MTH401A Theory of Computation. Lecture 17

Size: px
Start display at page:

Download "MTH401A Theory of Computation. Lecture 17"

Transcription

1 MTH401A Theory of Computation Lecture 17

2 Chomsky Normal Form for CFG s

3 Chomsky Normal Form for CFG s For every context free language, L, the language L {ε} has a grammar in which every production looks like, either 1. S AB, or 2. B a

4 Chomsky Normal Form for CFG s For every context free language, L, the language L {ε} has a grammar in which every production looks like, either 1. S AB, or 2. B a Further, the grammar has no useless symbols.

5 Chomsky Normal Form for CFG s Eliminating useless symbols : A symbol is useful if it appears in some derivation of some terminal string from the start symbol. It is useless, otherwise. Eliminate all useless symbols by : 1. Eliminate symbols that derive no terminal string. 2. Eliminate unreachable symbols.

6 Chomsky Normal Form for CFG s Example : Eliminate Variables S AB C A 0A 0 B 1B C 1 Basis : A and C are identified because of A 0 and C 1. Induction : S is identified because of S C. Nothing else can be identified. S C A 0A 0 C 1

7 Chomsky Normal Form for CFG s Algorithm to eliminate unreachable symbols : 1. Basis : We can reach S (the start symbol). 2. Induction : If we can reach A and A α then we can reach all symbols in α. 3. Algorithm : Remove from the grammar all symbols not reachable from S and all productions that involve these symbols.

8 Chomsky Normal Form for CFG s Example : Eliminate Useless Symbols S AB 0 A C 0 B 0B C 1 1. If we eliminate unreachable symbols first we would find that everything is reachable. 2. A, C, 1 would never get eliminated.

9 Chomsky Normal Form for CFG s Discovering Nullable Symbols : 1. To eliminate all ε- productions, we first need to discover all nullable variables (variables A such that A * ε). 2. Basis : If there is a production A ε then A is nullable. 3. Induction : If there is a production A α and all symbols in α are nullable then A is nullable.

10 Chomsky Normal Form for CFG s Example : Eliminate ε- Productions S ABC A 0A ε B 1B ε C ε 1. A, B, C, S are nullable. 2. New grammar S ABC AB AC BC A B C A 0A 0 B 1B 1

11 Chomsky Normal Form for CFG s Example : Eliminate ε- Productions S ABC A 0A ε B 1B ε C ε 1. A, B, C, S are nullable. 2. New grammar S ABC AB AC BC A B C A 0A 0 B 1B 1 C is now useless. Eliminate its productions

12 Chomsky Normal Form for CFG s Example : Eliminate ε- Productions S ABC A 0A ε B 1B ε C ε 1. A, B, C, S are nullable. 2. New grammar S ABC AB AC BC A B C A 0A 0 B 1B 1 C is now useless. Eliminate its productions

13 Chomsky Normal Form for CFG s Unit Productions : A unit production is one whose right side consists of exactly one variable. Algorithm : Find all pairs (A,B) such that A * B by a sequence of unit productions only. Basis : Pairs (A,A) are there. Induction : If we have found (A,B) and B C is a unit production then add (A,C).

14 Chomsky Normal Form for CFG s Example : Unit Productions S A B CC DD B BOZO CC ABC

15 Chomsky Normal Form for CFG s Example : Unit Productions S A B CC DD B BOZO CC ABC Unit Productions sequences S * B

16 Chomsky Normal Form for CFG s Example : Unit Productions S A B CC DD BOZO CC ABC 0 B BOZO CC ABC S A B CC DD B BOZO CC ABC

17 Chomsky Normal Form for CFG s Example : Unit Productions S A 11 A B 1 B S 0

18 Chomsky Normal Form for CFG s Example : Unit Productions S A 11 A B 1 B S 0 Unit Productions sequences S * A, S * B; A * B, A * S; B * S, B * A;

19 Chomsky Normal Form for CFG s Example 5 : Useless Symbols S A A B B S S A 11 A B 1 B S 0

20 Chomsky Normal Form for CFG s Example 5 : Useless Symbols S A A B B S A and B are useless symbols. No way to get them from S. S A 11 A B 1 B S 0

21 Chomsky Normal Form for CFG s Cleaning Up a Grammar : Theorem : If L is a CFL, then there is a CFG for L {ε} that has No useless symbols. No ε- productions. No unit productions. In other words, every right side is either a single terminal or has length 2.

22 Chomsky Normal Form for CFG s Chomsky Normal Form Steps: Step 1 : Clean up the grammar. Step 2 : For each right side that is not a single terminal, make it all variables. For each terminal symbol a, create a new variable A a and a production A a a. Replace a by A a in right sides of length 2. Step 3 : Break right sides of length longer than 2 into a chain of productions with right sides of two variables.

23 Chomsky Normal Form for CFG s Example : Terminals S 0A1B DEF A CC

24 Chomsky Normal Form for CFG s Example : Terminals S 0A1B DEF A CC Z 0 O 1

25 Chomsky Normal Form for CFG s Example : Terminals S ZAOB DEF A CC Z 0 O 1

26 Chomsky Normal Form for CFG s Example : Long productions S ZAOB DEF A CC Z 0 O 1

27 Chomsky Normal Form for CFG s Example : Long productions S ZAOB DEF A CC Z 0 O 1 Too long.

28 Chomsky Normal Form for CFG s Example : Long productions S ZAOB DEF A CC Z 0 O 1 Too long. New group of symbols.

29 Chomsky Normal Form for CFG s Example : Long productions S ZM DEF A CC Z 0 O 1 M AOB

30 Chomsky Normal Form for CFG s Example : Long productions S ZM DEF A CC Z 0 O 1 M AOB New group of symbols.

31 Chomsky Normal Form for CFG s Example : Long productions S ZM DH A CC Z 0 O 1 M AN N OB H EF

32 Chomsky Normal Form for CFG s Chomsky Normal Form : CFG is said to be in a Chomsky Normal Form if the grammar has no useless symbols and every production is of one of these two forms : 1. A BC (right side is two variables), 2. A a (right side is a single terminal). Theorem : If L is a CFL, then L {ε} has a CFG in Chomsky normal form.

33 Pushdown Machines

34 Pushdown Machines

35 Pushdown Machines Finite State Machine

36 Pushdown Machines Finite State Machine

37 Pushdown Machines

38 Pushdown Machines Finite Pushdown State Machine

39 Formalism : Pushdown Machines A pushdown machine is described by: 1. A finite set of states (Q, typically). 2. An input alphabet (Σ, typically). 3. A stack alphabet (Γ, typically). 4. A transition function (δ, typically). 5. A start state (q 0, in Q, typically). 6. A start symbol (Z 0 in Γ, typically). 7. A set of final states (F Q, typically).

40 Convention : Pushdown Machines a, b, c, are input symbols. Sometimes, we also allow ε as a possible value., X, Y, Z are stack symbols., w, x, y, z are strings of input symbols. α, β, γ, are strings of stack symbols.

41 Pushdown Machines The Transition Function :

42 Pushdown Machines The Transition Function : Takes three input arguments. 1. A state, in Q. 2. An input, which is either a symbol in Σ or ε. 3. A stack symbol in Γ.

43 Pushdown Machines The Transition Function : Takes three input arguments. 1. A state, in Q. 2. An input, which is either a symbol in Σ or ε. 3. A stack symbol in Γ. δ(q, a, Z) is a set of zero or more actions of the form (p, α). p is a state and α is a string of stack symbols.

44 Pushdown Machines Actions of The Pushdown Machine : If δ(q, a, Z) contains (p, α) among its actions, then one thing the pushdown machine can do in state q, with a at the front of the input, and Z on top of the stack is : 1. Change the state to p. 2. Remove a from the front of the input (a may be ε). 3. Replace Z on the top of the stack by α.

45 Example : Pushdown Machines Construct a pushdown machine to accept {0 n 1 n : n 1}.

46 Example : Pushdown Machines Construct a pushdown machine to accept {0 n 1 n : n 1}. The states :

47 Example : Pushdown Machines Construct a pushdown machine to accept {0 n 1 n : n 1}. The states : 1. q = start state. We are in state q if we have seen only 0 s so far.

48 Example : Pushdown Machines Construct a pushdown machine to accept {0 n 1 n : n 1}. The states : 1. q = start state. We are in state q if we have seen only 0 s so far. 2. p = we have seen at least one 1 and may now proceed only if the inputs are 1 s.

49 Example : Pushdown Machines Construct a pushdown machine to accept {0 n 1 n : n 1}. The states : 1. q = start state. We are in state q if we have seen only 0 s so far. 2. p = we have seen at least one 1 and may now proceed only if the inputs are 1 s. 3. f = final state; accept.

50 Pushdown Machines Example (continued) : The stack symbols :

51 Pushdown Machines Example (continued) : The stack symbols : 1. Z 0 = start symbol. Also marks the bottom of the stack.

52 Pushdown Machines Example (continued) : The stack symbols : 1. Z 0 = start symbol. Also marks the bottom of the stack. 2. X = marker, used to count the number of 0 s seen on the input.

53 Pushdown Machines Example (continued) : The transitions :

54 Pushdown Machines Example (continued) : The transitions : 1. δ(q, 0, Z 0 ) = {(q, XZ 0 )}.

55 Pushdown Machines Example (continued) : The transitions : 1. δ(q, 0, Z 0 ) = {(q, XZ 0 )}. 2. δ(q, 0, X) = {(q, XX)}. These two rules make sure that one X is pushed into the stack for each 0 read from the input.

56 Pushdown Machines Example (continued) : The transitions : 1. δ(q, 0, Z 0 ) = {(q, XZ 0 )}. 2. δ(q, 0, X) = {(q, XX)}. These two rules make sure that one X is pushed into the stack for each 0 read from the input. 3. δ(q, 1, X) = {(p, ε)}. When we see a 1, go to state p and pop one X.

57 Pushdown Machines Example (continued) : The transitions : 1. δ(q, 0, Z 0 ) = {(q, XZ 0 )}. 2. δ(q, 0, X) = {(q, XX)}. These two rules make sure that one X is pushed into the stack for each 0 read from the input. 3. δ(q, 1, X) = {(p, ε)}. When we see a 1, go to state p and pop one X. 4. δ(p, 1, X) = {(p, ε)}. Pop one X per 1.

58 Pushdown Machines Example (continued) : The transitions : 1. δ(q, 0, Z 0 ) = {(q, XZ 0 )}. 2. δ(q, 0, X) = {(q, XX)}. These two rules make sure that one X is pushed into the stack for each 0 read from the input. 3. δ(q, 1, X) = {(p, ε)}. When we see a 1, go to state p and pop one X. 4. δ(p, 1, X) = {(p, ε)}. Pop one X per δ(p, ε, Z 0 ) = {(f, Z 0 )}. Accept at bottom.

59 Pushdown Machines Example (continued) : In action Z q

60 Pushdown Machines Example (continued) : In action Z q δ(q, 0, Z 0 )

61 Pushdown Machines Example (continued) : In action Z q δ(q, 0, Z 0 ) = {(q, XZ 0 )}

62 Pushdown Machines Example (continued) : In action X Z 0 q

63 Pushdown Machines Example (continued) : In action X Z 0 q δ(q, 0, X)

64 Pushdown Machines Example (continued) : In action X Z 0 q δ(q, 0, X) = {(q, XX)}

65 Pushdown Machines Example (continued) : In action X X Z 0 q

66 Pushdown Machines Example (continued) : In action X X Z 0 q δ(q, 0, X)

67 Pushdown Machines Example (continued) : In action X X Z 0 q δ(q, 0, X) = {(q, XX)}

68 Pushdown Machines Example (continued) : In action X X X Z 0 q

69 Pushdown Machines Example (continued) : In action X X X Z 0 q δ(q, 1, X)

70 Pushdown Machines Example (continued) : In action X X X Z 0 q δ(q, 1, X) = {(p, ε)}

71 Pushdown Machines Example (continued) : In action X X 1 1 Z 0 p

72 Pushdown Machines Example (continued) : In action X X 1 1 Z 0 p δ(p, 1, X)

73 Pushdown Machines Example (continued) : In action X X 1 1 Z 0 p δ(p, 1, X) = {(p, ε)}

74 Pushdown Machines Example (continued) : In action X 1 Z 0 p

75 Pushdown Machines Example (continued) : In action X 1 Z 0 p δ(p, 1, X)

76 Pushdown Machines Example (continued) : In action X 1 Z 0 p δ(p, 1, X) = {(p, ε)}

77 Pushdown Machines Example (continued) : In action Z 0 p

78 Pushdown Machines Example (continued) : In action Z 0 p δ(p, ε, Z 0 )

79 Pushdown Machines Example (continued) : In action Z 0 p δ(p, ε, Z 0 ) = {(f, Z 0 )}

80 Pushdown Machines Example (continued) : In action Z 0 f

81 Pushdown Machines Instantaneous Descriptions : We can formalize the pictures just seen with an instantaneous description (ID). An ID is a 3-tuple (q, w, α), where: 1. q is the current state. 2. w is the remaining input. 3. α is the stack contents, top at the left.

82 Pushdown Machines The Goes-To relation: To say that ID I can become ID J in one move of the pushdown machine, we write I J.

83 Pushdown Machines The Goes-To relation: To say that ID I can become ID J in one move of the pushdown machine, we write I J. Formally, (q, aw, Xα) (p, w, βα), for any w and α, if δ(q, a, X) contains (p, β).

84 Pushdown Machines The Goes-To relation: To say that ID I can become ID J in one move of the pushdown machine, we write I J. Formally, (q, aw, Xα) (p, w, βα), for any w and α, if δ(q, a, X) contains (p, β). Extend to *, meaning zero or more moves by Basis : I * I. Induction : If I * J and J K, then I * K.

Introduction to Formal Languages, Automata and Computability p.1/42

Introduction to Formal Languages, Automata and Computability p.1/42 Introduction to Formal Languages, Automata and Computability Pushdown Automata K. Krithivasan and R. Rama Introduction to Formal Languages, Automata and Computability p.1/42 Introduction We have considered

More information

CFG Simplification. (simplify) 1. Eliminate useless symbols 2. Eliminate -productions 3. Eliminate unit productions

CFG Simplification. (simplify) 1. Eliminate useless symbols 2. Eliminate -productions 3. Eliminate unit productions CFG Simplification (simplify) 1. Eliminate useless symbols 2. Eliminate -productions 3. Eliminate unit productions 1 Eliminating useless symbols 1. A symbol X is generating if there exists: X * w, for

More information

Lecture 12 Simplification of Context-Free Grammars and Normal Forms

Lecture 12 Simplification of Context-Free Grammars and Normal Forms Lecture 12 Simplification of Context-Free Grammars and Normal Forms COT 4420 Theory of Computation Chapter 6 Normal Forms for CFGs 1. Chomsky Normal Form CNF Productions of form A BC A, B, C V A a a T

More information

CFGs and PDAs are Equivalent. We provide algorithms to convert a CFG to a PDA and vice versa.

CFGs and PDAs are Equivalent. We provide algorithms to convert a CFG to a PDA and vice versa. CFGs and PDAs are Equivalent We provide algorithms to convert a CFG to a PDA and vice versa. CFGs and PDAs are Equivalent We now prove that a language is generated by some CFG if and only if it is accepted

More information

Section 1 (closed-book) Total points 30

Section 1 (closed-book) Total points 30 CS 454 Theory of Computation Fall 2011 Section 1 (closed-book) Total points 30 1. Which of the following are true? (a) a PDA can always be converted to an equivalent PDA that at each step pops or pushes

More information

UNIT-VI PUSHDOWN AUTOMATA

UNIT-VI PUSHDOWN AUTOMATA Syllabus R09 Regulation UNIT-VI PUSHDOWN AUTOMATA The context free languages have a type of automaton that defined them. This automaton, called a pushdown automaton, is an extension of the nondeterministic

More information

(pp ) PDAs and CFGs (Sec. 2.2)

(pp ) PDAs and CFGs (Sec. 2.2) (pp. 117-124) PDAs and CFGs (Sec. 2.2) A language is context free iff all strings in L can be generated by some context free grammar Theorem 2.20: L is Context Free iff a PDA accepts it I.e. if L is context

More information

Theory of Computation - Module 3

Theory of Computation - Module 3 Theory of Computation - Module 3 Syllabus Context Free Grammar Simplification of CFG- Normal forms-chomsky Normal form and Greibach Normal formpumping lemma for Context free languages- Applications of

More information

Definition: A grammar G = (V, T, P,S) is a context free grammar (cfg) if all productions in P have the form A x where

Definition: A grammar G = (V, T, P,S) is a context free grammar (cfg) if all productions in P have the form A x where Recitation 11 Notes Context Free Grammars Definition: A grammar G = (V, T, P,S) is a context free grammar (cfg) if all productions in P have the form A x A V, and x (V T)*. Examples Problem 1. Given the

More information

Equivalence of CFG s and PDA s

Equivalence of CFG s and PDA s Equivalence of CFG s and PDA s Mridul Aanjaneya Stanford University July 24, 2012 Mridul Aanjaneya Automata Theory 1/ 53 Recap: Pushdown Automata A PDA is an automaton equivalent to the CFG in language-defining

More information

(pp ) PDAs and CFGs (Sec. 2.2)

(pp ) PDAs and CFGs (Sec. 2.2) (pp. 117-124) PDAs and CFGs (Sec. 2.2) A language is context free iff all strings in L can be generated by some context free grammar Theorem 2.20: L is Context Free iff a PDA accepts it I.e. if L is context

More information

Parsing. Context-Free Grammars (CFG) Laura Kallmeyer. Winter 2017/18. Heinrich-Heine-Universität Düsseldorf 1 / 26

Parsing. Context-Free Grammars (CFG) Laura Kallmeyer. Winter 2017/18. Heinrich-Heine-Universität Düsseldorf 1 / 26 Parsing Context-Free Grammars (CFG) Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Winter 2017/18 1 / 26 Table of contents 1 Context-Free Grammars 2 Simplifying CFGs Removing useless symbols Eliminating

More information

CSE 211. Pushdown Automata. CSE 211 (Theory of Computation) Atif Hasan Rahman

CSE 211. Pushdown Automata. CSE 211 (Theory of Computation) Atif Hasan Rahman CSE 211 Pushdown Automata CSE 211 (Theory of Computation) Atif Hasan Rahman Lecturer Department of Computer Science and Engineering Bangladesh University of Engineering & Technology Adapted from slides

More information

NPDA, CFG equivalence

NPDA, CFG equivalence NPDA, CFG equivalence Theorem A language L is recognized by a NPDA iff L is described by a CFG. Must prove two directions: ( ) L is recognized by a NPDA implies L is described by a CFG. ( ) L is described

More information

CS5371 Theory of Computation. Lecture 7: Automata Theory V (CFG, CFL, CNF)

CS5371 Theory of Computation. Lecture 7: Automata Theory V (CFG, CFL, CNF) CS5371 Theory of Computation Lecture 7: Automata Theory V (CFG, CFL, CNF) Announcement Homework 2 will be given soon (before Tue) Due date: Oct 31 (Tue), before class Midterm: Nov 3, (Fri), first hour

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 15-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY REVIEW for MIDTERM 1 THURSDAY Feb 6 Midterm 1 will cover everything we have seen so far The PROBLEMS will be from Sipser, Chapters 1, 2, 3 It will be

More information

Computability and Complexity

Computability and Complexity Computability and Complexity Push-Down Automata CAS 705 Ryszard Janicki Department of Computing and Software McMaster University Hamilton, Ontario, Canada janicki@mcmaster.ca Ryszard Janicki Computability

More information

Pushdown Automata. Reading: Chapter 6

Pushdown Automata. Reading: Chapter 6 Pushdown Automata Reading: Chapter 6 1 Pushdown Automata (PDA) Informally: A PDA is an NFA-ε with a infinite stack. Transitions are modified to accommodate stack operations. Questions: What is a stack?

More information

Plan for 2 nd half. Just when you thought it was safe. Just when you thought it was safe. Theory Hall of Fame. Chomsky Normal Form

Plan for 2 nd half. Just when you thought it was safe. Just when you thought it was safe. Theory Hall of Fame. Chomsky Normal Form Plan for 2 nd half Pumping Lemma for CFLs The Return of the Pumping Lemma Just when you thought it was safe Return of the Pumping Lemma Recall: With Regular Languages The Pumping Lemma showed that if a

More information

Homework. Context Free Languages. Announcements. Before We Start. Languages. Plan for today. Final Exam Dates have been announced.

Homework. Context Free Languages. Announcements. Before We Start. Languages. Plan for today. Final Exam Dates have been announced. Homework Context Free Languages PDAs and CFLs Homework #3 returned Homework #4 due today Homework #5 Pg 169 -- Exercise 4 Pg 183 -- Exercise 4c,e,i (use JFLAP) Pg 184 -- Exercise 10 Pg 184 -- Exercise

More information

60-354, Theory of Computation Fall Asish Mukhopadhyay School of Computer Science University of Windsor

60-354, Theory of Computation Fall Asish Mukhopadhyay School of Computer Science University of Windsor 60-354, Theory of Computation Fall 2013 Asish Mukhopadhyay School of Computer Science University of Windsor Pushdown Automata (PDA) PDA = ε-nfa + stack Acceptance ε-nfa enters a final state or Stack is

More information

Pushdown Automata. Notes on Automata and Theory of Computation. Chia-Ping Chen

Pushdown Automata. Notes on Automata and Theory of Computation. Chia-Ping Chen Pushdown Automata Notes on Automata and Theory of Computation Chia-Ping Chen Department of Computer Science and Engineering National Sun Yat-Sen University Kaohsiung, Taiwan ROC Pushdown Automata p. 1

More information

Pushdown Automata (2015/11/23)

Pushdown Automata (2015/11/23) Chapter 6 Pushdown Automata (2015/11/23) Sagrada Familia, Barcelona, Spain Outline 6.0 Introduction 6.1 Definition of PDA 6.2 The Language of a PDA 6.3 Euivalence of PDA s and CFG s 6.4 Deterministic PDA

More information

CS481F01 Prelim 2 Solutions

CS481F01 Prelim 2 Solutions CS481F01 Prelim 2 Solutions A. Demers 7 Nov 2001 1 (30 pts = 4 pts each part + 2 free points). For this question we use the following notation: x y means x is a prefix of y m k n means m n k For each of

More information

Lecture 17: Language Recognition

Lecture 17: Language Recognition Lecture 17: Language Recognition Finite State Automata Deterministic and Non-Deterministic Finite Automata Regular Expressions Push-Down Automata Turing Machines Modeling Computation When attempting to

More information

Theory of Computation Turing Machine and Pushdown Automata

Theory of Computation Turing Machine and Pushdown Automata Theory of Computation Turing Machine and Pushdown Automata 1. What is a Turing Machine? A Turing Machine is an accepting device which accepts the languages (recursively enumerable set) generated by type

More information

1. Draw a parse tree for the following derivation: S C A C C A b b b b A b b b b B b b b b a A a a b b b b a b a a b b 2. Show on your parse tree u,

1. Draw a parse tree for the following derivation: S C A C C A b b b b A b b b b B b b b b a A a a b b b b a b a a b b 2. Show on your parse tree u, 1. Draw a parse tree for the following derivation: S C A C C A b b b b A b b b b B b b b b a A a a b b b b a b a a b b 2. Show on your parse tree u, v, x, y, z as per the pumping theorem. 3. Prove that

More information

Before We Start. The Pumping Lemma. Languages. Context Free Languages. Plan for today. Now our picture looks like. Any questions?

Before We Start. The Pumping Lemma. Languages. Context Free Languages. Plan for today. Now our picture looks like. Any questions? Before We Start The Pumping Lemma Any questions? The Lemma & Decision/ Languages Future Exam Question What is a language? What is a class of languages? Context Free Languages Context Free Languages(CFL)

More information

October 6, Equivalence of Pushdown Automata with Context-Free Gramm

October 6, Equivalence of Pushdown Automata with Context-Free Gramm Equivalence of Pushdown Automata with Context-Free Grammar October 6, 2013 Motivation Motivation CFG and PDA are equivalent in power: a CFG generates a context-free language and a PDA recognizes a context-free

More information

Context-Free Grammars: Normal Forms

Context-Free Grammars: Normal Forms Context-Free Grammars: Normal Forms Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Properties of Context-Free Languages. Closure Properties Decision Properties

Properties of Context-Free Languages. Closure Properties Decision Properties Properties of Context-Free Languages Closure Properties Decision Properties 1 Closure Properties of CFL s CFL s are closed under union, concatenation, and Kleene closure. Also, under reversal, homomorphisms

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2017 http://cseweb.ucsd.edu/classes/sp17/cse105-ab/ Review of CFG, CFL, ambiguity What is the language generated by the CFG below: G 1 = ({S,T 1,T 2 }, {0,1,2}, { S

More information

Pushdown automata. Twan van Laarhoven. Institute for Computing and Information Sciences Intelligent Systems Radboud University Nijmegen

Pushdown automata. Twan van Laarhoven. Institute for Computing and Information Sciences Intelligent Systems Radboud University Nijmegen Pushdown automata Twan van Laarhoven Institute for Computing and Information Sciences Intelligent Systems Version: fall 2014 T. van Laarhoven Version: fall 2014 Formal Languages, Grammars and Automata

More information

Introduction to Theory of Computing

Introduction to Theory of Computing CSCI 2670, Fall 2012 Introduction to Theory of Computing Department of Computer Science University of Georgia Athens, GA 30602 Instructor: Liming Cai www.cs.uga.edu/ cai 0 Lecture Note 3 Context-Free Languages

More information

CPS 220 Theory of Computation

CPS 220 Theory of Computation CPS 22 Theory of Computation Review - Regular Languages RL - a simple class of languages that can be represented in two ways: 1 Machine description: Finite Automata are machines with a finite number of

More information

CS 373: Theory of Computation. Fall 2010

CS 373: Theory of Computation. Fall 2010 CS 373: Theory of Computation Gul Agha Mahesh Viswanathan Fall 2010 1 1 Normal Forms for CFG Normal Forms for Grammars It is typically easier to work with a context free language if given a CFG in a normal

More information

Finite Automata and Formal Languages TMV026/DIT321 LP Useful, Useless, Generating and Reachable Symbols

Finite Automata and Formal Languages TMV026/DIT321 LP Useful, Useless, Generating and Reachable Symbols Finite Automata and Formal Languages TMV026/DIT321 LP4 2012 Lecture 13 Ana Bove May 7th 2012 Overview of today s lecture: Normal Forms for Context-Free Languages Pumping Lemma for Context-Free Languages

More information

Miscellaneous. Closure Properties Decision Properties

Miscellaneous. Closure Properties Decision Properties Miscellaneous Closure Properties Decision Properties 1 Closure Properties of CFL s CFL s are closed under union, concatenation, and Kleene closure. Also, under reversal, homomorphisms and inverse homomorphisms.

More information

Outline. CS21 Decidability and Tractability. Machine view of FA. Machine view of FA. Machine view of FA. Machine view of FA.

Outline. CS21 Decidability and Tractability. Machine view of FA. Machine view of FA. Machine view of FA. Machine view of FA. Outline CS21 Decidability and Tractability Lecture 5 January 16, 219 and Languages equivalence of NPDAs and CFGs non context-free languages January 16, 219 CS21 Lecture 5 1 January 16, 219 CS21 Lecture

More information

Simplification and Normalization of Context-Free Grammars

Simplification and Normalization of Context-Free Grammars implification and Normalization, of Context-Free Grammars 20100927 Slide 1 of 23 Simplification and Normalization of Context-Free Grammars 5DV037 Fundamentals of Computer Science Umeå University Department

More information

Context Free Grammars

Context Free Grammars Automata and Formal Languages Context Free Grammars Sipser pages 101-111 Lecture 11 Tim Sheard 1 Formal Languages 1. Context free languages provide a convenient notation for recursive description of languages.

More information

THEORY OF COMPUTATION (AUBER) EXAM CRIB SHEET

THEORY OF COMPUTATION (AUBER) EXAM CRIB SHEET THEORY OF COMPUTATION (AUBER) EXAM CRIB SHEET Regular Languages and FA A language is a set of strings over a finite alphabet Σ. All languages are finite or countably infinite. The set of all languages

More information

Formal Languages and Automata

Formal Languages and Automata Formal Languages and Automata Lecture 6 2017-18 LFAC (2017-18) Lecture 6 1 / 31 Lecture 6 1 The recognition problem: the Cocke Younger Kasami algorithm 2 Pushdown Automata 3 Pushdown Automata and Context-free

More information

CPS 220 Theory of Computation Pushdown Automata (PDA)

CPS 220 Theory of Computation Pushdown Automata (PDA) CPS 220 Theory of Computation Pushdown Automata (PDA) Nondeterministic Finite Automaton with some extra memory Memory is called the stack, accessed in a very restricted way: in a First-In First-Out fashion

More information

VTU QUESTION BANK. Unit 1. Introduction to Finite Automata. 1. Obtain DFAs to accept strings of a s and b s having exactly one a.

VTU QUESTION BANK. Unit 1. Introduction to Finite Automata. 1. Obtain DFAs to accept strings of a s and b s having exactly one a. VTU QUESTION BANK Unit 1 Introduction to Finite Automata 1. Obtain DFAs to accept strings of a s and b s having exactly one a.(5m )( Dec-2014) 2. Obtain a DFA to accept strings of a s and b s having even

More information

Note: In any grammar here, the meaning and usage of P (productions) is equivalent to R (rules).

Note: In any grammar here, the meaning and usage of P (productions) is equivalent to R (rules). Note: In any grammar here, the meaning and usage of P (productions) is equivalent to R (rules). 1a) G = ({R, S, T}, {0,1}, P, S) where P is: S R0R R R0R1R R1R0R T T 0T ε (S generates the first 0. R generates

More information

This lecture covers Chapter 7 of HMU: Properties of CFLs

This lecture covers Chapter 7 of HMU: Properties of CFLs This lecture covers Chapter 7 of HMU: Properties of CFLs Chomsky Normal Form Pumping Lemma for CFs Closure Properties of CFLs Decision Properties of CFLs Additional Reading: Chapter 7 of HMU. Chomsky Normal

More information

AC68 FINITE AUTOMATA & FORMULA LANGUAGES DEC 2013

AC68 FINITE AUTOMATA & FORMULA LANGUAGES DEC 2013 Q.2 a. Prove by mathematical induction n 4 4n 2 is divisible by 3 for n 0. Basic step: For n = 0, n 3 n = 0 which is divisible by 3. Induction hypothesis: Let p(n) = n 3 n is divisible by 3. Induction

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2016 http://cseweb.ucsd.edu/classes/sp16/cse105-ab/ Today's learning goals Sipser Ch 2 Define push down automata Trace the computation of a push down automaton Design

More information

Computational Models - Lecture 4

Computational Models - Lecture 4 Computational Models - Lecture 4 Regular languages: The Myhill-Nerode Theorem Context-free Grammars Chomsky Normal Form Pumping Lemma for context free languages Non context-free languages: Examples Push

More information

Properties of Context-free Languages. Reading: Chapter 7

Properties of Context-free Languages. Reading: Chapter 7 Properties of Context-free Languages Reading: Chapter 7 1 Topics 1) Simplifying CFGs, Normal forms 2) Pumping lemma for CFLs 3) Closure and decision properties of CFLs 2 How to simplify CFGs? 3 Three ways

More information

Non-context-Free Languages. CS215, Lecture 5 c

Non-context-Free Languages. CS215, Lecture 5 c Non-context-Free Languages CS215, Lecture 5 c 2007 1 The Pumping Lemma Theorem. (Pumping Lemma) Let be context-free. There exists a positive integer divided into five pieces, Proof for for each, and..

More information

Theory of Computation (IV) Yijia Chen Fudan University

Theory of Computation (IV) Yijia Chen Fudan University Theory of Computation (IV) Yijia Chen Fudan University Review language regular context-free machine DFA/ NFA PDA syntax regular expression context-free grammar Pushdown automata Definition A pushdown automaton

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 15-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY Chomsky Normal Form and TURING MACHINES TUESDAY Feb 4 CHOMSKY NORMAL FORM A context-free grammar is in Chomsky normal form if every rule is of the form:

More information

Pushdown Automata (Pre Lecture)

Pushdown Automata (Pre Lecture) Pushdown Automata (Pre Lecture) Dr. Neil T. Dantam CSCI-561, Colorado School of Mines Fall 2017 Dantam (Mines CSCI-561) Pushdown Automata (Pre Lecture) Fall 2017 1 / 41 Outline Pushdown Automata Pushdown

More information

Einführung in die Computerlinguistik Kontextfreie Grammatiken - Formale Eigenschaften

Einführung in die Computerlinguistik Kontextfreie Grammatiken - Formale Eigenschaften Normal forms (1) Einführung in die Computerlinguistik Kontextfreie Grammatiken - Formale Eigenschaften Laura Heinrich-Heine-Universität Düsseldorf Sommersemester 2013 normal form of a grammar formalism

More information

Decidable and undecidable languages

Decidable and undecidable languages The Chinese University of Hong Kong Fall 2011 CSCI 3130: Formal languages and automata theory Decidable and undecidable languages Andrej Bogdanov http://www.cse.cuhk.edu.hk/~andrejb/csc3130 Problems about

More information

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Context-Free Grammars (CFG) Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Summer 2016 1 / 22 CFG (1) Example: Grammar G telescope : Productions: S NP VP NP

More information

CPSC 313 Introduction to Computability

CPSC 313 Introduction to Computability CPSC 313 Introduction to Computability Grammars in Chomsky Normal Form (Cont d) (Sipser, pages 109-111 (3 rd ed) and 107-109 (2 nd ed)) Renate Scheidler Fall 2018 Chomsky Normal Form A context-free grammar

More information

Foundations of Informatics: a Bridging Course

Foundations of Informatics: a Bridging Course Foundations of Informatics: a Bridging Course Week 3: Formal Languages and Semantics Thomas Noll Lehrstuhl für Informatik 2 RWTH Aachen University noll@cs.rwth-aachen.de http://www.b-it-center.de/wob/en/view/class211_id948.html

More information

Computational Models: Class 5

Computational Models: Class 5 Computational Models: Class 5 Benny Chor School of Computer Science Tel Aviv University March 27, 2019 Based on slides by Maurice Herlihy, Brown University, and modifications by Iftach Haitner and Yishay

More information

Formal Definition of a Finite Automaton. August 26, 2013

Formal Definition of a Finite Automaton. August 26, 2013 August 26, 2013 Why a formal definition? A formal definition is precise: - It resolves any uncertainties about what is allowed in a finite automaton such as the number of accept states and number of transitions

More information

(b) If G=({S}, {a}, {S SS}, S) find the language generated by G. [8+8] 2. Convert the following grammar to Greibach Normal Form G = ({A1, A2, A3},

(b) If G=({S}, {a}, {S SS}, S) find the language generated by G. [8+8] 2. Convert the following grammar to Greibach Normal Form G = ({A1, A2, A3}, Code No: 07A50501 R07 Set No. 2 III B.Tech I Semester Examinations,MAY 2011 FORMAL LANGUAGES AND AUTOMATA THEORY Computer Science And Engineering Time: 3 hours Max Marks: 80 Answer any FIVE Questions All

More information

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Context-Free Grammars formal properties Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Summer 2018 1 / 20 Normal forms (1) Hopcroft and Ullman (1979) A normal

More information

CDM Parsing and Decidability

CDM Parsing and Decidability CDM Parsing and Decidability 1 Parsing Klaus Sutner Carnegie Mellon Universality 65-parsing 2017/12/15 23:17 CFGs and Decidability Pushdown Automata The Recognition Problem 3 What Could Go Wrong? 4 Problem:

More information

Computational Models - Lecture 5 1

Computational Models - Lecture 5 1 Computational Models - Lecture 5 1 Handout Mode Iftach Haitner and Yishay Mansour. Tel Aviv University. April 10/22, 2013 1 Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice

More information

Accept or reject. Stack

Accept or reject. Stack Pushdown Automata CS351 Just as a DFA was equivalent to a regular expression, we have a similar analogy for the context-free grammar. A pushdown automata (PDA) is equivalent in power to contextfree grammars.

More information

Context-Free Grammar

Context-Free Grammar Context-Free Grammar CFGs are more powerful than regular expressions. They are more powerful in the sense that whatever can be expressed using regular expressions can be expressed using context-free grammars,

More information

Pushdown Automata (PDA) The structure and the content of the lecture is based on

Pushdown Automata (PDA) The structure and the content of the lecture is based on Pushdown Automata (PDA) The structure and the content of the lecture is based on http://www.eecs.wsu.edu/~ananth/cpts317/lectures/index.htm 1 Excursion: Previous lecture n Context-free grammar G=(V,T,P,S),

More information

5 Context-Free Languages

5 Context-Free Languages CA320: COMPUTABILITY AND COMPLEXITY 1 5 Context-Free Languages 5.1 Context-Free Grammars Context-Free Grammars Context-free languages are specified with a context-free grammar (CFG). Formally, a CFG G

More information

CISC4090: Theory of Computation

CISC4090: Theory of Computation CISC4090: Theory of Computation Chapter 2 Context-Free Languages Courtesy of Prof. Arthur G. Werschulz Fordham University Department of Computer and Information Sciences Spring, 2014 Overview In Chapter

More information

MA/CSSE 474 Theory of Computation

MA/CSSE 474 Theory of Computation MA/CSSE 474 Theory of Computation CFL Hierarchy CFL Decision Problems Your Questions? Previous class days' material Reading Assignments HW 12 or 13 problems Anything else I have included some slides online

More information

Theory of Computation

Theory of Computation Theory of Computation Lecture #10 Sarmad Abbasi Virtual University Sarmad Abbasi (Virtual University) Theory of Computation 1 / 43 Lecture 10: Overview Linear Bounded Automata Acceptance Problem for LBAs

More information

Finite Automata Theory and Formal Languages TMV026/TMV027/DIT321 Responsible: Ana Bove

Finite Automata Theory and Formal Languages TMV026/TMV027/DIT321 Responsible: Ana Bove Finite Automata Theory and Formal Languages TMV026/TMV027/DIT321 Responsible: Ana Bove Tuesday 28 of May 2013 Total: 60 points TMV027/DIT321 registration VT13 TMV026/DIT321 registration before VT13 Exam

More information

Part 4 out of 5 DFA NFA REX. Automata & languages. A primer on the Theory of Computation. Last week, we showed the equivalence of DFA, NFA and REX

Part 4 out of 5 DFA NFA REX. Automata & languages. A primer on the Theory of Computation. Last week, we showed the equivalence of DFA, NFA and REX Automata & languages A primer on the Theory of Computation Laurent Vanbever www.vanbever.eu Part 4 out of 5 ETH Zürich (D-ITET) October, 12 2017 Last week, we showed the equivalence of DFA, NFA and REX

More information

Computability Theory

Computability Theory CS:4330 Theory of Computation Spring 2018 Computability Theory Decidable Problems of CFLs and beyond Haniel Barbosa Readings for this lecture Chapter 4 of [Sipser 1996], 3rd edition. Section 4.1. Decidable

More information

Fundamentele Informatica II

Fundamentele Informatica II Fundamentele Informatica II Answer to selected exercises 5 John C Martin: Introduction to Languages and the Theory of Computation M.M. Bonsangue (and J. Kleijn) Fall 2011 5.1.a (q 0, ab, Z 0 ) (q 1, b,

More information

Context Sensitive Grammar

Context Sensitive Grammar Context Sensitive Grammar Aparna S Vijayan Department of Computer Science and Automation December 2, 2011 Aparna S Vijayan (CSA) CSG December 2, 2011 1 / 12 Contents Aparna S Vijayan (CSA) CSG December

More information

Chomsky Normal Form and TURING MACHINES. TUESDAY Feb 4

Chomsky Normal Form and TURING MACHINES. TUESDAY Feb 4 Chomsky Normal Form and TURING MACHINES TUESDAY Feb 4 CHOMSKY NORMAL FORM A context-free grammar is in Chomsky normal form if every rule is of the form: A BC A a S ε B and C aren t start variables a is

More information

Theory of Computation

Theory of Computation Thomas Zeugmann Hokkaido University Laboratory for Algorithmics http://www-alg.ist.hokudai.ac.jp/ thomas/toc/ Lecture 10: CF, PDAs and Beyond Greibach Normal Form I We want to show that all context-free

More information

Pushdown Automata: Introduction (2)

Pushdown Automata: Introduction (2) Pushdown Automata: Introduction Pushdown automaton (PDA) M = (K, Σ, Γ,, s, A) where K is a set of states Σ is an input alphabet Γ is a set of stack symbols s K is the start state A K is a set of accepting

More information

Undecidable Problems and Reducibility

Undecidable Problems and Reducibility University of Georgia Fall 2014 Reducibility We show a problem decidable/undecidable by reducing it to another problem. One type of reduction: mapping reduction. Definition Let A, B be languages over Σ.

More information

Automata Theory (2A) Young Won Lim 5/31/18

Automata Theory (2A) Young Won Lim 5/31/18 Automata Theory (2A) Copyright (c) 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Push-down Automata = FA + Stack

Push-down Automata = FA + Stack Push-down Automata = FA + Stack PDA Definition A push-down automaton M is a tuple M = (Q,, Γ, δ, q0, F) where Q is a finite set of states is the input alphabet (of terminal symbols, terminals) Γ is the

More information

Context-Free Languages

Context-Free Languages CS:4330 Theory of Computation Spring 2018 Context-Free Languages Pushdown Automata Haniel Barbosa Readings for this lecture Chapter 2 of [Sipser 1996], 3rd edition. Section 2.2. Finite automaton 1 / 13

More information

Ogden s Lemma for CFLs

Ogden s Lemma for CFLs Ogden s Lemma for CFLs Theorem If L is a context-free language, then there exists an integer l such that for any u L with at least l positions marked, u can be written as u = vwxyz such that 1 x and at

More information

Context-Free Languages (Pre Lecture)

Context-Free Languages (Pre Lecture) Context-Free Languages (Pre Lecture) Dr. Neil T. Dantam CSCI-561, Colorado School of Mines Fall 2017 Dantam (Mines CSCI-561) Context-Free Languages (Pre Lecture) Fall 2017 1 / 34 Outline Pumping Lemma

More information

Properties of context-free Languages

Properties of context-free Languages Properties of context-free Languages We simplify CFL s. Greibach Normal Form Chomsky Normal Form We prove pumping lemma for CFL s. We study closure properties and decision properties. Some of them remain,

More information

Pushdown Automata. Pushdown Automata. Pushdown Automata. Pushdown Automata. Pushdown Automata. Pushdown Automata. The stack

Pushdown Automata. Pushdown Automata. Pushdown Automata. Pushdown Automata. Pushdown Automata. Pushdown Automata. The stack A pushdown automata (PDA) is essentially: An NFA with a stack A move of a PDA will depend upon Current state of the machine Current symbol being read in Current symbol popped off the top of the stack With

More information

SYLLABUS. Introduction to Finite Automata, Central Concepts of Automata Theory. CHAPTER - 3 : REGULAR EXPRESSIONS AND LANGUAGES

SYLLABUS. Introduction to Finite Automata, Central Concepts of Automata Theory. CHAPTER - 3 : REGULAR EXPRESSIONS AND LANGUAGES Contents i SYLLABUS UNIT - I CHAPTER - 1 : AUT UTOMA OMATA Introduction to Finite Automata, Central Concepts of Automata Theory. CHAPTER - 2 : FINITE AUT UTOMA OMATA An Informal Picture of Finite Automata,

More information

Languages, regular languages, finite automata

Languages, regular languages, finite automata Notes on Computer Theory Last updated: January, 2018 Languages, regular languages, finite automata Content largely taken from Richards [1] and Sipser [2] 1 Languages An alphabet is a finite set of characters,

More information

SCHEME FOR INTERNAL ASSESSMENT TEST 3

SCHEME FOR INTERNAL ASSESSMENT TEST 3 SCHEME FOR INTERNAL ASSESSMENT TEST 3 Max Marks: 40 Subject& Code: Automata Theory & Computability (15CS54) Sem: V ISE (A & B) Note: Answer any FIVE full questions, choosing one full question from each

More information

SFWR ENG 2FA3. Solution to the Assignment #4

SFWR ENG 2FA3. Solution to the Assignment #4 SFWR ENG 2FA3. Solution to the Assignment #4 Total = 131, 100%= 115 The solutions below are often very detailed on purpose. Such level of details is not required from students solutions. Some questions

More information

Lecture 13: Turing Machine

Lecture 13: Turing Machine Lecture 13: Turing Machine Instructor: Ketan Mulmuley Scriber: Yuan Li February 19, 2015 Turing machine is an abstract machine which in principle can simulate any computation in nature. Church-Turing Thesis:

More information

Harvard CS 121 and CSCI E-207 Lecture 10: Ambiguity, Pushdown Automata

Harvard CS 121 and CSCI E-207 Lecture 10: Ambiguity, Pushdown Automata Harvard CS 121 and CSCI E-207 Lecture 10: Ambiguity, Pushdown Automata Salil Vadhan October 4, 2012 Reading: Sipser, 2.2. Another example of a CFG (with proof) L = {x {a, b} : x has the same # of a s and

More information

Problem Session 5 (CFGs) Talk about the building blocks of CFGs: S 0S 1S ε - everything. S 0S0 1S1 A - waw R. S 0S0 0S1 1S0 1S1 A - xay, where x = y.

Problem Session 5 (CFGs) Talk about the building blocks of CFGs: S 0S 1S ε - everything. S 0S0 1S1 A - waw R. S 0S0 0S1 1S0 1S1 A - xay, where x = y. CSE2001, Fall 2006 1 Problem Session 5 (CFGs) Talk about the building blocks of CFGs: S 0S 1S ε - everything. S 0S0 1S1 A - waw R. S 0S0 0S1 1S0 1S1 A - xay, where x = y. S 00S1 A - xay, where x = 2 y.

More information

CS Pushdown Automata

CS Pushdown Automata Chap. 6 Pushdown Automata 6.1 Definition of Pushdown Automata Example 6.2 L ww R = {ww R w (0+1) * } Palindromes over {0, 1}. A cfg P 0 1 0P0 1P1. Consider a FA with a stack(= a Pushdown automaton; PDA).

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2016 http://cseweb.ucsd.edu/classes/sp16/cse105-ab/ Today's learning goals Sipser Ch 2 Design a PDA and a CFG for a given language Give informal description for a PDA,

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Lecture 14 Ana Bove May 14th 2018 Recap: Context-free Grammars Simplification of grammars: Elimination of ǫ-productions; Elimination of

More information

Harvard CS 121 and CSCI E-207 Lecture 10: CFLs: PDAs, Closure Properties, and Non-CFLs

Harvard CS 121 and CSCI E-207 Lecture 10: CFLs: PDAs, Closure Properties, and Non-CFLs Harvard CS 121 and CSCI E-207 Lecture 10: CFLs: PDAs, Closure Properties, and Non-CFLs Harry Lewis October 8, 2013 Reading: Sipser, pp. 119-128. Pushdown Automata (review) Pushdown Automata = Finite automaton

More information