Chapter 7: Impulse and Momentum Tuesday, September 17, 2013

Size: px
Start display at page:

Download "Chapter 7: Impulse and Momentum Tuesday, September 17, 2013"

Transcription

1 Chapter 7: Impulse and Momentum Tuesday, September 17, :00 PM In the previous chapter we discussed energy, and in this chapter we discuss momentum. The concepts of momentum and energy provide alternative perspectives to Newton's laws of motion and pathways into deeper understandings of Newtonian mechanics. The basic understanding of Newton's second law that we have discussed so far is that the acceleration of an object is caused by the net force acting on it. However, there are situations where it is difficult to measure the force acting on an object, and so therefore it's difficult to apply Newton's second law. For example, the force may act for only a very short time, or over a very short distance, or both. This is the case in collisions, for example; kicking a ball, hitting a baseball with a bat, a slap shot in hockey, hitting a tennis ball with a racquet, a car collision, etc. In such situations, it's typical that the force varies dramatically over a short time; this is much more complicated than the situations we've dealt with so far, where we often assumed that the force acting is constant (which is a reasonable approximation in some situations). Ch7Preliminary Page 1

2 How then do we analyze such situations? Well, we can think about averaging the force to make things simple. But should we average the force over time or over distance? Each of the ideas has advantages and useful properties; averaging the force over time leads to the concepts of impulse and momentum, whereas averaging the force over distance leads to the concepts of work and energy, as we studied in the previous chapter. Newton's second law of motion can be expressed in terms of these new concepts in the following ways: Impulse = change in momentum (impulse-momentum theorem) Work = change in energy (work-energy theorem) We'll see that there is a conservation principle for momentum, just as there is a conservation principle for energy. Conservation principles are very useful in physics; the world is a very complicated place, and so if you can identify some quantities that are constant throughout the complicated processes that you are analyzing, then it gives you something to hang on to. Conservation principles are useful in solving physics problems, and often allow one to solve problems more simply and more directly than using Newton's laws of motion by themselves. If you dig deeper into things, you'll find that conservation principles are a consequence of certain somewhat abstract symmetry principles. For example, the fact that momentum is conserved is a consequence of the fact that the fundamental laws of physics are invariant with respect to spatial translations. In other words, if you do an experiment here in St. Catharines, and then slid your apparatus over to Buffalo, or Toronto, or anywhere, then Ch7Preliminary Page 2

3 you will find that the experimental results are the same. This is a very deep connection between underlying symmetries of the universe and conservation principles; our deepest understandings of the universe are currently expressed in these terms of symmetry and invariance. Other examples: Conservation of energy is a consequence of invariance with respect to time translations, and conservation of angular momentum is a consequence of invariance with respect to spatial rotations. This is the story in Newtonian mechanics, but similar, and similarly deep (some would say more fundamental) symmetry principles apply in quantum mechanics, too, and you'll encounter them eventually if you continue your studies in this direction. Back to the story of how to cope with forces when they vary wildly in magnitude over very short times or over very short distances. Ok, let's now explore the effect of impulse on motion. Recall from above that the definition of impulse is the average force acting on an object multiplied by the time interval over which the force acts: How does impulse affect motion? Consider the following calculation: This calculation suggests that the quantity mv may be important, and so it's worthwhile giving it a name; we call it momentum. The relation that we've just derived above, which describes the effect of impulse on motion, is called the impulse-momentum theorem. Ch7Preliminary Page 3

4 examples: tennis, baseball, hockey, catching an egg or water-balloon or a hard-thrown ball, air-bag in a car Example: A baseball of mass 150 g is thrown towards home plate with a speed of 100 km/h. The batter hits the ball with an impulse of 10 N s so that it reverses its motion. Determine the speed at which the ball leaves the bat. Ch7Preliminary Page 4

5 Example: A tennis ball of mass 90 g arrives at your racquet with a speed of 80 km/h and you hit it directly back at a speed of 60 km/h. (a) Determine the impulse that you exert on the ball. (b) Determine the magnitude of the average force that you exert on the ball if it is in contact with your racquet for 14 ms. Solution: Choose "towards the right" to be the positive direction, and therefore "towards the left" is the negative direction. Ch7Preliminary Page 5

6 Principle of conservation of momentum Ch7Preliminary Page 6

7 Consider the impulse-momentum theorem, If it happens that the impulse is zero, then the change in momentum will also be zero. In other words, if the impulse acting on a system is zero, then the momentum of the system is conserved. Yet another way to say this is that if the net external force on a system is zero, then the total momentum of the system is conserved. Examples: Person sitting on a chair; what are the external and internal forces acting on the person-chair system? Car accelerating forwards; what are the external and internal forces acting on the driver-car system? Hockey stick hitting a puck; what are the external and internal forces acting on the puck? The principle of conservation of momentum is a generalization of Newton's third law of motion. That is, the principle of conservation of momentum is considered to be more fundamental than Newton's third law of motion, and furthermore Newton's third law of motion can be derived from the principle of conservation of momentum. Furthermore, the principle of conservation of momentum is more general than Newton's third law of motion because the former applies to light and fields as well as particles, whereas the latter applies only to particles. Furthermore, because force is the derivative of momentum, one can get by without the force concept as long as one uses momentum. This is true to an even greater extent in more advanced approaches to physics (quantum mechanics, relativity, field theories) where force is not very useful, but momentum is extremely useful. The principle of conservation of momentum is useful in analyzing collisions, explosions, etc. Consider the following example. Example: A car of mass 1000 kg travelling east at 40 km/h collides with a car of mass 1500 kg going west at 50 km/h in a completely inelastic collision (i.e. they stick together). Determine the velocity of the car/car combination immediately after the collision. Ch7Preliminary Page 7

8 Ch7Preliminary Page 8

9 The velocity of the two cars together after the collision is 14 km/h to the West. I wonder if kinetic energy is conserved in the previous problem? Let's check this out: Kinetic energy is not conserved; since the gravitational potential energy does not change for the cars (the collision takes place on level ground) we conclude that mechanical energy is not conserved in the collision. What happened to the lost kinetic energy? Where did it go? Collisions in two dimensions We must be careful to recognize that momentum is a vector, not a scalar. In situations where momentum is conserved, carefully note that this means that each component of the momentum is separately conserved. This is illustrated in the following example. Example: A truck of mass 2000 kg travelling east at 60 km/h collides with a car of mass 1000 kg going north at 80 km/h in a completely inelastic collision (i.e. they stick together). Determine the velocity of the car/truck combination immediately after the collision. Ch7Preliminary Page 9

10 Solution: This is a two-dimensional problem, so we'll adopt the usual math-class conventions: Ch7Preliminary Page 10

11 This is the final velocity of the two cars together. If you prefer to express the velocity in terms of its magnitude and direction, then: Thus, the final velocity of the car-truck combination is 48.1 km/h at an angle of 33.7 degrees North of East. I wonder if kinetic energy is conserved in the previous problem? Check it out! Ch7Preliminary Page 11

12 Example: A rubber ball of mass 5 kg travelling to the right at 10 m/s collides with a ball of mass 10 kg going to the left at 4 m/s. After the collision, the first ball moves at a speed of 2 m/s to the left. Determine the velocity of the second ball immediately after the collision. Thus, the velocity of the second ball after the collision is 2 m/s to the right. Is kinetic energy conserved in the previous example? Check it out! Elastic and inelastic collisions Ch7Preliminary Page 12

13 In many every-day collision problems, kinetic energy is not conserved; you've seen this in the past few examples. However, there are some collisions where kinetic energy is nearly conserved; a collision of two billiard balls is an example. Even in this situation, you can understand that kinetic energy is not exactly conserved, because there is a little sound when the billiard balls collide, and that sound carries energy, which means that the final kinetic energy is very slightly less than the initial kinetic energy. In the ideal situation where the kinetic energy is exactly conserved in a collision, and we do know that physics textbooks often deal with ideal situations in order to keep things simple, the collision is called an elastic collision. A collision in which kinetic energy is not conserved is called inelastic. The following example illustrates an elastic collision. Example: A block of mass 2.4 kg moving to the right with a speed of 5.6 m/s collides head-on and elastically with a block of mass 1.6 kg that is initially at rest. Determine the velocities of the blocks immediately after the collision. Solution: The "head-on" phrase signifies that the motions take place in a single straight line, both before and after the collision. The fact that the collision is elastic means that kinetic energy is conserved. Choose "right" to be the positive direction. What do you think will happen after the collision, qualitatively? By conservation of momentum, By conservation of kinetic energy, Ch7Preliminary Page 13

14 By multiplying each term in the second equation by 2, and using the given value of the velocity of the second block before the collision, these two equations reduce to Ch7Preliminary Page 14

15 Do these expressions for the velocities of the blocks after the collision make sense? Can you check special cases? Do they correspond to what you've experienced at the billiards table, or at the bowling alley? To complete our problems, substitute the given values to obtain: Do these results make sense? Example: A block of mass m moving to the right with a speed of 4.3 m/s collides head-on and elastically with a block of mass 2m moving to the left with a speed of 2.9 m/s. Determine the velocities of the blocks immediately after the collision. Solution: Ch7Preliminary Page 15

16 Ch7Preliminary Page 16

17 Ch7Preliminary Page 17

18 Another example of a collision in two dimensions Example: A billiards ball moves with a velocity of v B to the right and strikes a stationary billiards ball. After the elastic collision, one of the billiards balls moves with speed v 1 at an angle of 30 degrees from the horizontal line, and the second ball moves with speed v 2 at some other angle. Determine expressions for v 1, v 2, and the unknown angle in terms of v B. Solution: Remember that momentum is a vector quantity. In this situation, momentum is conserved; this means that each component of the total momentum is conserved. Because the collision is elastic, kinetic energy is also conserved. Also, we'll assume that both balls have the same mass. Conservation of momentum in the x-direction: Conservation of momentum in the y-direction: Conservation of kinetic energy: Ch7Preliminary Page 18

19 We now have three independent equations for the three unknowns (the speeds of the two balls after the collision and the unknown angle), so the problem is solvable. The angle seems to be the biggest pain, so let's eliminate the angle as a first step to solving the equations. A nice trick, worth remembering as a standard trick to try in these types of situations, is to solve Equation 1 for cosine theta, solve Equation 2 for sine theta, and then square the two expressions and add them to eliminate theta: Ch7Preliminary Page 19

20 There are two possible solutions here. The first solution, v 1 = 0, leads to theta = 0 and v 2 = v B. This solution represents the situation that the incident ball misses the stationary ball, and just continues on with its original speed. This is not interesting. (Although it is interesting that the solutions of the system of equations includes this non-interesting possibility.) The interesting solution is Substituting the expression for v 1 into Equation 3, we obtain an expression for v 2 : Substituting the expressions for v 1 and v 2 into Equation 2, we can solve for the angle theta: Ch7Preliminary Page 20

21 One can't help but notice that the sum of the two angles in the previous example is a right angle, a fact that will be familiar to all of you billiards players out there. It's an exercise in algebra to adapt the method of the previous example to prove that the two billiards balls always leave the collision so that the angle between them is a right angle. (Of course, we assume that the balls have the same mass and that the collision is elastic.) Give it a try; a little algebra is good for you! Centre of Mass The world is a very complicated place, as you know, with enormously complicated processes going on. In this course, when we analyze the motion of a tossed baseball, we don't consider the motion of each individual atom in the baseball, but we rather treat the baseball as a whole. This deserves a little more discussion. The motion of each individual atom in the baseball is quite complicated, and analyzing the motions of all of the atoms in a baseball is quite a long way beyond our capability. There are too many atoms, their motions are too complex, and we have no way of measuring all of them to see if our analysis would be correct, if it were even possible to carry out such an analysis. The atoms are vibrating, jiggling, etc., in an extremely complex way. Nevertheless, all of the complications are not very important, in a way. If all we want to do is to figure out where the baseball will land when we throw it, and that is the kind of thing that we want to do in this course, then we don't need to consider all the complicated individual motions of each atom in the baseball. We can quite successfully treat the motion of the baseball as a whole. This is what we did starting back in Chapters 2 and 3, and it's what we continue to do: we treat the extended object (baseball in this case) as if all of its mass were concentrated at some "average" location; this average location is called the centre of mass of the object. Ch7Preliminary Page 21

22 For a an object of uniform density, the centre of mass of the object is at its geometrical centre. If the density is not uniform, then the centre of mass will be offset from the geometrical centre towards the part of the object where the mass is more concentrated. The centre of mass of an object need not lie within the object itself, which leads to some interesting tricks. Consider a doughnut of uniform density; the centre of mass is at the geometrical centre, right in the centre of the hole: High-jumpers have figured out long ago how to make use of the fact that the centre of mass of a human body is not within the body when the body is contorted into a strange configuration. They have figured out how to jump over a bar while their centre of mass actually passes below the bar! Such efforts culminated in the invention of a technique called the Fosbury Flop after Dick Fosbury, who used it to win the gold medal at the 1968 Olympics. The following shows some pretty videos of a high-jumper doing the Fosbury Flop, over and over and over again; however, don't listen to everything they say about science (for example, no, power is not force divided by time), but what they do say about the rotation of the body at take-off is critical, and notice how the jumper arches his back and places his arms and legs. Formula for centre of mass of several "point" objects: Ch7Preliminary Page 22

23 Formula for centre of mass of several "point" objects: For continuous mass distributions, one can use a similar formula involving integration. You'll learn how to do this if you take MATH 1P02 or MATH 1P05. Example: Determine the centre of mass for the system of three identical coins. Ch7Preliminary Page 23

24 Example: Determine the centre of mass of the two bars considered as one unit. Strategy: Pretend that the mass of each bar is concentrated at its geometrical centre. If there are no external forces on a system, then momentum is conserved, which implies that the velocity of the centre of mass of the system is also conserved. You can see that this is true as follows; we'll derive the relation for the x-component, and the arguments for the y- Ch7Preliminary Page 24

25 component and z-component of momentum are the same. Start with the relation for the x-component of the centre of mass, assuming that there are three point-objects undergoing a collision (the argument is the same no matter how many point objects there are): Now divide each term of the previous equation by a suitable time interval, to obtain: The right side of the previous equation represents the x-component of the total momentum of the three particles. If there are no external forces acting on the system, then the quantity on the right side of the previous equation is conserved, because momentum is conserved. This means that the quantity on the left side of the equation is also conserved. If we extend the argument to the other two components of momentum, this means that if no external forces are acting on the system, the velocity of the centre of mass of the system is constant (i.e., conserved). You can also think of the quantity on the left side of the previous equation as the x-component of the centre of mass momentum of the system of three particles. This kind of reasoning justifies treating a baseball as if all of its mass is concentrated at its centre of mass when solving kinematics problems, doesn't it? (Well, the baseball is a continuous mass distribution, so we really should use calculus here, but you get the idea, I hope.) Ch7Preliminary Page 25

26 Two fun devices Galileo's cannon In class we dropped a basketball with a tennis ball sitting on top of it. Can you analyze the demonstration to explain why the tennis ball shoots up with such a high speed? What simplifying assumptions are reasonable in your calculation? Newton's cradle This was a popular "executive" toy a few decades ago. Here's a Newton's cradle in action: Ch7Preliminary Page 26

Chapter 7: Impulse and Momentum Tuesday, September 17, 2013

Chapter 7: Impulse and Momentum Tuesday, September 17, 2013 Chapter 7: Impulse and Momentum Tuesday, September 17, 2013 10:00 PM In the previous chapter we discussed energy, and in this chapter we discuss momentum. The concepts of momentum and energy provide alternative

More information

Chapter 9: Momentum Tuesday, September 17, :00 PM

Chapter 9: Momentum Tuesday, September 17, :00 PM Ch9 Page 1 Chapter 9: Momentum Tuesday, September 17, 2013 10:00 PM In this chapter and the next one, we'll explore alternative perspectives to Newton's second law. The concepts of momentum and energy

More information

Momentum and Impulse

Momentum and Impulse Momentum and Impulse Momentum All objects have mass; so if an object is moving, then it has momentum - it has its mass in motion. The amount of momentum which an object has is dependent upon two variables:

More information

Notes Momentum. Momentum and Impulse. - The product (multiplication) of an objects mass and velocity is called momentum.

Notes Momentum. Momentum and Impulse. - The product (multiplication) of an objects mass and velocity is called momentum. Notes Momentum Momentum and Impulse - The product (multiplication) of an objects mass and velocity is called momentum. Momentum is the energy of motion of an object. Momentum is represented by the letter.

More information

Physics Lecture 12 Momentum & Collisions

Physics Lecture 12 Momentum & Collisions Physics 101 - Lecture 12 Momentum & Collisions Momentum is another quantity (like energy) that is tremendously useful because it s often conserved. In fact, there are two conserved quantities that we can

More information

Phys101 Lectures 14, 15, 16 Momentum and Collisions

Phys101 Lectures 14, 15, 16 Momentum and Collisions Phys101 Lectures 14, 15, 16 Momentum and Collisions Key points: Momentum and impulse Condition for conservation of momentum and why How to solve collision problems Centre of mass Ref: 9-1,2,3,4,5,6,7,8,9.

More information

7-6 Inelastic Collisions

7-6 Inelastic Collisions 7-6 Inelastic Collisions With inelastic collisions, some of the initial kinetic energy is lost to thermal or potential energy. It may also be gained during explosions, as there is the addition of chemical

More information

AP Physics 1 Momentum

AP Physics 1 Momentum Slide 1 / 133 Slide 2 / 133 AP Physics 1 Momentum 2015-12-02 www.njctl.org Slide 3 / 133 Table of Contents Click on the topic to go to that section Momentum Impulse-Momentum Equation The Momentum of a

More information

Conservation of Momentum

Conservation of Momentum Conservation of Momentum Law of Conservation of Momentum The sum of the momenta before a collision equal the sum of the momenta after the collision in an isolated system (=no external forces acting).

More information

Newton s Third Law KEY IDEAS READING TOOLBOX. As you read this section keep these questions in mind: Name Class Date

Newton s Third Law KEY IDEAS READING TOOLBOX. As you read this section keep these questions in mind: Name Class Date CHAPTER 12 Forces 3 SECTION KEY IDEAS Newton s Third Law As you read this section keep these questions in mind: What happens when one object exerts a force on another object? How can you calculate the

More information

Chapter 9 Linear Momentum

Chapter 9 Linear Momentum Chapter 9 Linear Momentum 7 12/7 16/7 Units of Chapter 9 Momentum, Impulse and Collisions Momentum and Impulse Define momentum Force and rate of change of momentum; resultant force as rate of change of

More information

MOMENTUM. The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard.

MOMENTUM. The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard. MOMENTUM The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard General Physics How hard would a puck have to be shot to be able to knock

More information

UNIT 2G. Momentum & It s Conservation

UNIT 2G. Momentum & It s Conservation Name: Date:_ UNIT 2G Momentum & It s Conservation Momentum & Newton s 2 nd Law of Motion Newton s 2 nd Law states When an unbalanced force acts upon a body, it accelerates that body in the direction of

More information

5.1 Momentum and Impulse

5.1 Momentum and Impulse Figure 1 When you hit a ball with a bat, the resulting collision has an effect on both the ball and the bat. linear momentum (p > ) a quantity that describes the motion of an object travelling in a straight

More information

Momentum and Impulse Practice Multiple Choice

Momentum and Impulse Practice Multiple Choice Choose the alternative that best answers the question and record your answer on the Scantron sheet provided 1. A ball of putty is thrown at a wall and sticks to its surface. Which of the following quantities

More information

1 kg. 10,000 kg. 1 Page. Momentum is a vector so it has a magnitude and a velocity. Its magnitude is the product of its mass and velocity, p = mv.

1 kg. 10,000 kg. 1 Page. Momentum is a vector so it has a magnitude and a velocity. Its magnitude is the product of its mass and velocity, p = mv. Momentum The momentum of a single object is simply equal to the product of its mass and its velocity. The symbol for momentum is p. Since mass is a scalar and velocity is a vector, momentum is also a vector.

More information

Momentum Conceptual Questions. 1. Which variable has more impact on an object s motion? Its mass or its velocity?

Momentum Conceptual Questions. 1. Which variable has more impact on an object s motion? Its mass or its velocity? AP Physics I Momentum Conceptual Questions 1. Which variable has more impact on an object s motion? Its mass or its velocity? 2. Is momentum a vector or a scalar? Explain. 3. How does changing the duration

More information

Vocabulary. The mass of an object multiplied by its speed or velocity. The product of force x time that causes a change in momentum.

Vocabulary. The mass of an object multiplied by its speed or velocity. The product of force x time that causes a change in momentum. Vocabulary Term Definition The mass of an object multiplied by its speed or. Kg m s The units for momentum. Impulse The product of force x time that causes a change in momentum. N s The units for impulse.

More information

Momentum and Its Relation to Force

Momentum and Its Relation to Force Linear Momentum Momentum and Its Relation to Force The linear momentum, or momentum, of an object is defined as the product of its mass and its velocity. Momentum, p, is a vector and its direction is the

More information

5.2 Conservation of Momentum in One Dimension

5.2 Conservation of Momentum in One Dimension 5. Conservation of Momentum in One Dimension Success in the sport of curling relies on momentum and impulse. A player must accelerate a curling stone to a precise velocity to collide with an opponent s

More information

This Week. 7/29/2010 Physics 214 Fall

This Week. 7/29/2010 Physics 214 Fall This Week Momentum Is momentum in basketball physics? Rockets and guns How do spaceships work? Collisions of objects They get impulses! Practical Propulsion 7/29/2010 Physics 214 Fall 2010 1 Momentum What

More information

Physics. Impulse & Momentum

Physics. Impulse & Momentum Physics Impulse & Momentum Warm up - Write down everything you know about impulse and momentum. Objectives Students will learn the definitions and equations for impulse, momentum, elastic and inelastic

More information

MOMENTUM. The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard.

MOMENTUM. The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard. MOMENTUM The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard Honors Physics CONSERVATION OF Energy Linear Momentum Angular Momentum Electric

More information

1 A freight car of mass 20,000 kg moves along a frictionless level railroad track with a constant speed of 15 m/s. What is the momentum of the car?

1 A freight car of mass 20,000 kg moves along a frictionless level railroad track with a constant speed of 15 m/s. What is the momentum of the car? Slide 1 / 26 1 freight car of mass 20,000 kg moves along a frictionless level railroad track with a constant speed of 15 m/s. What is the momentum of the car? 30,000 kg m/s 3,000 kg m/s 300,000 kg m/s

More information

This Week. 9/5/2018 Physics 214 Fall

This Week. 9/5/2018 Physics 214 Fall This Week Momentum Is momentum in basketball physics? Rockets and guns How do spaceships work? Collisions of objects They get impulses! Practical Propulsion 9/5/2018 Physics 214 Fall 2018 1 Momentum What

More information

Physics 11 (Fall 2012) Chapter 9: Momentum. Problem Solving

Physics 11 (Fall 2012) Chapter 9: Momentum. Problem Solving Physics 11 (Fall 2012) Chapter 9: Momentum The answers you receive depend upon the questions you ask. Thomas Kuhn Life is a mirror and will reflect back to the thinker what he thinks into it. Ernest Holmes

More information

Momentum Mass in Motion

Momentum Mass in Motion Momentum Mass in Motion What do you think that means? Based on this description, what two things do you think affect momentum? 1 Momentum Inertia in motion Why are supertanker engines shut off 25 km from

More information

Final Review. If a car has 3,000kg-m/s of momentum, and a mass of 1,000kg. How fast is it moving? A ball that has momentum must also have energy.

Final Review. If a car has 3,000kg-m/s of momentum, and a mass of 1,000kg. How fast is it moving? A ball that has momentum must also have energy. Physics Name: Date: Period: Final Review Write the appropriate formulas with all units below. Impulse Momentum Conservation of Momentum Rank these in order from least to most momentum:.01kg mass moving

More information

Momentum Practice Test

Momentum Practice Test Momentum Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following equations can be used to directly calculate an object s momentum,

More information

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ Physics 1 Lesson 8 Forces and Momentum Homework Outcomes 1. Define linear momentum. 2. Determine the total linear momentum of a system. 3. Apply the Law of Conservation of Momentum to solve problems. 4.

More information

Unit 8 Momentum, Impulse, & Collisions

Unit 8 Momentum, Impulse, & Collisions Unit 8 Momentum, Impulse, & Collisions Essential Fundamentals of Momentum, Impulse, & Collisions 1. Momentum is conserved in both elastic, and inelastic collisions. Early E. C.: / 1 Total HW Points Unit

More information

Conservation of Momentum. Last modified: 08/05/2018

Conservation of Momentum. Last modified: 08/05/2018 Conservation of Momentum Last modified: 08/05/2018 Links Momentum & Impulse Momentum Impulse Conservation of Momentum Example 1: 2 Blocks Initial Momentum is Not Enough Example 2: Blocks Sticking Together

More information

HONORS PHYSICS Linear Momentum

HONORS PHYSICS Linear Momentum HONORS PHYSICS Linear Momentum LESSON OBJECTIVES Students will be able to... understand that forces can act over time (impulse) resulting in changes in momentum identify characteristics of motion with

More information

Chapter 7 Lecture Notes

Chapter 7 Lecture Notes Chapter 7 Lecture Notes Physics 2414 - Strauss Formulas: p = mv ΣF = p/ t F t = p Σp i = Σp f x CM = (Σmx)/ Σm, y CM = (Σmy)/ Σm Main Ideas: 1. Momentum and Impulse 2. Conservation of Momentum. 3. Elastic

More information

Per 3 4 Momentum_Presentation.notebook. January 23, Momentum.

Per 3 4 Momentum_Presentation.notebook. January 23, Momentum. Momentum www.njctl.org 1 Momentum Click on the topic to go to that section Momentum Impulse Momentum of a System of Objects Conservation of Momentum Inelastic Collisions and Explosions Elastic Collisions

More information

Per 9 10 Momentum_Presentation.notebook. January 20, Momentum.

Per 9 10 Momentum_Presentation.notebook. January 20, Momentum. Momentum www.njctl.org 1 Momentum Click on the topic to go to that section Momentum Impulse Momentum of a System of Objects Conservation of Momentum Inelastic Collisions and Explosions Elastic Collisions

More information

Collisions. Conservation of Momentum Elastic and inelastic collisions. Serway For practice: Chapter 9, problems 10, 11, 23, 70, 75

Collisions. Conservation of Momentum Elastic and inelastic collisions. Serway For practice: Chapter 9, problems 10, 11, 23, 70, 75 Collisions Conservation of Momentum Elastic and inelastic collisions Serway 9.3-9.4 For practice: Chapter 9, problems 10, 11, 23, 70, 75 Momentum: p = mv Impulse (a vector) is defined as F t (for a constant

More information

Activity 8. Conservation of Momentum. What Do You Think? For You To Do GOALS. The outcome of a collision between two objects is predictable.

Activity 8. Conservation of Momentum. What Do You Think? For You To Do GOALS. The outcome of a collision between two objects is predictable. Activity 8 Conservation of Momentum Activity 8 Conservation of Momentum GOALS In this activity you will: Understand and apply the Law of Conservation of Momentum. Measure the momentum before and after

More information

A. Incorrect! Remember that momentum depends on both mass and velocity. B. Incorrect! Remember that momentum depends on both mass and velocity.

A. Incorrect! Remember that momentum depends on both mass and velocity. B. Incorrect! Remember that momentum depends on both mass and velocity. AP Physics - Problem Drill 08: Momentum and Collisions No. 1 of 10 1. A car and motor bike are travelling down the road? Which of these is a correct statement? (A) The car will have a higher momentum.

More information

AP Physics 1 Momentum

AP Physics 1 Momentum AP Physics 1 Momentum 2017-07-20 www.njctl.org Table of Contents Click on the topic to go to that section Momentum Impulse-Momentum Equation The Momentum of a System of Objects Conservation of Momentum

More information

Unit 6: Linear Momentum

Unit 6: Linear Momentum Unit 6: Linear Momentum The concept of linear momentum is closely tied to the concept of force in fact, Newton first defined his Second Law not in terms of mass and acceleration, but in terms of momentum.

More information

Part I Review Unit Review Name Momentum and Impulse

Part I Review Unit Review Name Momentum and Impulse Part I Review Unit Review Name Momentum and Impulse 1. A 5.00-kilogram block slides along a horizontal, frictionless surface at 10.0 meters per second for 4.00 seconds. The magnitude of the block's momentum

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Impulse and momentum 09-2 1 Current assignments Reading: Chapter 10 in textbook Prelecture due next Tuesday HW#8 due this Friday at 5 pm. 09-2 2 9-2.1 A crash

More information

LECTURE 23: Momentum-Impulse

LECTURE 23: Momentum-Impulse Lectures Page 1 LECTURE 23: Momentum-Impulse Select LEARNING OBJECTIVES: i. ii. iii. iv. v. vi. vii. viii. Introduce the concept that objects possess momentum. Introduce the concept of impulse. Be able

More information

Chapter 6 - Linear Momemtum and Collisions

Chapter 6 - Linear Momemtum and Collisions Name Date Chapter 6 - Linear Momemtum and Collisions MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) What is the SI unit of momentum? A) N/s B)

More information

Momentum is conserved for all collisions as long as external forces don t interfere.

Momentum is conserved for all collisions as long as external forces don t interfere. Momentum is conserved for all collisions as long as external forces don t interfere. Objectives: Identify the factors that affect an object s momentum Identify the factors that affect how much an object

More information

PSI AP Physics I Momentum

PSI AP Physics I Momentum PSI AP Physics I Momentum Multiple-Choice questions 1. A truck moves along a frictionless level road at a constant speed. The truck is open on top. A large load of gravel is suddenly dumped into the truck.

More information

Unit 8. Unit 8 - MTM. Outcomes. Momentum. Solve this problem. What does the word momentum mean to you?

Unit 8. Unit 8 - MTM. Outcomes. Momentum. Solve this problem. What does the word momentum mean to you? Outcomes Unit 8 THE MOMENTUM TRANSFER MODEL (MTM) I M P U L S E A N D M O M E N T U M What does the word momentum mean to you? Unit 8 - MTM P A R T 1 F O R C E S C H A N G E M O M E N T U M The home team

More information

Plus. Active Physics. Calculating Momentum. What Do You Think Now? Checking Up

Plus. Active Physics. Calculating Momentum. What Do You Think Now? Checking Up Section 5 Momentum: Concentrating on Collisions In the same way, vehicles have different momenta depending on their mass and velocity. An 18-wheel tractor trailer has a large momentum even if it is moving

More information

2015 AQA A Level Physics. Momentum and collisions

2015 AQA A Level Physics. Momentum and collisions 2015 AQA A Level Physics Momentum and collisions 9/22/2018 Momentum An object having mass and velocity has MOMENTUM. Momentum (symbol p ) is simply given by the formula: Momentum = Mass x Velocity (in

More information

3. How long must a 100 N net force act to produce a change in momentum of 200 kg m/s? (A) 0.25 s (B) 0.50 s (C) 1.0 s (D) 2.0 s (E) 4.

3. How long must a 100 N net force act to produce a change in momentum of 200 kg m/s? (A) 0.25 s (B) 0.50 s (C) 1.0 s (D) 2.0 s (E) 4. AP Physics Multiple Choice Practice Momentum and Impulse 1. A car of mass m, traveling at speed v, stops in time t when maximum braking force is applied. Assuming the braking force is independent of mass,

More information

Momentum Practice Problems

Momentum Practice Problems Momentum Practice Problems PSI AP Physics C Name Multiple Choice 1. A steel ball and a piece of clay have equal mass. They are dropped from the same height on a horizontal steel platform. The ball bounces

More information

What are two forms of Potential Energy that we commonly use? Explain Conservation of Energy and how we utilize it for problem-solving technics.

What are two forms of Potential Energy that we commonly use? Explain Conservation of Energy and how we utilize it for problem-solving technics. Bell Ringer: Define Kinetic Energy, Potential Energy, and Work. What are two forms of Potential Energy that we commonly use? Explain Conservation of Energy and how we utilize it for problem-solving technics.

More information

Unit 5: Momentum. Vocabulary: momentum, impulse, center of mass, conservation of momentum, elastic collision, inelastic collision.

Unit 5: Momentum. Vocabulary: momentum, impulse, center of mass, conservation of momentum, elastic collision, inelastic collision. Text: Chapter 9 Unit 5: Momentum NAME: Problems (p. 229-240) #1: 18, 20, 27, 31, 37 (momentum & impulse) #2: 40, 42, 45, 46, 100 (conservation of momentum) #3: 49, 103, 123, 129 (collisions) Vocabulary:

More information

Unit 8. Unit 8 - MTM. Outcomes. What does the word momentum mean to you?

Unit 8. Unit 8 - MTM. Outcomes. What does the word momentum mean to you? Outcomes Unit 8 THE MOMENTUM TRANSFER MODEL (MTM) I M P U L S E A N D M O M E N T U M Unit 8 - MTM P A R T 1 F O R C E S C H A N G E M O M E N T U M P A R T 2 M O M E N T U M I S C O N S E R V E D What

More information

10/11/11. Physics 101 Tuesday 10/11/11 Class 14" Chapter " Inelastic collisions" Elastic collisions" Center of mass"

10/11/11. Physics 101 Tuesday 10/11/11 Class 14 Chapter  Inelastic collisions Elastic collisions Center of mass Consider the following situations and possible isolated systems: Physics 101 Tuesday Class 14" Chapter 9.5 9.7" Inelastic collisions" Elastic collisions" Center of mass" Two cars on an icy road collide.

More information

Momentum and Collisions

Momentum and Collisions Momentum and Collisions Objectives: You Should Be Able To: Define and give examples of impulse and momentum along with appropriate units. Write and apply a relationship between impulse and momentum in

More information

Physics! Review Problems Unit A force acting on a 7.0 kg body increases its speed uniformly from 1.0 m/s to 9.0 m/s in 3 s.

Physics! Review Problems Unit A force acting on a 7.0 kg body increases its speed uniformly from 1.0 m/s to 9.0 m/s in 3 s. Name Physics! Review Problems Unit 8 1. A force acting on a 7.0 kg body increases its speed uniformly from 1.0 m/s to 9.0 m/s in 3 s. a) What is the initial momentum of the body? b) What is the final momentum

More information

Impulse,Momentum, CM Practice Questions

Impulse,Momentum, CM Practice Questions Name: Date: 1. A 12.0-kilogram cart is moving at a speed of 0.25 meter per second. After the speed of the cart is tripled, the inertia of the cart will be A. unchanged B. one-third as great C. three times

More information

Name Period CHAPTER 7 NEWTON'S THIRD LAW OF MOTION MOMENTUM & CONSERVATION OF MOMENTUM ACTIVITY LESSON DESCRIPTION POINTS

Name Period CHAPTER 7 NEWTON'S THIRD LAW OF MOTION MOMENTUM & CONSERVATION OF MOMENTUM ACTIVITY LESSON DESCRIPTION POINTS Name Period CHAPTER 7 NEWTON'S THIRD LAW OF MOTION MOMENTUM & CONSERVATION OF MOMENTUM ACTIVITY LESSON DESCRIPTION POINTS 1. NT OVERHEAD NOTES WITH WORKSHEET GUIDE /30 2. WS MOMENTUM WORKSHEET /17 3. WS

More information

Collisions in 1- and 2-D

Collisions in 1- and 2-D Collisions in 1- and 2-D Momentum and Energy Conservation Physics 109 Experiment Number 7 2017 Outline Brief summary of Binary Star Experiment Some thoughts on conservation principles Description of the

More information

The total momentum in any closed system will remain constant.

The total momentum in any closed system will remain constant. The total momentum in any closed system will remain constant. When two or more objects collide, the collision does not change the total momentum of the two objects. Whatever momentum is lost by one object

More information

NAME DATE CLASS. HOLT PHYSICS Graph Skills. Momentum and Impulse

NAME DATE CLASS. HOLT PHYSICS Graph Skills. Momentum and Impulse 6-1 Graph Skills Momentum and Impulse 1. A soccer ball with a mass of 0.950 kg is traveling east at 10.0 m/s. Using a ruler and a scale of 1.0 square per 1.0 kg m/s, draw a vector representing the momentum

More information

Preliminary Work. [ Answer: 56 Ns; 56 Ns ]

Preliminary Work. [ Answer: 56 Ns; 56 Ns ] Preliminary Work 1. A 2 kg bouncy ball is dropped from a height of 10 m, hits the floor and returns to its original height. What was the change in momentum of the ball upon impact with the floor? What

More information

Momentum Energy Angular Momentum

Momentum Energy Angular Momentum Notes 8 Impulse and Momentum Page 1 Impulse and Momentum Newton's "Laws" require us to follow the details of a situation in order to calculate properties of the system. Is there a simpler way? CONSERVATION

More information

Chapter 4: Forces and Newton's Laws of Motion Tuesday, September 17, :00 PM

Chapter 4: Forces and Newton's Laws of Motion Tuesday, September 17, :00 PM Ch4 Page 1 Chapter 4: Forces and Newton's Laws of Motion Tuesday, September 17, 2013 10:00 PM In the first three chapters of this course the emphasis is on kinematics, the mathematical description of motion.

More information

Chapter Assessment Use with Chapter 9.

Chapter Assessment Use with Chapter 9. Date Period 9 Use with Chapter 9. Momentum and Its Conservation Understanding Concepts Part A Write the letter of the choice that best completes the statement or answers the question. 1. The linear momentum

More information

Impulse simply refers to a change in momentum, and is usually caused by a change in velocity, as described by p = m v.

Impulse simply refers to a change in momentum, and is usually caused by a change in velocity, as described by p = m v. 1 Impulse and Momentum Recall from Newton s 1 st Law: inertia is the tendency of an object to keep on doing what its already doing, that is: either remaining stationary, or: travelling at a constant velocity.

More information

Momentum ~ Learning Guide Name:

Momentum ~ Learning Guide Name: Momentum ~ Learning Guide Name: Instructions: Using a pencil, answer the following questions. The Pre-Reading is marked, based on effort, completeness, and neatness (not accuracy). The rest of the assignment

More information

Work. Work is the measure of energy transferred. Energy: the capacity to do work. W = F X d

Work. Work is the measure of energy transferred. Energy: the capacity to do work. W = F X d ENERGY CHAPTER 11 Work Work is the measure of energy transferred. Energy: the capacity to do work. W = F X d Units = Joules Work and energy transferred are equivalent in ideal systems. Two Types of Energy

More information

Chapter 7 Linear Momentum

Chapter 7 Linear Momentum Chapter 7 Linear Momentum Units of Chapter 7 Momentum and Its Relation to Force Conservation of Momentum Collisions and Impulse Conservation of Energy and Momentum in Collisions Elastic Collisions in One

More information

(k = force constant of the spring)

(k = force constant of the spring) Lecture 10: Potential Energy, Momentum and Collisions 1 Chapter 7: Conservation of Mechanical Energy in Spring Problems The principle of conservation of Mechanical Energy can also be applied to systems

More information

Overview The Laws of Motion

Overview The Laws of Motion Directed Reading for Content Mastery Overview The Laws of Motion Directions: Fill in the blanks using the terms listed below. force inertia momentum sliding conservation of momentum gravitational ma mv

More information

Name: Class: Date: d. none of the above

Name: Class: Date: d. none of the above Name: Class: Date: H Phys quiz Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is the cause of an acceleration? a. speed b. inertia

More information

Momentum. A ball bounces off the floor as shown. The direction of the impulse on the ball, is... straight up straight down to the right to the left

Momentum. A ball bounces off the floor as shown. The direction of the impulse on the ball, is... straight up straight down to the right to the left Momentum A ball bounces off the floor as shown. The direction of the impulse on the ball,, is... A: B: C: D: straight up straight down to the right to the left This is also the direction of Momentum A

More information

Exam Question 5: Work, Energy, Impacts and Collisions. June 18, Applied Mathematics: Lecture 5. Brendan Williamson.

Exam Question 5: Work, Energy, Impacts and Collisions. June 18, Applied Mathematics: Lecture 5. Brendan Williamson. Exam Question 5: Work, Energy, Impacts and June 18, 016 In this section we will continue our foray into forces acting on objects and objects acting on each other. We will first discuss the notion of energy,

More information

Chapter 9 Linear Momentum and Collisions

Chapter 9 Linear Momentum and Collisions Chapter 9 Linear Momentum and Collisions The Center of Mass The center of mass of a system of particles is the point that moves as though (1) all of the system s mass were concentrated there and (2) all

More information

Make sure that you are able to operate with vectors rapidly and accurately. Practice now will pay off in the rest of the course.

Make sure that you are able to operate with vectors rapidly and accurately. Practice now will pay off in the rest of the course. Ch3 Page 1 Chapter 3: Vectors and Motion in Two Dimensions Tuesday, September 17, 2013 10:00 PM Vectors are useful for describing physical quantities that have both magnitude and direction, such as position,

More information

Inelastic Collisions in One

Inelastic Collisions in One Inelastic Collisions in One Dimension Bởi: OpenStaxCollege We have seen that in an elastic collision, internal kinetic energy is conserved. An inelastic collision is one in which the internal kinetic energy

More information

Physics 11 Honours. x-dir px : m1 v1 = (m1 + m2 ) V cos y-dir py : m2 v2 = (m1 + m2 ) V sin A Collision at an Intersection Example 1:

Physics 11 Honours. x-dir px : m1 v1 = (m1 + m2 ) V cos y-dir py : m2 v2 = (m1 + m2 ) V sin A Collision at an Intersection Example 1: Name: Physics 11 Honours Date: Unit 7 Momentum and Its Conservation 7.4 A perfectly inelastic collision in 2-D Consider a collision in 2-D (cars crashing at a slippery intersection...no friction). Because

More information

Momentum and Impulse

Momentum and Impulse Momentum and Impulse Momentum in Sports - Momentum is a commonly used term in sports. - A team that has a lot of momentum is really on the move and is going to be hard to stop. - Momentum is a physics

More information

Slide 1 / 40. Multiple Choice AP Physics 1 Momentum

Slide 1 / 40. Multiple Choice AP Physics 1 Momentum Slide 1 / 40 Multiple Choice AP Physics 1 Momentum Slide 2 / 40 1 A truck moves along a frictionless level road at a constant speed. The truck is open on top. A large load of gravel is suddenly dumped

More information

Center of Mass & Linear Momentum

Center of Mass & Linear Momentum PHYS 101 Previous Exam Problems CHAPTER 9 Center of Mass & Linear Momentum Center of mass Momentum of a particle Momentum of a system Impulse Conservation of momentum Elastic collisions Inelastic collisions

More information

Section 4: Newton s Laws and Momentum

Section 4: Newton s Laws and Momentum Section 4: Newton s Laws and Momentum The following maps the videos in this section to the Texas Essential Knowledge and Skills for Physics TAC 112.39(c). 4.01 Newton s First Law Physics (4)(D) 4.02 Newton

More information

All moving objects have what Newton called a quantity of motion.

All moving objects have what Newton called a quantity of motion. MOMEMTUM MOMENTUM MOMEMTUM MOMENTUM All moving objects have what Newton called a quantity of motion. What is this quantity of motion? Today we call it momentum. Momentum is a characteristic of a moving

More information

Momentum and Collisions

Momentum and Collisions Momentum and Collisions Vocabulary linear momemtum second law of motion isolated system elastic collision inelastic collision completly inelastic center of mass center of gravity 9-1 Momentum and Its Relation

More information

Momentum is a property of moving matter. Momentum describes the tendency of objects to keep going in the same direction with the same speed.

Momentum is a property of moving matter. Momentum describes the tendency of objects to keep going in the same direction with the same speed. Warm-up A mosquito collides head-on with a car traveling 60 mph. How do you think the size of the force that car exerts on the mosquito compares to the size of the force that mosquito exerts on car? 12.1

More information

Laws of Motion. What is force? What happens when you push or pull objects? Some examples of pushing and pulling. Definition Force:

Laws of Motion. What is force? What happens when you push or pull objects? Some examples of pushing and pulling. Definition Force: 1 Laws of Motion What is force? What happens when you push or pull objects? Some examples of pushing and pulling Kicking Pushing Lifting Squeezing Definition Force: Activity: Tug of war In a tug of war,

More information

Lecture 7 - Momentum. A Puzzle... Momentum. Basics (1)

Lecture 7 - Momentum. A Puzzle... Momentum. Basics (1) Lecture 7 - omentum A Puzzle... An Experiment on Energy The shortest configuration of string joining three given points is the one where all three angles at the point of intersection equal 120. How could

More information

Energy& Momentum ~Learning Guide Name:

Energy& Momentum ~Learning Guide Name: Energy& Momentum ~Learning Guide Name: Instructions: Using a pencil, answer the following questions. The Pre-Reading is marked, based on effort, completeness, and neatness (not accuracy). The rest of the

More information

Momentum and Collisions. Resource Class/momentum/momtoc.html

Momentum and Collisions. Resource  Class/momentum/momtoc.html Momentum and Collisions Resource http://www.physicsclassroom.com/ Class/momentum/momtoc.html Define Inertia The property of any body to resist changes in its state of motion. The measure of Inertia is:

More information

Algebra Based Physics

Algebra Based Physics 1 Algebra Based Physics Momentum 2016 01 20 www.njctl.org 2 Momentum Click on the topic to go to that section Momentum Impulse Momentum of a System of Objects Conservation of Momentum Inelastic Collisions

More information

1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B km C. 25 km D. 45 km E. 50 km

1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B km C. 25 km D. 45 km E. 50 km Name: Physics I Mid Term Exam Review Multiple Choice Questions Date: Mr. Tiesler 1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B. 22.5 km C. 25 km D. 45 km

More information

Physics 100. Today. Finish Chapter 5: Newton s 3 rd Law. Chapter 6: Momentum

Physics 100. Today. Finish Chapter 5: Newton s 3 rd Law. Chapter 6: Momentum Physics 100 Today Finish Chapter 5: Newton s 3 rd Law Chapter 6: Momentum Momentum = inertia in motion Specifically, momentum = mass x velocity = m v Eg. Just as a truck and a roller skate have different

More information

Chapter 7 Lecture. Pearson Physics. Linear Momentum and Collisions. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 7 Lecture. Pearson Physics. Linear Momentum and Collisions. Prepared by Chris Chiaverina Pearson Education, Inc. Chapter 7 Lecture Pearson Physics Linear Momentum and Collisions Prepared by Chris Chiaverina Chapter Contents Momentum Impulse Conservation of Momentum Collisions Momentum How can the effect of catching

More information

AP Physics 1. Momentum. Slide 1 / 133 Slide 2 / 133. Slide 3 / 133. Slide 4 / 133. Slide 5 / 133. Slide 6 / 133. Momentum.

AP Physics 1. Momentum. Slide 1 / 133 Slide 2 / 133. Slide 3 / 133. Slide 4 / 133. Slide 5 / 133. Slide 6 / 133. Momentum. Slide 1 / 133 Slide 2 / 133 AP Physics 1 Momentum 2015-12-02 www.njctl.org Slide 3 / 133 Slide 4 / 133 Table of Contents Click on the topic to go to that section Momentum Impulse-Momentum Equation The

More information

December 2015 Exam Review July :39 AM. Here are solutions to the December 2014 final exam.

December 2015 Exam Review July :39 AM. Here are solutions to the December 2014 final exam. December 2015 Exam Review July-15-14 10:39 AM Here are solutions to the December 2014 final exam. 1. [5 marks] A soccer ball is kicked from the ground so that it is projected at an initial angle of 39

More information

Chapter 4 Conservation Laws

Chapter 4 Conservation Laws Conceptual Physics/ PEP Name: Date: Chapter 4 Conservation Laws Section Review 4.1 1. List three action and reaction pairs in the picture at right, on page 82 in text. a. Force of paddle on water, and

More information

AP Physics 1 Momentum and Impulse Practice Test Name

AP Physics 1 Momentum and Impulse Practice Test Name AP Physics 1 Momentum and Impulse Practice Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A rubber ball and a lump of clay have equal

More information

Chapter 6: Momentum and Collisions

Chapter 6: Momentum and Collisions Assumption College English Program Mr. Stephen Dobosh s EP- M 4 P h y s i c s C l a s s w o r k / H o m e w o r k P a c k e t Chapter 6: Momentum and Collisions Section 1: Momentum and Impulse Section

More information