

1 Topic Page: Central tendency Definition: measures of central tendency from Dictionary of Psychological Testing, Assessment and Treatment summary statistics which divide the data into two halves (i.e. half of the data fall below the figure produced, half above). This is an exact division in the case of the median, but can be more approximate for the mean and mode. Summary Article: Measures of Central Tendency from Encyclopedia of Measurement and Statistics Image from: measure of central tendency (average) in The Encyclopedia of Ecology and Environmental Management, Blackwell Science Measures of central tendency are measures of the location of the center or middle of a distribution. However, the definition of center or middle is deliberately left broad, such that the term central tendency can refer to a wide variety of measures. The three most common measures of central tendency are the mode, the mean, and the median. Mode The mode for a collection of data values is the data value that occurs most frequently (if there is one). Suppose the average number of colds in a family of six in a calendar year is as presented in Table 1. Then, the mode is 1 because more family members (i.e., n = 2) caught one cold than any other number of colds. Thus, 1 is the most frequently occurring value. If two values occur the same number of times and more often than the others, then the data set is said to be bimodal. The data set is multimodal if there are more than two values that occur with the same greatest frequency. The mode is applicable to qualitative as well as quantitative data. With continuous data, such as the time patients spend waiting at a particular doctor's office, which can be measured to many decimals, the frequency of each value is most commonly 1 because no two scores will be identical. Consequently, for continuous data, the mode typically is computed from a grouped frequency distribution. The grouped frequency distribution in Table 2 shows a grouped frequency distribution for the waiting times of 20 patients. Because the interval with the highest frequency is 30 - <40 minutes, the mode is the middle of that interval (i.e., 35 minutes).

2 Table 1: Number of Colds in a Selected Family Family Member Frequency Father 5 Mother 4 First Son 1 Second Son 2 First Daughter 1 Second Daughter 3 Table 2: Grouped Frequency Distribution Range Frequency 0 < < < < < < <70 1 Mean Ar ithmetic Mean The arithmetic mean, or average, is the most common measure of central tendency. Given a collection of data values, the mean of these data is simply the arithmetic average of these data values. That is, the mean is the sum of observations divided by the number of observations. If we use the following notation: x is the variable for which we have data (e.g, test scores), n is the number of sample observations (sample size), x is the first sample observation (first test score), 1 x is the second sample observation (second test score), 2

3 x is the nth (last) sample observation (last test score), n then the sample mean of a sample x, x,, x is denoted by 1 2 n To find the average number of colds in the family presented earlier, we compute The arithmetic mean is not the only mean available. Indeed, there is another kind of mean that is called the geometric mean, which is explained below. However, the arithmetic mean is by far the most commonly used. Consequently, when the term mean is used, one can assume that it is the arithmetic mean. Weighted Mean The weighted mean of a set of measurements x, x,, x with relative weights w, w,, w is given by 1 2 n 1 2 n The weighted mean has many applications. In effect, it is used to approximate the mean of data grouped in a frequency distribution. In order to approximate the mean waiting time of the 20 patients presented above, the class mark is used to represent the waiting time of each person falling within that class. A weighted mean is then calculated, where the xs are the class marks and the weights are the corresponding class frequencies, as in Table 3. Thus, the weighted mean is 33.5 minutes. The mean has two important properties. First, the sum of the deviations of all scores in the distribution from the mean is zero. Second, the sum of squares of deviations about the mean is smaller than the sum of squares of deviations about any other value. Consequently, the mean is the measure of central tendency in the least squares sense inasmuch as the sum of the squared deviations is a minimum.

4 Table 3: Computation of Weighted Mean Waiting Time Class Mark(x) Frequency(w) x w 0 - < < < < < < < Tr imean The trimean is another measure of central tendency. It is computed by adding the 25th percentile plus twice the 50th percentile plus the 75th percentile, and then dividing by four. The 25th, 50th, and 75th percentile of the cold data set is 1, 2.5, and 4.25, respectively. Therefore, the trimean is computed as The trimean value of 2.56 is close to the arithmetic mean value of The trimean has logical appeal as a measure of central tendency. However, it is rarely used. Tr immed Mean The trimmed mean is computed by discarding a certain percentage of the lowest and the highest scores in a ranked (i.e., ordered) set of data and then computing the mean of the remaining scores. For example, a mean trimmed 50% is computed by discarding the highest and lowest 25% of the scores and taking the mean of the remaining scores. The mean trimmed 0% provides the arithmetic mean. Trimmed means are used in certain sporting events (e.g., ice skating, gymnastics) to judge competitors' levels of performance and to prevent the effects of extreme ratings possibly caused by biased judges. Before scores are discarded, the analyst must first rank the data. For the cold data, the mean trimmed 33% would result in the highest value (i.e., 5) and lowest value (i.e., 1) being discarded, resulting in the following trimmed mean: Geometr ic Mean The geometric mean of n numbers is obtained by multiplying all of them together, and then taking the nth root of them. In other words, the geometric mean is the nth root of the product of the n scores in the dataset. Thus, the geometric mean of the cold data 5, 4, 1, 2, 1, and 3 is the sixth root of , which is the sixth root of 120 (because there are six numbers), which equals The formula can be written as

5 where πx means to take the product of all the values of X, and the superscript value (i.e., 1/n) indicates the nth root. The geometric mean can also be computed by 1. computing the logarithm of each number, 2. computing the arithmetic mean of the logarithms, 3. raising the base used to take the logarithms to the arithmetic mean. Thus, if the natural logarithm (i.e., Ln) is used, then raising this base would necessitate use of the exponent. For the cold data, the computation would be as in Table 4. The base of natural logarithms is The expression EXP[0.7979] means that is raised to the th power. Ln(X) is the natural log of X. An identical result can be obtained by using logs base 10 as shown in Table 5. If any one of the scores is zero, then the geometric mean is zero. If any scores are negative, then the geometric mean is meaningless. The geometric mean is an appropriate measure to use for averaging rates. However, it is one of the least used measures of central tendency. Table 4: Computation of Geometric Mean Using Natural Logarithms Family Members Frequency(x) Ln(X) Father Mother First Son Second Son First Daughter Second Daughter Arithmetic mean Exponential EXP [0.7979] = 2.22 Geometric mean 2.22

6 Table 5: Computation of Geometric Mean Using Base 10 Logarithms Family Members Frequency(x) Ln(X) Father Mother First Son Second Son First Daughter Second Daughter Arithmetic mean Exponential = 2.22 Geometric mean 2.22 Har monic Mean The harmonic mean is the mean of n numbers expressed as the reciprocal of the arithmetic mean of the reciprocals of the numbers. The harmonic mean typically is used to take the mean of sample sizes. For the cold data, the harmonic mean is defined as where i is the number of scores from which the harmonic mean is computed. For the cold data, the harmonic mean is This is less than the arithmetic mean of 2.67, the trimean of 2.56, and the geometric mean of Median The median is the midpoint of a distribution such that the same number of scores is above the median as below it. In other words, the median is the 50th percentile. More specifically, the median for a collection of data values is the number that is exactly in the middle position of the list when the data are ranked (i.e., arranged in increasing order of magnitude). The formula for the median (Md) is where L is the lower limit of the interval within which the median lies, N is the number of cases in the distribution,

7 cfb is the cumulative frequency in all intervals below the interval containing the median, fw is the frequency of cases within the interval containing the median, i is the interval size. In order to compute the median for the cold data, the first step is to rank the data: Because there are six numbers (i.e., an even number of data points), there are two middle numbers, namely, 2 and 3. Therefore, L = 1.5 (i.e., the lowest of the two middle numbers - 0.5). Also, N = 6 (number of observations), and cfb = 2 (i.e., the number of observations that lie below the lower limit of 1.5). Also, fw = 2 (i.e., the number of observations that are equal to the middle numbers) because the two middle numbers (i.e., 2 and 3) do not appear anywhere else in the data set. Finally, i = 2 (i.e., the highest middle number - the lowest middle number + 1 = = 2). (Please note that i = 1 if the middle numbers are all the same.) Thus, the median is Thus, the median cold is 2.5. When the number of observations is relatively small and the data are not grouped in class intervals as is the case with the cold data the median can be computed using the following steps: 1. Order the n observations from smallest to largest, including any repeated observations, so that every observation appears in the list. 2. Determine the location of the sample median, which is given by (n + 1)/2. Thus, for example, for a sample size of 5 (i. 3. e., n = 5), (n + 1)/2 = 3, and the median is represented by the third number in the series. For a sample size of 6, (n + 1)/2 = 3.5, and the median can be located somewhere between the third and fourth number in the series. 4. If the number of scores is odd, the median is the middle score. Consider the following ranked distribution of scores: 1, 3, 3, 5, 6, 7, 8, 8, 9. Because there are nine scores (i. 5. e., N = 9), the median is If the number of scores is even, the median is the average of the two middle values. Thus, because the cold data have an even number of scores, the two middle numbers are 2 and 3, and the median is the average of 2 and 3 (i. 7. e., the average of the third and fourth observations), which is 2.5. It can be seen that the simpler method of calculating the median yielded exactly the same number as did using the more general formula. However, for relatively large sample sizes, the simpler formula can distort the true value of the median represented by the more general formula. Comput er Applicat ions When using SPSS, there are a few ways to compute measures of central tendency. The Frequencies command can be used to compute the mean, median, and mode. The Descriptives command can be used to compute the mean. The Explore command can be used to compute the median, mean, and

8 trimmed mean. The Means command can be used to compute the median, mean, harmonic mean, and geometric mean. Finally, the Reports command can be used to compute the mean and median. The SPSS output for the Frequencies command pertaining to the cold data set is presented in Figure 1. The SPSS output for the Descriptives command pertaining to the cold data set is in Figure 2. The SPSS output for the Explore command pertaining to the cold data set is in Figure 3. Figure 1 Measures of Central Tendency Using Frequencies Command Figure 2 Measures of Central Tendency Using Descriptives Command The SPSS output for the Means command pertaining to the cold data set is in Figure 4. The SPSS output for the Reports command pertaining to the cold data set is in Figure 5. Comparisons of Measures of Cent ral Tendency To some extent, selection of the most appropriate measure of central tendency is dependent on the scale of measurement of the variable. Specifically, if the data are nominal, then only the mode is appropriate. If the data are ordinal, either the mode or the median may be appropriate. If the data are interval or ratio, the mode, median, or mean may be appropriate.

9 Figure 3 Measures of Central Tendency Using Explore Command Figure 4 Measures of Central Tendency Using Means Command For distributions that are symmetrical and unimodal, the three major measures of central tendency (i.e., mean, median, mode) are all the same. When the distribution is symmetrical and bimodal, the mean and the median coincide, but two modes are present. The less symmetrical the distribution, the greater the differential between the mean, the median, and the mode. For skewed distributions, they can differ markedly. Specifically, in positively skewed distributions, the mean is higher than the median, whereas in negatively skewed distributions, the mean is lower than the median. Thus, comparing the mean and median can provide useful information about the level of skewness inherent in the distribution. Of the eight measures of central tendency discussed, the mean is by far the most widely used because it takes every score into account, is the most efficient measure of central tendency for approximately symmetric (normal) distributions, and uses a simple formula. Also, because the mean requires that the differences between the various levels of the categories on any part of the distribution represent equal differences in the characteristic or trait measured (i.e., equal unit or interval/ratio scale), it can be manipulated mathematically in ways not appropriate to the median and mode. Thus, the mean is mathematically appealing, making it possible for researchers to develop statistical procedures for drawing inferences about means. However, the mean does have several disadvantages. In particular, the mean is sensitive to skewed data. It is also sensitive to outliers. Thus, the mean often is misleading in highly skewed distributions and is less efficient than other measures of central tendency when extreme scores are possible. Figure 5 Measures of Central Tendency Using Reports Command The trimean is almost as resistant to extreme scores as is the median, and it is less subject to sampling fluctuations than the arithmetic mean in extremely skewed distributions. However, it is less efficient than the mean for normal distributions. The trimmed mean, which generally falls between the mean and the median, is less susceptible to the effects of extreme scores than the arithmetic mean and, in turn, is less susceptible to sampling fluctuation than the mean for extremely skewed distributions. However, like the trimean, the trimmed mean is less efficient than the mean for normal distributions. The geometric mean is less affected by extreme values than the arithmetic mean and is useful as a measure of central tendency for some positively skewed distributions. However, the geometric mean is rarely used because (a) it equals zero if any one of the scores is zero, regardless of how large the remaining scores are; (b) it is meaningless if any scores are negative; and (c) it is more difficult to compute than the

10 arithmetic mean. The weighted mean does not use any of the actual scores in the distribution. The median is useful because of its ease of interpretation and because it is more efficient than the mean in highly skewed distributions. That is, the median is not sensitive to skewed data. However, it does not take into account every score, relying only on the middle value(s) in an ordered set of data. Also, the median generally is less efficient than the mean, the trimean, and the trimmed mean. The mode can be informative, is easy to interpret, and is the only measure of central tendency that can be used with nominal data; however, it should almost never be used as the only measure of central tendency because it depends only on the most frequent observation and is highly susceptible to sampling fluctuations. Another disadvantage of the mode is that many distributions have more than one mode, thereby complicating interpretation. Also, the mode does not always exist. See also Mean, Median, Mode Further Reading Means and medians graphical comparison applets: lane/stat_sim/descriptive/ and Leech, N. L., Barrett, K. C., & Morgan, G. A. (2005). SPSS for intermediate statistics: Use and interpretation (2nd ed.). Mahwah, NJ: Erlbaum. Morgan, G. A., Leech, N. L., Gloeckner, G. W., & Barrett, K. C. (2004). SPSS for basic statistics: Use and interpretation (2nd ed.). Mahwah, NJ: Erlbaum. Onwuegbuzie, Anthony J. Daniel, Larry Leech, Nancy L. Copyright 2007 by SAGE Publications, Inc.

11 APA Onwuegbuzie, Daniel, & Leech. (2007). Measures of central tendency. In N. J. Salkind (Ed.), Encyclopedia of measurement and statistics. Thousand Oaks, CA: Sage Publications. Retrieved from Chicago Onwuegbuzie, Daniel, and Leech. "Measures of Central Tendency." In Encyclopedia of Measurement and Statistics, edited by Neil J. Salkind. Sage Publications, Harvard Onwuegbuzie, Daniel and Leech. (2007). Measures of central tendency. In N.J. Salkind (Ed.), Encyclopedia of measurement and statistics. [Online]. Thousand Oaks: Sage Publications. Available from: [Accessed 10 July 2018]. MLA Onwuegbuzie, et al. "Measures of Central Tendency." Encyclopedia of Measurement and Statistics, edited by Neil J. Salkind, Sage Publications, 1st edition, Credo Reference,. Accessed 10 Jul

Measures of Central Tendency

Measures of Central Tendency Measures of Central Tendency Summary Measures Summary Measures Central Tendency Mean Median Mode Quartile Range Variance Variation Coefficient of Variation Standard Deviation Measures of Central Tendency

More information

Measures of Central Tendency:

Measures of Central Tendency: Measures of Central Tendency: Mean, Median, Mode CasperWendy Measures of Central Tendency Measure of central tendency provides a very convenient way of describing a set of scores with a single number that

More information

Midrange: mean of highest and lowest scores. easy to compute, rough estimate, rarely used

Midrange: mean of highest and lowest scores. easy to compute, rough estimate, rarely used Measures of Central Tendency Mode: most frequent score. best average for nominal data sometimes none or multiple modes in a sample bimodal or multimodal distributions indicate several groups included in

More information

Comparing Measures of Central Tendency *

Comparing Measures of Central Tendency * OpenStax-CNX module: m11011 1 Comparing Measures of Central Tendency * David Lane This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 1.0 1 Comparing Measures

More information

21 ST CENTURY LEARNING CURRICULUM FRAMEWORK PERFORMANCE RUBRICS FOR MATHEMATICS PRE-CALCULUS

21 ST CENTURY LEARNING CURRICULUM FRAMEWORK PERFORMANCE RUBRICS FOR MATHEMATICS PRE-CALCULUS 21 ST CENTURY LEARNING CURRICULUM FRAMEWORK PERFORMANCE RUBRICS FOR MATHEMATICS PRE-CALCULUS Table of Contents Functions... 2 Polynomials and Rational Functions... 3 Exponential Functions... 4 Logarithmic

More information

Chapter 3 Data Description

Chapter 3 Data Description Chapter 3 Data Description Section 3.1: Measures of Central Tendency Section 3.2: Measures of Variation Section 3.3: Measures of Position Section 3.1: Measures of Central Tendency Definition of Average

More information

Chapter 3. Data Description

Chapter 3. Data Description Chapter 3. Data Description Graphical Methods Pie chart It is used to display the percentage of the total number of measurements falling into each of the categories of the variable by partition a circle.

More information

CENTRAL TENDENCY (1 st Semester) Presented By Dr. Porinita Dutta Department of Statistics

CENTRAL TENDENCY (1 st Semester) Presented By Dr. Porinita Dutta Department of Statistics CENTRAL TENDENCY (1 st Semester) Presented By Dr. Porinita Dutta Department of Statistics OUTLINES Descriptive Statistics Introduction of central tendency Classification Characteristics Different measures

More information

200 participants [EUR] ( =60) 200 = 30% i.e. nearly a third of the phone bills are greater than 75 EUR

200 participants [EUR] ( =60) 200 = 30% i.e. nearly a third of the phone bills are greater than 75 EUR Ana Jerončić 200 participants [EUR] about half (71+37=108) 200 = 54% of the bills are small, i.e. less than 30 EUR (18+28+14=60) 200 = 30% i.e. nearly a third of the phone bills are greater than 75 EUR

More information

Math 120 Introduction to Statistics Mr. Toner s Lecture Notes 3.1 Measures of Central Tendency

Math 120 Introduction to Statistics Mr. Toner s Lecture Notes 3.1 Measures of Central Tendency Math 1 Introduction to Statistics Mr. Toner s Lecture Notes 3.1 Measures of Central Tendency The word average: is very ambiguous and can actually refer to the mean, median, mode or midrange. Notation:

More information

SESSION 5 Descriptive Statistics

SESSION 5 Descriptive Statistics SESSION 5 Descriptive Statistics Descriptive statistics are used to describe the basic features of the data in a study. They provide simple summaries about the sample and the measures. Together with simple

More information

Last Lecture. Distinguish Populations from Samples. Knowing different Sampling Techniques. Distinguish Parameters from Statistics

Last Lecture. Distinguish Populations from Samples. Knowing different Sampling Techniques. Distinguish Parameters from Statistics Last Lecture Distinguish Populations from Samples Importance of identifying a population and well chosen sample Knowing different Sampling Techniques Distinguish Parameters from Statistics Knowing different

More information

Lecture Slides. Elementary Statistics Twelfth Edition. by Mario F. Triola. and the Triola Statistics Series. Section 3.1- #

Lecture Slides. Elementary Statistics Twelfth Edition. by Mario F. Triola. and the Triola Statistics Series. Section 3.1- # Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series by Mario F. Triola Chapter 3 Statistics for Describing, Exploring, and Comparing Data 3-1 Review and Preview 3-2 Measures

More information

CHAPTER 4 VARIABILITY ANALYSES. Chapter 3 introduced the mode, median, and mean as tools for summarizing the

CHAPTER 4 VARIABILITY ANALYSES. Chapter 3 introduced the mode, median, and mean as tools for summarizing the CHAPTER 4 VARIABILITY ANALYSES Chapter 3 introduced the mode, median, and mean as tools for summarizing the information provided in an distribution of data. Measures of central tendency are often useful

More information

STAT 200 Chapter 1 Looking at Data - Distributions

STAT 200 Chapter 1 Looking at Data - Distributions STAT 200 Chapter 1 Looking at Data - Distributions What is Statistics? Statistics is a science that involves the design of studies, data collection, summarizing and analyzing the data, interpreting the

More information

2/2/2015 GEOGRAPHY 204: STATISTICAL PROBLEM SOLVING IN GEOGRAPHY MEASURES OF CENTRAL TENDENCY CHAPTER 3: DESCRIPTIVE STATISTICS AND GRAPHICS

2/2/2015 GEOGRAPHY 204: STATISTICAL PROBLEM SOLVING IN GEOGRAPHY MEASURES OF CENTRAL TENDENCY CHAPTER 3: DESCRIPTIVE STATISTICS AND GRAPHICS Spring 2015: Lembo GEOGRAPHY 204: STATISTICAL PROBLEM SOLVING IN GEOGRAPHY CHAPTER 3: DESCRIPTIVE STATISTICS AND GRAPHICS Descriptive statistics concise and easily understood summary of data set characteristics

More information

Chapter (3) Describing Data Numerical Measures Examples

Chapter (3) Describing Data Numerical Measures Examples Chapter (3) Describing Data Numerical Measures Examples Numeric Measurers Measures of Central Tendency Measures of Dispersion Arithmetic mean Mode Median Geometric Mean Range Variance &Standard deviation

More information

What is Statistics? Statistics is the science of understanding data and of making decisions in the face of variability and uncertainty.

What is Statistics? Statistics is the science of understanding data and of making decisions in the face of variability and uncertainty. What is Statistics? Statistics is the science of understanding data and of making decisions in the face of variability and uncertainty. Statistics is a field of study concerned with the data collection,

More information

MEASURES OF CENTRAL TENDENCY Shahbaz Baig

MEASURES OF CENTRAL TENDENCY Shahbaz Baig Indep Rev Jul-Sep 2017;19(7-9) MEASURES OF CENTRAL TENDENCY Shahbaz Baig IR-60 Abstract: The average is a value which expresses the central idea of the observations. It is a single value used to represent

More information

Chapter 3 Statistics for Describing, Exploring, and Comparing Data. Section 3-1: Overview. 3-2 Measures of Center. Definition. Key Concept.

Chapter 3 Statistics for Describing, Exploring, and Comparing Data. Section 3-1: Overview. 3-2 Measures of Center. Definition. Key Concept. Chapter 3 Statistics for Describing, Exploring, and Comparing Data 3-1 Overview 3- Measures of Center 3-3 Measures of Variation Section 3-1: Overview Descriptive Statistics summarize or describe the important

More information

Tastitsticsss? What s that? Principles of Biostatistics and Informatics. Variables, outcomes. Tastitsticsss? What s that?

Tastitsticsss? What s that? Principles of Biostatistics and Informatics. Variables, outcomes. Tastitsticsss? What s that? Tastitsticsss? What s that? Statistics describes random mass phanomenons. Principles of Biostatistics and Informatics nd Lecture: Descriptive Statistics 3 th September Dániel VERES Data Collecting (Sampling)

More information

Objective A: Mean, Median and Mode Three measures of central of tendency: the mean, the median, and the mode.

Objective A: Mean, Median and Mode Three measures of central of tendency: the mean, the median, and the mode. Chapter 3 Numerically Summarizing Data Chapter 3.1 Measures of Central Tendency Objective A: Mean, Median and Mode Three measures of central of tendency: the mean, the median, and the mode. A1. Mean The

More information

Chapter. Numerically Summarizing Data. Copyright 2013, 2010 and 2007 Pearson Education, Inc.

Chapter. Numerically Summarizing Data. Copyright 2013, 2010 and 2007 Pearson Education, Inc. Chapter 3 Numerically Summarizing Data Section 3.1 Measures of Central Tendency Objectives 1. Determine the arithmetic mean of a variable from raw data 2. Determine the median of a variable from raw data

More information

Chapter 1:Descriptive statistics

Chapter 1:Descriptive statistics Slide 1.1 Chapter 1:Descriptive statistics Descriptive statistics summarises a mass of information. We may use graphical and/or numerical methods Examples of the former are the bar chart and XY chart,

More information

Describing distributions with numbers

Describing distributions with numbers Describing distributions with numbers A large number or numerical methods are available for describing quantitative data sets. Most of these methods measure one of two data characteristics: The central

More information

Variables, distributions, and samples (cont.) Phil 12: Logic and Decision Making Fall 2010 UC San Diego 10/18/2010

Variables, distributions, and samples (cont.) Phil 12: Logic and Decision Making Fall 2010 UC San Diego 10/18/2010 Variables, distributions, and samples (cont.) Phil 12: Logic and Decision Making Fall 2010 UC San Diego 10/18/2010 Review Recording observations - Must extract that which is to be analyzed: coding systems,

More information

Describing distributions with numbers

Describing distributions with numbers Describing distributions with numbers A large number or numerical methods are available for describing quantitative data sets. Most of these methods measure one of two data characteristics: The central

More information

1 Measures of the Center of a Distribution

1 Measures of the Center of a Distribution 1 Measures of the Center of a Distribution Qualitative descriptions of the shape of a distribution are important and useful. But we will often desire the precision of numerical summaries as well. Two aspects

More information

After completing this chapter, you should be able to:

After completing this chapter, you should be able to: Chapter 2 Descriptive Statistics Chapter Goals After completing this chapter, you should be able to: Compute and interpret the mean, median, and mode for a set of data Find the range, variance, standard

More information

CIVL 7012/8012. Collection and Analysis of Information

CIVL 7012/8012. Collection and Analysis of Information CIVL 7012/8012 Collection and Analysis of Information Uncertainty in Engineering Statistics deals with the collection and analysis of data to solve real-world problems. Uncertainty is inherent in all real

More information

ADMS2320.com. We Make Stats Easy. Chapter 4. ADMS2320.com Tutorials Past Tests. Tutorial Length 1 Hour 45 Minutes

ADMS2320.com. We Make Stats Easy. Chapter 4. ADMS2320.com Tutorials Past Tests. Tutorial Length 1 Hour 45 Minutes We Make Stats Easy. Chapter 4 Tutorial Length 1 Hour 45 Minutes Tutorials Past Tests Chapter 4 Page 1 Chapter 4 Note The following topics will be covered in this chapter: Measures of central location Measures

More information

N= {1,2,3,4,5,6,7,8,9,10,11,...}

N= {1,2,3,4,5,6,7,8,9,10,11,...} 1.1: Integers and Order of Operations 1. Define the integers 2. Graph integers on a number line. 3. Using inequality symbols < and > 4. Find the absolute value of an integer 5. Perform operations with

More information

Chapter 1 - Lecture 3 Measures of Location

Chapter 1 - Lecture 3 Measures of Location Chapter 1 - Lecture 3 of Location August 31st, 2009 Chapter 1 - Lecture 3 of Location General Types of measures Median Skewness Chapter 1 - Lecture 3 of Location Outline General Types of measures What

More information

Ø Set of mutually exclusive categories. Ø Classify or categorize subject. Ø No meaningful order to categorization.

Ø Set of mutually exclusive categories. Ø Classify or categorize subject. Ø No meaningful order to categorization. Statistical Tools in Evaluation HPS 41 Dr. Joe G. Schmalfeldt Types of Scores Continuous Scores scores with a potentially infinite number of values. Discrete Scores scores limited to a specific number

More information

Describing Data with Numerical Measures

Describing Data with Numerical Measures 10.08.009 Describing Data with Numerical Measures 10.08.009 1 Graphical methods may not always be sufficient for describing data. Numerical measures can be created for both populations and samples. A parameter

More information

3.1 Measures of Central Tendency: Mode, Median and Mean. Average a single number that is used to describe the entire sample or population

3.1 Measures of Central Tendency: Mode, Median and Mean. Average a single number that is used to describe the entire sample or population . Measures of Central Tendency: Mode, Median and Mean Average a single number that is used to describe the entire sample or population. Mode a. Easiest to compute, but not too stable i. Changing just one

More information

Lecture 2. Descriptive Statistics: Measures of Center

Lecture 2. Descriptive Statistics: Measures of Center Lecture 2. Descriptive Statistics: Measures of Center Descriptive Statistics summarize or describe the important characteristics of a known set of data Inferential Statistics use sample data to make inferences

More information

Lecture 2 and Lecture 3

Lecture 2 and Lecture 3 Lecture 2 and Lecture 3 1 Lecture 2 and Lecture 3 We can describe distributions using 3 characteristics: shape, center and spread. These characteristics have been discussed since the foundation of statistics.

More information

A is one of the categories into which qualitative data can be classified.

A is one of the categories into which qualitative data can be classified. Chapter 2 Methods for Describing Sets of Data 2.1 Describing qualitative data Recall qualitative data: non-numerical or categorical data Basic definitions: A is one of the categories into which qualitative

More information

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1 Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 3 Statistics for Describing, Exploring, and Comparing Data 3-1 Overview 3-2 Measures

More information

Example 2. Given the data below, complete the chart:

Example 2. Given the data below, complete the chart: Statistics 2035 Quiz 1 Solutions Example 1. 2 64 150 150 2 128 150 2 256 150 8 8 Example 2. Given the data below, complete the chart: 52.4, 68.1, 66.5, 75.0, 60.5, 78.8, 63.5, 48.9, 81.3 n=9 The data is

More information

Introduction to Statistics

Introduction to Statistics Introduction to Statistics Data and Statistics Data consists of information coming from observations, counts, measurements, or responses. Statistics is the science of collecting, organizing, analyzing,

More information

Introduction to Statistics

Introduction to Statistics Introduction to Statistics By A.V. Vedpuriswar October 2, 2016 Introduction The word Statistics is derived from the Italian word stato, which means state. Statista refers to a person involved with the

More information

MEASURES OF LOCATION AND SPREAD

MEASURES OF LOCATION AND SPREAD MEASURES OF LOCATION AND SPREAD Frequency distributions and other methods of data summarization and presentation explained in the previous lectures provide a fairly detailed description of the data and

More information

Histograms allow a visual interpretation

Histograms allow a visual interpretation Chapter 4: Displaying and Summarizing i Quantitative Data s allow a visual interpretation of quantitative (numerical) data by indicating the number of data points that lie within a range of values, called

More information

CHAPTER 3. YAKUP ARI,Ph.D.(C)

CHAPTER 3. YAKUP ARI,Ph.D.(C) CHAPTER 3 YAKUP ARI,Ph.D.(C) math.stat.yeditepe@gmail.com REMEMBER!!! The purpose of descriptive statistics is to summarize and organize a set of scores. One of methods of descriptive statistics is to

More information

Unit 2. Describing Data: Numerical

Unit 2. Describing Data: Numerical Unit 2 Describing Data: Numerical Describing Data Numerically Describing Data Numerically Central Tendency Arithmetic Mean Median Mode Variation Range Interquartile Range Variance Standard Deviation Coefficient

More information

Statistics for Managers using Microsoft Excel 6 th Edition

Statistics for Managers using Microsoft Excel 6 th Edition Statistics for Managers using Microsoft Excel 6 th Edition Chapter 3 Numerical Descriptive Measures 3-1 Learning Objectives In this chapter, you learn: To describe the properties of central tendency, variation,

More information

Elementary Statistics

Elementary Statistics Elementary Statistics Q: What is data? Q: What does the data look like? Q: What conclusions can we draw from the data? Q: Where is the middle of the data? Q: Why is the spread of the data important? Q:

More information

2011 Pearson Education, Inc

2011 Pearson Education, Inc Statistics for Business and Economics Chapter 2 Methods for Describing Sets of Data Summary of Central Tendency Measures Measure Formula Description Mean x i / n Balance Point Median ( n +1) Middle Value

More information

3.1 Measure of Center

3.1 Measure of Center 3.1 Measure of Center Calculate the mean for a given data set Find the median, and describe why the median is sometimes preferable to the mean Find the mode of a data set Describe how skewness affects

More information

Topic-1 Describing Data with Numerical Measures

Topic-1 Describing Data with Numerical Measures Topic-1 Describing Data with Numerical Measures Central Tendency (Center) and Dispersion (Variability) Central tendency: measures of the degree to which scores are clustered around the mean of a distribution

More information

Chapter 3. Measuring data

Chapter 3. Measuring data Chapter 3 Measuring data 1 Measuring data versus presenting data We present data to help us draw meaning from it But pictures of data are subjective They re also not susceptible to rigorous inference Measuring

More information

Section 4. Quantitative Aptitude

Section 4. Quantitative Aptitude Section 4 Quantitative Aptitude You will get 35 questions from Quantitative Aptitude in the SBI Clerical 2016 Prelims examination and 50 questions in the Mains examination. One new feature of the 2016

More information

CURRICULUM MAP. Course/Subject: Honors Math I Grade: 10 Teacher: Davis. Month: September (19 instructional days)

CURRICULUM MAP. Course/Subject: Honors Math I Grade: 10 Teacher: Davis. Month: September (19 instructional days) Month: September (19 instructional days) Numbers, Number Systems and Number Relationships Standard 2.1.11.A: Use operations (e.g., opposite, reciprocal, absolute value, raising to a power, finding roots,

More information

Keystone Exams: Algebra

Keystone Exams: Algebra KeystoneExams:Algebra TheKeystoneGlossaryincludestermsanddefinitionsassociatedwiththeKeystoneAssessmentAnchorsand Eligible Content. The terms and definitions included in the glossary are intended to assist

More information

Algebra One Dictionary

Algebra One Dictionary Algebra One Dictionary Page 1 of 17 A Absolute Value - the distance between the number and 0 on a number line Algebraic Expression - An expression that contains numbers, operations and at least one variable.

More information

Descriptive Statistics-I. Dr Mahmoud Alhussami

Descriptive Statistics-I. Dr Mahmoud Alhussami Descriptive Statistics-I Dr Mahmoud Alhussami Biostatistics What is the biostatistics? A branch of applied math. that deals with collecting, organizing and interpreting data using well-defined procedures.

More information

Lecture 1: Descriptive Statistics

Lecture 1: Descriptive Statistics Lecture 1: Descriptive Statistics MSU-STT-351-Sum 15 (P. Vellaisamy: MSU-STT-351-Sum 15) Probability & Statistics for Engineers 1 / 56 Contents 1 Introduction 2 Branches of Statistics Descriptive Statistics

More information

Chapter 3. Data Description. McGraw-Hill, Bluman, 7 th ed, Chapter 3

Chapter 3. Data Description. McGraw-Hill, Bluman, 7 th ed, Chapter 3 Chapter 3 Data Description McGraw-Hill, Bluman, 7 th ed, Chapter 3 1 Chapter 3 Overview Introduction 3-1 Measures of Central Tendency 3-2 Measures of Variation 3-3 Measures of Position 3-4 Exploratory

More information

Chapter. Numerically Summarizing Data Pearson Prentice Hall. All rights reserved

Chapter. Numerically Summarizing Data Pearson Prentice Hall. All rights reserved Chapter 3 Numerically Summarizing Data Section 3.1 Measures of Central Tendency Objectives 1. Determine the arithmetic mean of a variable from raw data 2. Determine the median of a variable from raw data

More information

Further Mathematics 2018 CORE: Data analysis Chapter 2 Summarising numerical data

Further Mathematics 2018 CORE: Data analysis Chapter 2 Summarising numerical data Chapter 2: Summarising numerical data Further Mathematics 2018 CORE: Data analysis Chapter 2 Summarising numerical data Extract from Study Design Key knowledge Types of data: categorical (nominal and ordinal)

More information

Algebra II. A2.1.1 Recognize and graph various types of functions, including polynomial, rational, and algebraic functions.

Algebra II. A2.1.1 Recognize and graph various types of functions, including polynomial, rational, and algebraic functions. Standard 1: Relations and Functions Students graph relations and functions and find zeros. They use function notation and combine functions by composition. They interpret functions in given situations.

More information

Lecture 2. Quantitative variables. There are three main graphical methods for describing, summarizing, and detecting patterns in quantitative data:

Lecture 2. Quantitative variables. There are three main graphical methods for describing, summarizing, and detecting patterns in quantitative data: Lecture 2 Quantitative variables There are three main graphical methods for describing, summarizing, and detecting patterns in quantitative data: Stemplot (stem-and-leaf plot) Histogram Dot plot Stemplots

More information

Review for Exam #1. Chapter 1. The Nature of Data. Definitions. Population. Sample. Quantitative data. Qualitative (attribute) data

Review for Exam #1. Chapter 1. The Nature of Data. Definitions. Population. Sample. Quantitative data. Qualitative (attribute) data Review for Exam #1 1 Chapter 1 Population the complete collection of elements (scores, people, measurements, etc.) to be studied Sample a subcollection of elements drawn from a population 11 The Nature

More information

The empirical ( ) rule

The empirical ( ) rule The empirical (68-95-99.7) rule With a bell shaped distribution, about 68% of the data fall within a distance of 1 standard deviation from the mean. 95% fall within 2 standard deviations of the mean. 99.7%

More information

Section 3.2 Measures of Central Tendency

Section 3.2 Measures of Central Tendency Section 3.2 Measures of Central Tendency 1 of 149 Section 3.2 Objectives Determine the mean, median, and mode of a population and of a sample Determine the weighted mean of a data set and the mean of a

More information

Sampling (Statistics)

Sampling (Statistics) Systems & Biomedical Engineering Department SBE 304: Bio-Statistics Random Sampling and Sampling Distributions Dr. Ayman Eldeib Fall 2018 Sampling (Statistics) Sampling is that part of statistical practice

More information

Unit 2: Numerical Descriptive Measures

Unit 2: Numerical Descriptive Measures Unit 2: Numerical Descriptive Measures Summation Notation Measures of Central Tendency Measures of Dispersion Chebyshev's Rule Empirical Rule Measures of Relative Standing Box Plots z scores Jan 28 10:48

More information

MEASURES OF CENTRAL TENDENCY

MEASURES OF CENTRAL TENDENCY MAT001-Statistics for Engineers MEASURES OF CENTRAL TENDENCY DESCRIPTIVE STATISTICAL MEASURES Graphical representation summarizes information in the data. In addition to the diagrammatic and graphic representations

More information

Index I-1. in one variable, solution set of, 474 solving by factoring, 473 cubic function definition, 394 graphs of, 394 x-intercepts on, 474

Index I-1. in one variable, solution set of, 474 solving by factoring, 473 cubic function definition, 394 graphs of, 394 x-intercepts on, 474 Index A Absolute value explanation of, 40, 81 82 of slope of lines, 453 addition applications involving, 43 associative law for, 506 508, 570 commutative law for, 238, 505 509, 570 English phrases for,

More information

Chapter Four. Numerical Descriptive Techniques. Range, Standard Deviation, Variance, Coefficient of Variation

Chapter Four. Numerical Descriptive Techniques. Range, Standard Deviation, Variance, Coefficient of Variation Chapter Four Numerical Descriptive Techniques 4.1 Numerical Descriptive Techniques Measures of Central Location Mean, Median, Mode Measures of Variability Range, Standard Deviation, Variance, Coefficient

More information

Class 11 Maths Chapter 15. Statistics

Class 11 Maths Chapter 15. Statistics 1 P a g e Class 11 Maths Chapter 15. Statistics Statistics is the Science of collection, organization, presentation, analysis and interpretation of the numerical data. Useful Terms 1. Limit of the Class

More information

Module 1. Identify parts of an expression using vocabulary such as term, equation, inequality

Module 1. Identify parts of an expression using vocabulary such as term, equation, inequality Common Core Standards Major Topic Key Skills Chapters Key Vocabulary Essential Questions Module 1 Pre- Requisites Skills: Students need to know how to add, subtract, multiply and divide. Students need

More information

Ø Set of mutually exclusive categories. Ø Classify or categorize subject. Ø No meaningful order to categorization.

Ø Set of mutually exclusive categories. Ø Classify or categorize subject. Ø No meaningful order to categorization. Statistical Tools in Evaluation HPS 41 Fall 213 Dr. Joe G. Schmalfeldt Types of Scores Continuous Scores scores with a potentially infinite number of values. Discrete Scores scores limited to a specific

More information

Evaluate algebraic expressions for given values of the variables.

Evaluate algebraic expressions for given values of the variables. Algebra I Unit Lesson Title Lesson Objectives 1 FOUNDATIONS OF ALGEBRA Variables and Expressions Exponents and Order of Operations Identify a variable expression and its components: variable, coefficient,

More information

Z score indicates how far a raw score deviates from the sample mean in SD units. score Mean % Lower Bound

Z score indicates how far a raw score deviates from the sample mean in SD units. score Mean % Lower Bound 1 EDUR 8131 Chat 3 Notes 2 Normal Distribution and Standard Scores Questions Standard Scores: Z score Z = (X M) / SD Z = deviation score divided by standard deviation Z score indicates how far a raw score

More information

Measures of Central Tendency and their dispersion and applications. Acknowledgement: Dr Muslima Ejaz

Measures of Central Tendency and their dispersion and applications. Acknowledgement: Dr Muslima Ejaz Measures of Central Tendency and their dispersion and applications Acknowledgement: Dr Muslima Ejaz LEARNING OBJECTIVES: Compute and distinguish between the uses of measures of central tendency: mean,

More information

SUMMARIZING MEASURED DATA. Gaia Maselli

SUMMARIZING MEASURED DATA. Gaia Maselli SUMMARIZING MEASURED DATA Gaia Maselli maselli@di.uniroma1.it Computer Network Performance 2 Overview Basic concepts Summarizing measured data Summarizing data by a single number Summarizing variability

More information

Measures of center. The mean The mean of a distribution is the arithmetic average of the observations:

Measures of center. The mean The mean of a distribution is the arithmetic average of the observations: Measures of center The mean The mean of a distribution is the arithmetic average of the observations: x = x 1 + + x n n n = 1 x i n i=1 The median The median is the midpoint of a distribution: the number

More information

Overview of Dispersion. Standard. Deviation

Overview of Dispersion. Standard. Deviation 15.30 STATISTICS UNIT II: DISPERSION After reading this chapter, students will be able to understand: LEARNING OBJECTIVES To understand different measures of Dispersion i.e Range, Quartile Deviation, Mean

More information

DEPARTMENT OF QUANTITATIVE METHODS & INFORMATION SYSTEMS QM 120. Spring 2008

DEPARTMENT OF QUANTITATIVE METHODS & INFORMATION SYSTEMS QM 120. Spring 2008 DEPARTMENT OF QUANTITATIVE METHODS & INFORMATION SYSTEMS Introduction to Business Statistics QM 120 Chapter 3 Spring 2008 Measures of central tendency for ungrouped data 2 Graphs are very helpful to describe

More information

Chapter 4. Displaying and Summarizing. Quantitative Data

Chapter 4. Displaying and Summarizing. Quantitative Data STAT 141 Introduction to Statistics Chapter 4 Displaying and Summarizing Quantitative Data Bin Zou (bzou@ualberta.ca) STAT 141 University of Alberta Winter 2015 1 / 31 4.1 Histograms 1 We divide the range

More information

Statistics in medicine

Statistics in medicine Statistics in medicine Lecture 1- part 1: Describing variation, and graphical presentation Outline Sources of variation Types of variables Fatma Shebl, MD, MS, MPH, PhD Assistant Professor Chronic Disease

More information

1.0 Continuous Distributions. 5.0 Shapes of Distributions. 6.0 The Normal Curve. 7.0 Discrete Distributions. 8.0 Tolerances. 11.

1.0 Continuous Distributions. 5.0 Shapes of Distributions. 6.0 The Normal Curve. 7.0 Discrete Distributions. 8.0 Tolerances. 11. Chapter 4 Statistics 45 CHAPTER 4 BASIC QUALITY CONCEPTS 1.0 Continuous Distributions.0 Measures of Central Tendency 3.0 Measures of Spread or Dispersion 4.0 Histograms and Frequency Distributions 5.0

More information

Unit Two Descriptive Biostatistics. Dr Mahmoud Alhussami

Unit Two Descriptive Biostatistics. Dr Mahmoud Alhussami Unit Two Descriptive Biostatistics Dr Mahmoud Alhussami Descriptive Biostatistics The best way to work with data is to summarize and organize them. Numbers that have not been summarized and organized are

More information

Exploring, summarizing and presenting data. Berghold, IMI, MUG

Exploring, summarizing and presenting data. Berghold, IMI, MUG Exploring, summarizing and presenting data Example Patient Nr Gender Age Weight Height PAVK-Grade W alking Distance Physical Functioning Scale Total Cholesterol Triglycerides 01 m 65 90 185 II b 200 70

More information

Author : Dr. Pushpinder Kaur. Educational Statistics: Mean Median and Mode

Author : Dr. Pushpinder Kaur. Educational Statistics: Mean Median and Mode B.ED. PART- II ACADEMIC SESSION : 2017-2018 PAPER XVIII Assessment for Learning Lesson No. 8 Author : Dr. Pushpinder Kaur Educational Statistics: Mean Median and Mode MEAN : The mean is the average value

More information

Range The range is the simplest of the three measures and is defined now.

Range The range is the simplest of the three measures and is defined now. Measures of Variation EXAMPLE A testing lab wishes to test two experimental brands of outdoor paint to see how long each will last before fading. The testing lab makes 6 gallons of each paint to test.

More information

Preliminary Statistics course. Lecture 1: Descriptive Statistics

Preliminary Statistics course. Lecture 1: Descriptive Statistics Preliminary Statistics course Lecture 1: Descriptive Statistics Rory Macqueen (rm43@soas.ac.uk), September 2015 Organisational Sessions: 16-21 Sep. 10.00-13.00, V111 22-23 Sep. 15.00-18.00, V111 24 Sep.

More information

Algebra 2 Secondary Mathematics Instructional Guide

Algebra 2 Secondary Mathematics Instructional Guide Algebra 2 Secondary Mathematics Instructional Guide 2009-2010 ALGEBRA 2AB (Grade 9, 10 or 11) Prerequisite: Algebra 1AB or Geometry AB 310303 Algebra 2A 310304 Algebra 2B COURSE DESCRIPTION Los Angeles

More information

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics. College Algebra for STEM

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics. College Algebra for STEM Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics College Algebra for STEM Marcel B. Finan c All Rights Reserved 2015 Edition To my children Amin & Nadia Preface From

More information

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages:

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages: Glossary The ISI glossary of statistical terms provides definitions in a number of different languages: http://isi.cbs.nl/glossary/index.htm Adjusted r 2 Adjusted R squared measures the proportion of the

More information

Performance of fourth-grade students on an agility test

Performance of fourth-grade students on an agility test Starter Ch. 5 2005 #1a CW Ch. 4: Regression L1 L2 87 88 84 86 83 73 81 67 78 83 65 80 50 78 78? 93? 86? Create a scatterplot Find the equation of the regression line Predict the scores Chapter 5: Understanding

More information

CHEMISTRY - BURDGE-ATOMS FIRST 3E BONUS: MATHEMATICAL OPERATIONS AND FUNCTIONS

CHEMISTRY - BURDGE-ATOMS FIRST 3E BONUS: MATHEMATICAL OPERATIONS AND FUNCTIONS !! www.clutchprep.com CONCEPT: MULTIPLICATION AND DIVISION When you multiply values in scientific notation you the coefficients and the exponents. (A 10 x ) (B 10 y ) = When you divide values in scientific

More information

CHAPTER 2: Describing Distributions with Numbers

CHAPTER 2: Describing Distributions with Numbers CHAPTER 2: Describing Distributions with Numbers The Basic Practice of Statistics 6 th Edition Moore / Notz / Fligner Lecture PowerPoint Slides Chapter 2 Concepts 2 Measuring Center: Mean and Median Measuring

More information

Measures of Central Tendency

Measures of Central Tendency Statistics It is the science of assembling, analyzing, characterizing, and interpreting the collection of data. The general characterized of data: 1. Data shows a tendency to concentrate at certain values:

More information

Postal Test Paper_P4_Foundation_Syllabus 2016_Set 1 Paper 4 - Fundamentals of Business Mathematics and Statistics

Postal Test Paper_P4_Foundation_Syllabus 2016_Set 1 Paper 4 - Fundamentals of Business Mathematics and Statistics Paper 4 - Fundamentals of Business Mathematics and Statistics Academics Department, The Institute of Cost Accountants of India (Statutory Body under an Act of Parliament) Page 1 Paper 2 - Fundamentals

More information

Measurement Uncertainties

Measurement Uncertainties Measurement Uncertainties Introduction We all intuitively know that no experimental measurement can be "perfect''. It is possible to make this idea quantitative. It can be stated this way: the result of

More information

psychological statistics

psychological statistics psychological statistics B Sc. Counselling Psychology 011 Admission onwards III SEMESTER COMPLEMENTARY COURSE UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CALICUT UNIVERSITY.P.O., MALAPPURAM, KERALA,

More information