MANAS Journal of Engineering. Volume 5 (Issue 3) (2017) Pages Formulas for Solutions of the Riccati s Equation

Size: px
Start display at page:

Download "MANAS Journal of Engineering. Volume 5 (Issue 3) (2017) Pages Formulas for Solutions of the Riccati s Equation"

Transcription

1 MANAS Journal of Engineering MJEN Volume 5 (Issue 3) (7) Pages 6-4 Formulas for Soluions of he Riccai s Equaion Avy Asanov, Elman Haar *, Ruhidin Asanov 3 Dearmen of Mahemaics, Kyrgy-Turkish Manas Universiy, Bishkek, Kyrgysan Dearmen of Mahemaics, Igdir Universiy, Igdir, Turkey 3 Dearmen of Alied Mahemaics and Informaics, Kyrgy sae Technical Universiy Bishkek, Kyrgysan Absrac: Keywords: Received: 3-6-7; Acceed: --7 In his aer we obained he formula for he common soluion of Riccai equaions. Here Riccai equaions was solved for common cases. Resuls obained have been comared wih he convenional ones and a commen has been made on hem. Riccai s equaion,aricular soluion, formula for he general soluaıon. Формулы о рещении уравнений Риккати Аннотация: Ключевые слова: На этом работе мы получили формулу для общего решения уравнений Риккати Для общего случае мы получили решений уравнения Риккати. Полученные результаты соответствует классическими результатами. Уравнение Риккати,частный решения, формулу для общего решения. Corresonding Auhor: Haar E., elmanaliyev@homail.com MJEN MANAS Journal of Engineering, Volume 5 (Issue 3) 7

2 Asano, Haar and Asanov, Formulas for Soluions of he Riccai s Equaion. INTRODUCTION We consider he equaion () ( ) a( ) b( ) ( ) c( ), I where I (, ), a (), b () and c () are known coninuous funcions, a ( ) for all I. Many works are dedicaed o he deerminaion of he common soluions of Riccai equaions[- 6]. Bu in common case any formulas for he decision of Riccai s equaıons have no obained. I is well known ha any equaion of he Riccai equaion can always be reduced o he linear Differenial equaions of he second order. In [7] was obained he formula for he general soluions of he linear Differenial equaion of he second order wih he variable coefficiens in he more common cases. In his heme he equaions () is invesigaed in he more common cases.. FORMULA FOR SOLUTION OF THE EQUATION () Deending on he correlaion beween a (), b () and c () formulas for he deerminaion of he arıcular soluıon and he common soluions of his equaion () were obained. Theorem. Le i be a (), b (), c( ) C( I), a( ) for all I, a () c( ) ( ( )) e ( ) ( ) d ( ) ( ) d a ( ) ( ) m ( )( ( )) m ( ) e [ b( ) ]( ( )) m( ) ( ) m( ) a( ) ( ) ( ( )) a( ) ( ) + ( )( ( )) ( ) ( )[ b( ) ]( ( )), I, a( ) a( ) ( ) () where () and () are he firs and second derivaives of he funcions (), a( ), ( ) and m() resecively, he derivaives of he funcions a( ), ( ) and m (), m ( ) and ( ) for all I. Then he arıcular soluion of he equaion ()is wrien as in he nex form. () ( ) ( ) d ( ) [ ( ) m( ) e ], I (3) a () and he general soluion of he Riccai equaion () is given by ( ) ( ) d ex{ ( )[ ( ) m( ) e ] b( )} ( ) ( ) ( ) ( ) d C a( )ex{ ( )[ ( ) m( ) e ] b( )} d (4) where I,C is an arbirary consan. Proof. Differeniaing (3), we obain MJEN MANAS Journal of Engineering, Volume 5 (Issue 3) 7 7

3 Asano, Haar and Asanov, Formulas for Soluions of he Riccai s Equaion a( ) ( ) ( ) ( ) ( ) d ( ) ( ) ( ) d ( ) [ ][ ( ) m( ) e ] [ ( ) m( ) e a () a( ) a( ) ( ) ( ) d m( ) ( ) ( ) e ]. (5) Hence aking ino accoun (3), (5) and () we have a( ) ( ) ( ) ( ) ( ) d ( ) ( ) ( ) d ( ) a( ) ( ) b( ) ( ) [ ][ ( ) m( ) e ] [ ( ) m( ) e a () a( ) a( ) ( ) ( ) d ( ( )) ( ) ( ) d ( m( ) ( ) ( )( ) e ] [ ( ) ( ) m( ) e ) ( ) ( ) ( ) m ( ) e d b ] [ ( ) a () a () ( ) ( ) d m( ) e ] c( ), I. Therefore, () will be a aricular soluion of he equaion (). I is known ha if one can find a aricular soluion () o he equaion (), hen he general soluion can be wrien as ( ) ( ), (6) u () where u () is he general soluion of an associaed linear differenial equaion Solving his equaion (7) we have u( ) [ a( ) ( ) b( )] u( ) a( ), I (7) ( ) ( ) u( ) e [ C e a( ) d], (8) where ( ) a( ) ( ) b( ) ( ){ ( ) m( )ex[ ( ) ( ) d]} b( ), I, (9) Taking ino accoun (8) and (9) from (6), we obain(4). Theorem has been roved. Corollary. Le he condiions of Theorem hold. Then he funcion given by he formula ( s) ( s) ds ( ( ))ex{ ( )[ ( ) m( ) e ] b( )} ( ) ( ), s ( s) ( s) ds ex{ ( )[ ( ) ( )] ( )} ( ( )) ( )ex{ ( )[ ( ) ( ) ] ( )} m b a s s s m s e b s ds is he soluion of equaion () wih iniial condiion ( ), where ( s) ( s) ds () ( ) [ ( ) ( ) ],,. m e I a () MJEN MANAS Journal of Engineering, Volume 5 (Issue 3) 7 8

4 Asano, Haar and Asanov, Formulas for Soluions of he Riccai s Equaion 3. COMPARISON WITH KNOWN RESULTS. According o he given sudy [5](..8,) for he equaion f ( ) a a f, a R, () () ahas been shown a aricular soluion. The equaion () rovides all requiremens of he our heorem for a( ), b( ) f ( ), c( ) a a f ( ), ( ), ( ), m( ) a, a I. Then from (3)we have () a.. In [5](..8,3) for he equaion f ( ) f ( ) () (), Ihas been shown a aricular soluion.the equaion () rovides all requiremens of he heorem for a( ), b( ) f ( ), c( ) f ( ), ( ), ( ), m( ), a I. Then from (3) we obain (), I. 3. In [5](..8,) for he equaion f f g g has been shown a aricular soluion. The equaion () rovides all necessary condiions of he Theorem for ( ) ( ) ( ) ( ), () Then from (3)we have a( ) f ( ), b( ) f ( ) g( ), a( ), c( ) g( ), m( ), ( ), I. ( ), I. 4. In [5](..8,3) for he equaion f f g g g ( ) ( ) ( ) ( ) ( ) (3) ( ) g( ) I, has been shown a aricular soluion. The equaion (3) rovides all necessary condiions of he heorem for MJEN MANAS Journal of Engineering, Volume 5 (Issue 3) 7 9

5 Asano, Haar and Asanov, Formulas for Soluions of he Riccai s Equaion Then from (3) we have ( ) g( ), I. a( ) f ( ), b( ) f ( ) g( ), c( ) g( ), ( ), ( ), m( ) f ( ) g( ), I. 5. In [5] (..8,4) for he equaion ( ) g( )( ( ) f ( )) f ( ) (4) ( ) f ( ) I, has been shown a aricular soluion. The equaion (4)rovides all necessary requiremens of he heorem for a( ) g( ), b( ) f ( ) g( ), c( ) f ( ) g( ) f ( ), ( ), ( ), I Then from (3) we have ( ) f ( ), I. 6. In [5](..8,5) for he equaion f ( ) g ( ) g( ) f ( ), (5) g () () I, has been shown a aricular soluion. The equaion (5) rovides all necessary condiions of he heorem for f ( ) g( ) f ( ) a( ), b( ), c( ), ( ), m( ), I. g( ) f ( ) f ( ) Then from (3) we have g () () I. 7. In [5] (..8,6) for he equaion ( ) ( ) ( )( ( )) (6) f f g f ( ) f ( ), I has been shown a aricular soluion. The equaion (6) rovides all necessary condiions of he heorem for Then from (3) we obain ( ) f ( ), I. 8. In [5] (..8,7) for he equaion f ( ) g( ) g( ) a( ), b( ), c( ), ( ), f ( ) f ( ) ( ), m( ), I MJEN MANAS Journal of Engineering, Volume 5 (Issue 3) 7

6 Asano, Haar and Asanov, Formulas for Soluions of he Riccai s Equaion, (7) ( ), I has been shown a aricular soluion. The equaion (7) rovides all necessary condiions of he heorem for a( ), b( ), c( ), ( ), ( ), m( ), I Then from (3) we obain ( ), I. 9. In [5] (..8,8) for he equaion ( ) ( ), (8) ae ae f f ( ), e I has been shown a aricular soluion. The equaion (8) rovides all a necessary condiions of he heorem for a( ) ae, b( ) ae f ( ), c( ) f ( ), ( ), ( ), m( ), I. Then from (3)we have ( ) e, I. a. In [5](..8.9) for he equaion, (9) ( ) f ae f ( ) ae ( ), ae I has been shown a aricular soluion. The equaion (9) rovides all necessary condiions of he heorem for a( ) f ( ), b( ) ae f ( ), c( ) ae, ( ), ( ), m( ) ae f ( ), I Then from (3)we obain ( ) ae, I.. In [5](..8.) for he equaion n n n f ( ) a g( ) an a ( g( ) f ( )) () a has been shown a aricular soluion. The equaion () rovides all necessary condiions () n MJEN MANAS Journal of Engineering, Volume 5 (Issue 3) 7

7 Asano, Haar and Asanov, Formulas for Soluions of he Riccai s Equaion of he heorem for a f b a g c an a g f n n n ( ) ( ), ( ) ( ), ( ) ( ( ) ( )), ( ), ( ), m( ) ae f ( ), I. n Then from (3)we have () a.. In [5](..8,4) for he equaion f ( ) g( ) ae ae g( ) a e f ( ), () () ae has been shown a aricular soluion. The equaion () rovides all necessary condiions of he heorem for a f b g c a e ae g a e f ( ) ( ), ( ) ( ), ( ) ( ) ( ), ( ), ( ), m( ) ae f ( ), I. Then from (3) we have () ae. 3. In [5](..8,35) for he equaion, () f ( ) ( a ln ) f ( ) aln a ( ) a ln has been shown a aricular soluion. The equaion () rovides all necessary condiions of he heorem for a( ) f ( ), b( ) f ( )( a ln ), c( ) a ln a, ( ), ( ), m( ) a(ln ) f ( ), I. Then from (3) we have ( ) a ln. 4. In [6,case] were invesigaed he equaion (), when d b( ) f ( ) b ( ) f () c ( ) [ ] d a( ) 4 a( ) f ( ) b( ) b( ) a( ) a( ) ( ) { [ b ( ) ] [ b( ) 4 f ( ) b ( ) a f( ) b ( )] f( )}, I 4 (3) MJEN MANAS Journal of Engineering, Volume 5 (Issue 3) 7

8 Asano, Haar and Asanov, Formulas for Soluions of he Riccai s Equaion where b( ), f ( ), a( ) C( I), a( ) for all I, f( ) b ( ), I.Then he general soluions of he Riccai equaion () were given by f ( ) b ( ) d e b( ) f ( ) b ( ) () f ( ) b ( ) d C ( ) a() e d a, where C is arbirary consan. In his case he equaion () rovides all necessary condiions of he heorem for, ( ), ( ), m( ) [ b( ) f( ) b ( )], I, where c () is defined by formulas (3).Then from(3) we have ( ) [ b( ) f ( ) b ( )], I. a ( ) 5. In [6,case7] were invesigaed he equaion (), when a( ) c( ) [ f 4 ( ) f4 ( ) f4 ( ) b( ) f4( )], I, (4) a( ) a( ) 4 where f 4 ( ), a( ), b( ) C( I), a( ) for all I. Then he general soluions of he equaion () were given by [ b( ) f4 ( )] d e f4 () () I C a( )ex{ [ b( ) f ( )] d} 4 a ( ) (5) where C is arbirary consan. In his case on he srengh of (4), he equaion () rovides all necessary condiions of he heorem for f4 Then from (3) we obain ( ) (), I. a ( ) ( ), ( ), m( ) f4( ), I. 6. In [6,case]were invesigaed he equaion (), when b ( ) 4 a ( ) f5 ( ) a( ) b( ) b( ) c( ) f 5( ), I, (6) 4 a( ) a ( ) a( ) MJEN MANAS Journal of Engineering, Volume 5 (Issue 3) 7 3

9 Asano, Haar and Asanov, Formulas for Soluions of he Riccai s Equaion where a( ), b( ), f 5( ) C( I), a( ) for all I. Then he general soluions of he equaion () were given by ex{ a( ) f5( ) d} b () ( ) f5 ( ), I, C c( )ex{ a( ) f ( ) d} d a ( ) 4 5 where C4 is arbirary consan. In his case on he srengh of (6) he equaion () rovides all necessary condiions of he heorem for ( ), ( ), m( ) b( ) a( ) f5( ), I. Then from (3) we obain b () ( ) f5( ), I. a ( ) 4.CONCLUSIONS In he resen aer,we have obained he inegrabiliy condiions of he Riccai Equaion (). The aricular soluion and he general soluions of he Riccai equaions () is resened in he common cases and will be wrien in he forms (3) and (4).The ossibiliy of he alicaion of he obained resuls is also considered. REFERENCES []. Basami A.A.L., Belic M.R.., Perovic N.Z.., Secial Soluions of he Riccai Equaion wih Alicaions o he Gross-Piaevskii Nolinear PDE, 66, (), -. []. Boyle P.P., Tian W., Guan F., The Riccai Equaion in Mahemaical Finance, Journal Symbolic Comuaion, 33,(), [3]. Egorov A.I., Ricca Equaions, Moskow, Nauka, (). [4]. Kamke E., Handbook of Ordinary Differenial Equaions, Moskow, Nauka, (976). [5]. Polyanin A.D., Zaysev V.F., Handbook of Exac Soluions for Ordinary Differenial Equaions, Boca Raon-NewYork, CRC Press, (3). [6]. Tiberin H., Francisco S.N., Lobo M.K.M., Analiical Soluions of he Riccai Equaion wih Coefficiens Saisfying Inegral or Differenial Condiions wih Arbirary Funcions, Journal of Alied Mahemaics,, (4), 9-8. [7]. Asanov A., Chelik M.H., Asanov R., Formulas for Soluion of he Linear Differenial Equaions of he Second Order wih he Variable Coefficiens, Journal of Mahemaics Research, 3, (), MJEN MANAS Journal of Engineering, Volume 5 (Issue 3) 7 4

ENGI 9420 Engineering Analysis Assignment 2 Solutions

ENGI 9420 Engineering Analysis Assignment 2 Solutions ENGI 940 Engineering Analysis Assignmen Soluions 0 Fall [Second order ODEs, Laplace ransforms; Secions.0-.09]. Use Laplace ransforms o solve he iniial value problem [0] dy y, y( 0) 4 d + [This was Quesion

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Properties Of Solutions To A Generalized Liénard Equation With Forcing Term

Properties Of Solutions To A Generalized Liénard Equation With Forcing Term Applied Mahemaics E-Noes, 8(28), 4-44 c ISSN 67-25 Available free a mirror sies of hp://www.mah.nhu.edu.w/ amen/ Properies Of Soluions To A Generalized Liénard Equaion Wih Forcing Term Allan Kroopnick

More information

Undetermined coefficients for local fractional differential equations

Undetermined coefficients for local fractional differential equations Available online a www.isr-publicaions.com/jmcs J. Mah. Compuer Sci. 16 (2016), 140 146 Research Aricle Undeermined coefficiens for local fracional differenial equaions Roshdi Khalil a,, Mohammed Al Horani

More information

Differential Equations

Differential Equations Mah 21 (Fall 29) Differenial Equaions Soluion #3 1. Find he paricular soluion of he following differenial equaion by variaion of parameer (a) y + y = csc (b) 2 y + y y = ln, > Soluion: (a) The corresponding

More information

Ordinary Differential Equations

Ordinary Differential Equations Lecure 22 Ordinary Differenial Equaions Course Coordinaor: Dr. Suresh A. Karha, Associae Professor, Deparmen of Civil Engineering, IIT Guwahai. In naure, mos of he phenomena ha can be mahemaically described

More information

On Gronwall s Type Integral Inequalities with Singular Kernels

On Gronwall s Type Integral Inequalities with Singular Kernels Filoma 31:4 (217), 141 149 DOI 1.2298/FIL17441A Published by Faculy of Sciences and Mahemaics, Universiy of Niš, Serbia Available a: hp://www.pmf.ni.ac.rs/filoma On Gronwall s Type Inegral Inequaliies

More information

MISCELLANEOUS DYNAMIC EQUATIONS. Elvan Akın Bohner and Martin Bohner. 1. Introduction

MISCELLANEOUS DYNAMIC EQUATIONS. Elvan Akın Bohner and Martin Bohner. 1. Introduction MISCELLANEOUS DYNAMIC EQUATIONS Elvan Akın Bohner and Marin Bohner We consider several dynamic equaions and resen mehods on how o solve hese equaions. Among hem are linear equaions of higher order, Euler

More information

A note to the convergence rates in precise asymptotics

A note to the convergence rates in precise asymptotics He Journal of Inequaliies and Alicaions 203, 203:378 h://www.journalofinequaliiesandalicaions.com/conen/203//378 R E S E A R C H Oen Access A noe o he convergence raes in recise asymoics Jianjun He * *

More information

On the Solutions of First and Second Order Nonlinear Initial Value Problems

On the Solutions of First and Second Order Nonlinear Initial Value Problems Proceedings of he World Congress on Engineering 13 Vol I, WCE 13, July 3-5, 13, London, U.K. On he Soluions of Firs and Second Order Nonlinear Iniial Value Problems Sia Charkri Absrac In his paper, we

More information

THE BERNOULLI NUMBERS. t k. = lim. = lim = 1, d t B 1 = lim. 1+e t te t = lim t 0 (e t 1) 2. = lim = 1 2.

THE BERNOULLI NUMBERS. t k. = lim. = lim = 1, d t B 1 = lim. 1+e t te t = lim t 0 (e t 1) 2. = lim = 1 2. THE BERNOULLI NUMBERS The Bernoulli numbers are defined here by he exponenial generaing funcion ( e The firs one is easy o compue: (2 and (3 B 0 lim 0 e lim, 0 e ( d B lim 0 d e +e e lim 0 (e 2 lim 0 2(e

More information

Existence Theory of Second Order Random Differential Equations

Existence Theory of Second Order Random Differential Equations Global Journal of Mahemaical Sciences: Theory and Pracical. ISSN 974-32 Volume 4, Number 3 (22), pp. 33-3 Inernaional Research Publicaion House hp://www.irphouse.com Exisence Theory of Second Order Random

More information

On the Existence, Uniqueness and Stability Behavior of a Random Solution to a Non local Perturbed Stochastic Fractional Integro-Differential Equation

On the Existence, Uniqueness and Stability Behavior of a Random Solution to a Non local Perturbed Stochastic Fractional Integro-Differential Equation On he Exisence, Uniqueness and Sabiliy ehavior of a Random Soluion o a Non local Perurbed Sochasic Fracional Inegro-Differenial Equaion Mahmoud M. El-orai,*, M.A.Abdou, Mohamed Ibrahim M. Youssef Dearmen

More information

Positive continuous solution of a quadratic integral equation of fractional orders

Positive continuous solution of a quadratic integral equation of fractional orders Mah. Sci. Le., No., 9-7 (3) 9 Mahemaical Sciences Leers An Inernaional Journal @ 3 NSP Naural Sciences Publishing Cor. Posiive coninuous soluion of a quadraic inegral equaion of fracional orders A. M.

More information

On Two Integrability Methods of Improper Integrals

On Two Integrability Methods of Improper Integrals Inernaional Journal of Mahemaics and Compuer Science, 13(218), no. 1, 45 5 M CS On Two Inegrabiliy Mehods of Improper Inegrals H. N. ÖZGEN Mahemaics Deparmen Faculy of Educaion Mersin Universiy, TR-33169

More information

Solution of Integro-Differential Equations by Using ELzaki Transform

Solution of Integro-Differential Equations by Using ELzaki Transform Global Journal of Mahemaical Sciences: Theory and Pracical. Volume, Number (), pp. - Inernaional Research Publicaion House hp://www.irphouse.com Soluion of Inegro-Differenial Equaions by Using ELzaki Transform

More information

EXISTENCE OF NON-OSCILLATORY SOLUTIONS TO FIRST-ORDER NEUTRAL DIFFERENTIAL EQUATIONS

EXISTENCE OF NON-OSCILLATORY SOLUTIONS TO FIRST-ORDER NEUTRAL DIFFERENTIAL EQUATIONS Elecronic Journal of Differenial Equaions, Vol. 206 (206, No. 39, pp.. ISSN: 072-669. URL: hp://ejde.mah.xsae.edu or hp://ejde.mah.un.edu fp ejde.mah.xsae.edu EXISTENCE OF NON-OSCILLATORY SOLUTIONS TO

More information

POSITIVE SOLUTIONS OF NEUTRAL DELAY DIFFERENTIAL EQUATION

POSITIVE SOLUTIONS OF NEUTRAL DELAY DIFFERENTIAL EQUATION Novi Sad J. Mah. Vol. 32, No. 2, 2002, 95-108 95 POSITIVE SOLUTIONS OF NEUTRAL DELAY DIFFERENTIAL EQUATION Hajnalka Péics 1, János Karsai 2 Absrac. We consider he scalar nonauonomous neural delay differenial

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

INDEX. Transient analysis 1 Initial Conditions 1

INDEX. Transient analysis 1 Initial Conditions 1 INDEX Secion Page Transien analysis 1 Iniial Condiions 1 Please inform me of your opinion of he relaive emphasis of he review maerial by simply making commens on his page and sending i o me a: Frank Mera

More information

t 2 B F x,t n dsdt t u x,t dxdt

t 2 B F x,t n dsdt t u x,t dxdt Evoluion Equaions For 0, fixed, le U U0, where U denoes a bounded open se in R n.suppose ha U is filled wih a maerial in which a conaminan is being ranspored by various means including diffusion and convecion.

More information

Lecture 20: Riccati Equations and Least Squares Feedback Control

Lecture 20: Riccati Equations and Least Squares Feedback Control 34-5 LINEAR SYSTEMS Lecure : Riccai Equaions and Leas Squares Feedback Conrol 5.6.4 Sae Feedback via Riccai Equaions A recursive approach in generaing he marix-valued funcion W ( ) equaion for i for he

More information

A New Perturbative Approach in Nonlinear Singularity Analysis

A New Perturbative Approach in Nonlinear Singularity Analysis Journal of Mahemaics and Saisics 7 (: 49-54, ISSN 549-644 Science Publicaions A New Perurbaive Approach in Nonlinear Singulariy Analysis Ta-Leung Yee Deparmen of Mahemaics and Informaion Technology, The

More information

An Invariance for (2+1)-Extension of Burgers Equation and Formulae to Obtain Solutions of KP Equation

An Invariance for (2+1)-Extension of Burgers Equation and Formulae to Obtain Solutions of KP Equation Commun Theor Phys Beijing, China 43 2005 pp 591 596 c Inernaional Academic Publishers Vol 43, No 4, April 15, 2005 An Invariance for 2+1-Eension of Burgers Equaion Formulae o Obain Soluions of KP Equaion

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations IOSR Journal of Mahemaics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 1, Issue 6 Ver. II (Nov - Dec. 214), PP 48-54 Variaional Ieraion Mehod for Solving Sysem of Fracional Order Ordinary Differenial

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS ne. J. Ma. Mah. Vo1. {1978)1-1 BEHAVOR OF SECOND ORDER NONLNEAR DFFERENTAL EQUATONS RNA LNG Deparmen of Mahemaics California Sae Universiy Los Angeles, California 93 (Received November 9, 1977 and in revised

More information

Chapter 6. Systems of First Order Linear Differential Equations

Chapter 6. Systems of First Order Linear Differential Equations Chaper 6 Sysems of Firs Order Linear Differenial Equaions We will only discuss firs order sysems However higher order sysems may be made ino firs order sysems by a rick shown below We will have a sligh

More information

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales Advances in Dynamical Sysems and Applicaions. ISSN 0973-5321 Volume 1 Number 1 (2006, pp. 103 112 c Research India Publicaions hp://www.ripublicaion.com/adsa.hm The Asympoic Behavior of Nonoscillaory Soluions

More information

Math 334 Fall 2011 Homework 11 Solutions

Math 334 Fall 2011 Homework 11 Solutions Dec. 2, 2 Mah 334 Fall 2 Homework Soluions Basic Problem. Transform he following iniial value problem ino an iniial value problem for a sysem: u + p()u + q() u g(), u() u, u () v. () Soluion. Le v u. Then

More information

Asymptotic instability of nonlinear differential equations

Asymptotic instability of nonlinear differential equations Elecronic Journal of Differenial Equaions, Vol. 1997(1997), No. 16, pp. 1 7. ISSN: 172-6691. URL: hp://ejde.mah.sw.edu or hp://ejde.mah.un.edu fp (login: fp) 147.26.13.11 or 129.12.3.113 Asympoic insabiliy

More information

Sobolev-type Inequality for Spaces L p(x) (R N )

Sobolev-type Inequality for Spaces L p(x) (R N ) In. J. Conemp. Mah. Sciences, Vol. 2, 27, no. 9, 423-429 Sobolev-ype Inequaliy for Spaces L p(x ( R. Mashiyev and B. Çekiç Universiy of Dicle, Faculy of Sciences and Ars Deparmen of Mahemaics, 228-Diyarbakir,

More information

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0.

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0. Time-Domain Sysem Analysis Coninuous Time. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 1. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 2 Le a sysem be described by a 2 y ( ) + a 1

More information

Rise-Time Distortion of Signal without Carrying Signal

Rise-Time Distortion of Signal without Carrying Signal Journal of Physics: Conference Series PAPER OPEN ACCESS Rise-Time Disorion of Signal wihou Carrying Signal To cie his aricle: N S Bukhman 6 J. Phys.: Conf. Ser. 738 8 View he aricle online for udaes and

More information

CONTRIBUTION TO IMPULSIVE EQUATIONS

CONTRIBUTION TO IMPULSIVE EQUATIONS European Scienific Journal Sepember 214 /SPECIAL/ ediion Vol.3 ISSN: 1857 7881 (Prin) e - ISSN 1857-7431 CONTRIBUTION TO IMPULSIVE EQUATIONS Berrabah Faima Zohra, MA Universiy of sidi bel abbes/ Algeria

More information

Intermediate Differential Equations Review and Basic Ideas

Intermediate Differential Equations Review and Basic Ideas Inermediae Differenial Equaions Review and Basic Ideas John A. Burns Cener for Opimal Design And Conrol Inerdisciplinary Cener forappliedmahemaics Virginia Polyechnic Insiue and Sae Universiy Blacksburg,

More information

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL:

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL: Ann. Func. Anal. 2 2011, no. 2, 34 41 A nnals of F uncional A nalysis ISSN: 2008-8752 elecronic URL: www.emis.de/journals/afa/ CLASSIFICAION OF POSIIVE SOLUIONS OF NONLINEAR SYSEMS OF VOLERRA INEGRAL EQUAIONS

More information

Monotonic Solutions of a Class of Quadratic Singular Integral Equations of Volterra type

Monotonic Solutions of a Class of Quadratic Singular Integral Equations of Volterra type In. J. Conemp. Mah. Sci., Vol. 2, 27, no. 2, 89-2 Monoonic Soluions of a Class of Quadraic Singular Inegral Equaions of Volerra ype Mahmoud M. El Borai Deparmen of Mahemaics, Faculy of Science, Alexandria

More information

LAPLACE TRANSFORM AND TRANSFER FUNCTION

LAPLACE TRANSFORM AND TRANSFER FUNCTION CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dep. of Chemical and Biological Engineering 5-1 Road Map of he Lecure V Laplace Transform and Transfer funcions

More information

A study on Hermite-Hadamard type inequalities for s-convex functions via conformable fractional

A study on Hermite-Hadamard type inequalities for s-convex functions via conformable fractional Sud. Univ. Babeş-Bolyai Mah. 6(7), No. 3, 39 33 DOI:.493/subbmah.7.3.4 A sudy on Hermie-Hadamard ye inequaliies for s-convex funcions via conformable fracional inegrals Erhan Se and Abdurrahman Gözınar

More information

The Existence, Uniqueness and Stability of Almost Periodic Solutions for Riccati Differential Equation

The Existence, Uniqueness and Stability of Almost Periodic Solutions for Riccati Differential Equation ISSN 1749-3889 (prin), 1749-3897 (online) Inernaional Journal of Nonlinear Science Vol.5(2008) No.1,pp.58-64 The Exisence, Uniqueness and Sailiy of Almos Periodic Soluions for Riccai Differenial Equaion

More information

DISCRETE GRONWALL LEMMA AND APPLICATIONS

DISCRETE GRONWALL LEMMA AND APPLICATIONS DISCRETE GRONWALL LEMMA AND APPLICATIONS JOHN M. HOLTE MAA NORTH CENTRAL SECTION MEETING AT UND 24 OCTOBER 29 Gronwall s lemma saes an inequaliy ha is useful in he heory of differenial equaions. Here is

More information

THREE POSITIVE SOLUTIONS OF A THREE-POINT BOUNDARY VALUE PROBLEM FOR THE p-laplacian DYNAMIC EQUATION ON TIME SCALES 1.

THREE POSITIVE SOLUTIONS OF A THREE-POINT BOUNDARY VALUE PROBLEM FOR THE p-laplacian DYNAMIC EQUATION ON TIME SCALES 1. Commun. Oim. Theory 218 (218, Aricle ID 13 hs://doi.org/1.23952/co.218.13 THREE POSITIVE SOLUTIONS OF A THREE-POINT BOUNDARY VALUE PROBLEM FOR THE -LAPLACIAN DYNAMIC EQUATION ON TIME SCALES ABDULKADIR

More information

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits Lecure 13 RC/RL Circuis, Time Dependen Op Amp Circuis RL Circuis The seps involved in solving simple circuis conaining dc sources, resisances, and one energy-sorage elemen (inducance or capaciance) are:

More information

Math 2214 Sol Test 2B Spring 2015

Math 2214 Sol Test 2B Spring 2015 Mah 14 Sol Tes B Sring 015 roblem 1: An objec weighing ounds sreches a verical sring 8 fee beond i naural lengh before coming o res a equilibrium The objec is ushed u 6 fee from i s equilibrium osiion

More information

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx.

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx. . Use Simpson s rule wih n 4 o esimae an () +. Soluion: Since we are using 4 seps, 4 Thus we have [ ( ) f() + 4f + f() + 4f 3 [ + 4 4 6 5 + + 4 4 3 + ] 5 [ + 6 6 5 + + 6 3 + ]. 5. Our funcion is f() +.

More information

On a Fractional Stochastic Landau-Ginzburg Equation

On a Fractional Stochastic Landau-Ginzburg Equation Applied Mahemaical Sciences, Vol. 4, 1, no. 7, 317-35 On a Fracional Sochasic Landau-Ginzburg Equaion Nguyen Tien Dung Deparmen of Mahemaics, FPT Universiy 15B Pham Hung Sree, Hanoi, Vienam dungn@fp.edu.vn

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

An Introduction to Backward Stochastic Differential Equations (BSDEs) PIMS Summer School 2016 in Mathematical Finance.

An Introduction to Backward Stochastic Differential Equations (BSDEs) PIMS Summer School 2016 in Mathematical Finance. 1 An Inroducion o Backward Sochasic Differenial Equaions (BSDEs) PIMS Summer School 2016 in Mahemaical Finance June 25, 2016 Chrisoph Frei cfrei@ualbera.ca This inroducion is based on Touzi [14], Bouchard

More information

Math 334 Test 1 KEY Spring 2010 Section: 001. Instructor: Scott Glasgow Dates: May 10 and 11.

Math 334 Test 1 KEY Spring 2010 Section: 001. Instructor: Scott Glasgow Dates: May 10 and 11. 1 Mah 334 Tes 1 KEY Spring 21 Secion: 1 Insrucor: Sco Glasgow Daes: Ma 1 and 11. Do NOT wrie on his problem saemen bookle, excep for our indicaion of following he honor code jus below. No credi will be

More information

Modified Iterative Method For the Solution of Fredholm Integral Equations of the Second Kind via Matrices

Modified Iterative Method For the Solution of Fredholm Integral Equations of the Second Kind via Matrices Modified Ieraive Mehod For he Soluion of Fredholm Inegral Equaions of he Second Kind via Marices Shoukralla, E. S 1, Saber. Nermein. A 2 and EL-Serafi, S. A. 3 1s Auhor, Prof. Dr, faculy of engineering

More information

L p -L q -Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity

L p -L q -Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity ANNALES POLONICI MATHEMATICI LIV.2 99) L p -L q -Time decay esimae for soluion of he Cauchy problem for hyperbolic parial differenial equaions of linear hermoelasiciy by Jerzy Gawinecki Warszawa) Absrac.

More information

THE WAVE EQUATION. part hand-in for week 9 b. Any dilation v(x, t) = u(λx, λt) of u(x, t) is also a solution (where λ is constant).

THE WAVE EQUATION. part hand-in for week 9 b. Any dilation v(x, t) = u(λx, λt) of u(x, t) is also a solution (where λ is constant). THE WAVE EQUATION 43. (S) Le u(x, ) be a soluion of he wave equaion u u xx = 0. Show ha Q43(a) (c) is a. Any ranslaion v(x, ) = u(x + x 0, + 0 ) of u(x, ) is also a soluion (where x 0, 0 are consans).

More information

Solutions of Ecological models by Homotopy-Perturbation Method (HPM)

Solutions of Ecological models by Homotopy-Perturbation Method (HPM) Ques Journals Journal of Research in Alied Mahemaics Volume ~ Issue 0 (0) : 7- ISSN(Online) : 9-07 ISSN (Prin):9-075 www.quesjournals.org Research Paer Soluions of Ecological models by Homooy-Perurbaion

More information

Stability and Bifurcation in a Neural Network Model with Two Delays

Stability and Bifurcation in a Neural Network Model with Two Delays Inernaional Mahemaical Forum, Vol. 6, 11, no. 35, 175-1731 Sabiliy and Bifurcaion in a Neural Nework Model wih Two Delays GuangPing Hu and XiaoLing Li School of Mahemaics and Physics, Nanjing Universiy

More information

IMPROVED HYPERBOLIC FUNCTION METHOD AND EXACT SOLUTIONS FOR VARIABLE COEFFICIENT BENJAMIN-BONA-MAHONY-BURGERS EQUATION

IMPROVED HYPERBOLIC FUNCTION METHOD AND EXACT SOLUTIONS FOR VARIABLE COEFFICIENT BENJAMIN-BONA-MAHONY-BURGERS EQUATION THERMAL SCIENCE, Year 015, Vol. 19, No. 4, pp. 1183-1187 1183 IMPROVED HYPERBOLIC FUNCTION METHOD AND EXACT SOLUTIONS FOR VARIABLE COEFFICIENT BENJAMIN-BONA-MAHONY-BURGERS EQUATION by Hong-Cai MA a,b*,

More information

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3 and d = c b - b c c d = c b - b c c This process is coninued unil he nh row has been compleed. The complee array of coefficiens is riangular. Noe ha in developing he array an enire row may be divided or

More information

Research Article Existence and Uniqueness of Periodic Solution for Nonlinear Second-Order Ordinary Differential Equations

Research Article Existence and Uniqueness of Periodic Solution for Nonlinear Second-Order Ordinary Differential Equations Hindawi Publishing Corporaion Boundary Value Problems Volume 11, Aricle ID 19156, 11 pages doi:1.1155/11/19156 Research Aricle Exisence and Uniqueness of Periodic Soluion for Nonlinear Second-Order Ordinary

More information

arxiv: v1 [math.ca] 15 Nov 2016

arxiv: v1 [math.ca] 15 Nov 2016 arxiv:6.599v [mah.ca] 5 Nov 26 Counerexamples on Jumarie s hree basic fracional calculus formulae for non-differeniable coninuous funcions Cheng-shi Liu Deparmen of Mahemaics Norheas Peroleum Universiy

More information

METHOD OF CHARACTERISTICS AND GLUON DISTRIBUTION FUNCTION

METHOD OF CHARACTERISTICS AND GLUON DISTRIBUTION FUNCTION METHOD OF CHARACTERISTICS AND GLUON DISTRIBUTION FUNCTION Saiful Islam and D. K. Choudhury Dep. Of Physics Gauhai Universiy, Guwahai, Assam, India. Email : saiful.66@rediffmail.com ; dkc_phys@yahoo.co.in

More information

Comparison between the Discrete and Continuous Time Models

Comparison between the Discrete and Continuous Time Models Comparison beween e Discree and Coninuous Time Models D. Sulsky June 21, 2012 1 Discree o Coninuous Recall e discree ime model Î = AIS Ŝ = S Î. Tese equaions ell us ow e populaion canges from one day o

More information

FINM 6900 Finance Theory

FINM 6900 Finance Theory FINM 6900 Finance Theory Universiy of Queensland Lecure Noe 4 The Lucas Model 1. Inroducion In his lecure we consider a simple endowmen economy in which an unspecified number of raional invesors rade asses

More information

Essential Microeconomics : OPTIMAL CONTROL 1. Consider the following class of optimization problems

Essential Microeconomics : OPTIMAL CONTROL 1. Consider the following class of optimization problems Essenial Microeconomics -- 6.5: OPIMAL CONROL Consider he following class of opimizaion problems Max{ U( k, x) + U+ ( k+ ) k+ k F( k, x)}. { x, k+ } = In he language of conrol heory, he vecor k is he vecor

More information

Olaru Ion Marian. In 1968, Vasilios A. Staikos [6] studied the equation:

Olaru Ion Marian. In 1968, Vasilios A. Staikos [6] studied the equation: ACTA UNIVERSITATIS APULENSIS No 11/2006 Proceedings of he Inernaional Conference on Theory and Applicaion of Mahemaics and Informaics ICTAMI 2005 - Alba Iulia, Romania THE ASYMPTOTIC EQUIVALENCE OF THE

More information

New Ostrowski Type Inequalities for Harmonically Quasi-Convex Functions

New Ostrowski Type Inequalities for Harmonically Quasi-Convex Functions X h Inernaional Saisics Days Conference (ISDC 206), Giresun, Turkey New Osrowski Tye Ineualiies for Harmonically Quasi-Convex Funcions Tuncay Köroğlu,*, İmda İşcan 2, Mehme Kun 3,3 Karadeniz Technical

More information

Stopping Brownian Motion without Anticipation as Close as Possible to its Ultimate Maximum

Stopping Brownian Motion without Anticipation as Close as Possible to its Ultimate Maximum Theory Probab. Al. Vol. 45, No.,, (5-36) Research Reor No. 45, 999, De. Theore. Sais. Aarhus Soing Brownian Moion wihou Aniciaion as Close as Possible o is Ulimae Maximum S. E. GRAVERSEN 3, G. PESKIR 3,

More information

Algorithmic Trading: Optimal Control PIMS Summer School

Algorithmic Trading: Optimal Control PIMS Summer School Algorihmic Trading: Opimal Conrol PIMS Summer School Sebasian Jaimungal, U. Torono Álvaro Carea,U. Oxford many hanks o José Penalva,(U. Carlos III) Luhui Gan (U. Torono) Ryan Donnelly (Swiss Finance Insiue,

More information

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k Challenge Problems DIS 03 and 0 March 6, 05 Choose one of he following problems, and work on i in your group. Your goal is o convince me ha your answer is correc. Even if your answer isn compleely correc,

More information

A Necessary and Sufficient Condition for the Solutions of a Functional Differential Equation to Be Oscillatory or Tend to Zero

A Necessary and Sufficient Condition for the Solutions of a Functional Differential Equation to Be Oscillatory or Tend to Zero JOURNAL OF MAEMAICAL ANALYSIS AND APPLICAIONS 24, 7887 1997 ARICLE NO. AY965143 A Necessary and Sufficien Condiion for he Soluions of a Funcional Differenial Equaion o Be Oscillaory or end o Zero Piambar

More information

CERTAIN CLASSES OF SOLUTIONS OF LAGERSTROM EQUATIONS

CERTAIN CLASSES OF SOLUTIONS OF LAGERSTROM EQUATIONS SARAJEVO JOURNAL OF MATHEMATICS Vol.10 (22 (2014, 67 76 DOI: 10.5644/SJM.10.1.09 CERTAIN CLASSES OF SOLUTIONS OF LAGERSTROM EQUATIONS ALMA OMERSPAHIĆ AND VAHIDIN HADŽIABDIĆ Absrac. This paper presens sufficien

More information

where the coordinate X (t) describes the system motion. X has its origin at the system static equilibrium position (SEP).

where the coordinate X (t) describes the system motion. X has its origin at the system static equilibrium position (SEP). Appendix A: Conservaion of Mechanical Energy = Conservaion of Linear Momenum Consider he moion of a nd order mechanical sysem comprised of he fundamenal mechanical elemens: ineria or mass (M), siffness

More information

A NOTE ON S(t) AND THE ZEROS OF THE RIEMANN ZETA-FUNCTION

A NOTE ON S(t) AND THE ZEROS OF THE RIEMANN ZETA-FUNCTION Bull. London Mah. Soc. 39 2007 482 486 C 2007 London Mahemaical Sociey doi:10.1112/blms/bdm032 A NOTE ON S AND THE ZEROS OF THE RIEMANN ZETA-FUNCTION D. A. GOLDSTON and S. M. GONEK Absrac Le πs denoe he

More information

Fractional Laplace Transform and Fractional Calculus

Fractional Laplace Transform and Fractional Calculus Inernaional Mahemaical Forum, Vol. 12, 217, no. 2, 991-1 HIKARI Ld, www.m-hikari.com hps://doi.org/1.12988/imf.217.71194 Fracional Laplace Transform and Fracional Calculus Gusavo D. Medina 1, Nelson R.

More information

Second quantization and gauge invariance.

Second quantization and gauge invariance. 1 Second quanizaion and gauge invariance. Dan Solomon Rauland-Borg Corporaion Moun Prospec, IL Email: dsolom@uic.edu June, 1. Absrac. I is well known ha he single paricle Dirac equaion is gauge invarian.

More information

Example on p. 157

Example on p. 157 Example 2.5.3. Le where BV [, 1] = Example 2.5.3. on p. 157 { g : [, 1] C g() =, g() = g( + ) [, 1), var (g) = sup g( j+1 ) g( j ) he supremum is aken over all he pariions of [, 1] (1) : = < 1 < < n =

More information

Multi-scale 2D acoustic full waveform inversion with high frequency impulsive source

Multi-scale 2D acoustic full waveform inversion with high frequency impulsive source Muli-scale D acousic full waveform inversion wih high frequency impulsive source Vladimir N Zubov*, Universiy of Calgary, Calgary AB vzubov@ucalgaryca and Michael P Lamoureux, Universiy of Calgary, Calgary

More information

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004 ODEs II, Lecure : Homogeneous Linear Sysems - I Mike Raugh March 8, 4 Inroducion. In he firs lecure we discussed a sysem of linear ODEs for modeling he excreion of lead from he human body, saw how o ransform

More information

DYNAMIC ECONOMETRIC MODELS vol NICHOLAS COPERNICUS UNIVERSITY - TORUŃ Józef Stawicki and Joanna Górka Nicholas Copernicus University

DYNAMIC ECONOMETRIC MODELS vol NICHOLAS COPERNICUS UNIVERSITY - TORUŃ Józef Stawicki and Joanna Górka Nicholas Copernicus University DYNAMIC ECONOMETRIC MODELS vol.. - NICHOLAS COPERNICUS UNIVERSITY - TORUŃ 996 Józef Sawicki and Joanna Górka Nicholas Copernicus Universiy ARMA represenaion for a sum of auoregressive processes In he ime

More information

Harmonic oscillator in quantum mechanics

Harmonic oscillator in quantum mechanics Harmonic oscillaor in quanum mechanics PHYS400, Deparmen of Physics, Universiy of onnecicu hp://www.phys.uconn.edu/phys400/ Las modified: May, 05 Dimensionless Schrödinger s equaion in quanum mechanics

More information

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS May 4 7, 00, Wilmingon, NC, USA pp 0 Oscillaion of an Euler Cauchy Dynamic Equaion S Huff, G Olumolode,

More information

2. Nonlinear Conservation Law Equations

2. Nonlinear Conservation Law Equations . Nonlinear Conservaion Law Equaions One of he clear lessons learned over recen years in sudying nonlinear parial differenial equaions is ha i is generally no wise o ry o aack a general class of nonlinear

More information

SUFFICIENT CONDITIONS FOR EXISTENCE SOLUTION OF LINEAR TWO-POINT BOUNDARY PROBLEM IN MINIMIZATION OF QUADRATIC FUNCTIONAL

SUFFICIENT CONDITIONS FOR EXISTENCE SOLUTION OF LINEAR TWO-POINT BOUNDARY PROBLEM IN MINIMIZATION OF QUADRATIC FUNCTIONAL HE PUBLISHING HOUSE PROCEEDINGS OF HE ROMANIAN ACADEMY, Series A, OF HE ROMANIAN ACADEMY Volume, Number 4/200, pp 287 293 SUFFICIEN CONDIIONS FOR EXISENCE SOLUION OF LINEAR WO-POIN BOUNDARY PROBLEM IN

More information

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems.

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems. Mah 2250-004 Week 4 April 6-20 secions 7.-7.3 firs order sysems of linear differenial equaions; 7.4 mass-spring sysems. Mon Apr 6 7.-7.2 Sysems of differenial equaions (7.), and he vecor Calculus we need

More information

2 Some Property of Exponential Map of Matrix

2 Some Property of Exponential Map of Matrix Soluion Se for Exercise Session No8 Course: Mahemaical Aspecs of Symmeries in Physics, ICFP Maser Program for M 22nd, January 205, a Room 235A Lecure by Amir-Kian Kashani-Poor email: kashani@lpensfr Exercise

More information

Analytic Model and Bilateral Approximation for Clocked Comparator

Analytic Model and Bilateral Approximation for Clocked Comparator Analyic Model and Bilaeral Approximaion for Clocked Comparaor M. Greians, E. Hermanis, G.Supols Insiue of, Riga, Lavia, e-mail: gais.supols@edi.lv Research is suppored by: 1) ESF projec Nr.1DP/1.1.1.2.0/09/APIA/VIAA/020,

More information

EXERCISES FOR SECTION 1.5

EXERCISES FOR SECTION 1.5 1.5 Exisence and Uniqueness of Soluions 43 20. 1 v c 21. 1 v c 1 2 4 6 8 10 1 2 2 4 6 8 10 Graph of approximae soluion obained using Euler s mehod wih = 0.1. Graph of approximae soluion obained using Euler

More information

Fractional Method of Characteristics for Fractional Partial Differential Equations

Fractional Method of Characteristics for Fractional Partial Differential Equations Fracional Mehod of Characerisics for Fracional Parial Differenial Equaions Guo-cheng Wu* Modern Teile Insiue, Donghua Universiy, 188 Yan-an ilu Road, Shanghai 51, PR China Absrac The mehod of characerisics

More information

Improved Approximate Solutions for Nonlinear Evolutions Equations in Mathematical Physics Using the Reduced Differential Transform Method

Improved Approximate Solutions for Nonlinear Evolutions Equations in Mathematical Physics Using the Reduced Differential Transform Method Journal of Applied Mahemaics & Bioinformaics, vol., no., 01, 1-14 ISSN: 179-660 (prin), 179-699 (online) Scienpress Ld, 01 Improved Approimae Soluions for Nonlinear Evoluions Equaions in Mahemaical Physics

More information

POSITIVE AND MONOTONE SYSTEMS IN A PARTIALLY ORDERED SPACE

POSITIVE AND MONOTONE SYSTEMS IN A PARTIALLY ORDERED SPACE Urainian Mahemaical Journal, Vol. 55, No. 2, 2003 POSITIVE AND MONOTONE SYSTEMS IN A PARTIALLY ORDERED SPACE A. G. Mazo UDC 517.983.27 We invesigae properies of posiive and monoone differenial sysems wih

More information

Non-existence of Global Solutions to a Wave Equation with Fractional Damping

Non-existence of Global Solutions to a Wave Equation with Fractional Damping IAEG Inernaional Journal of Alied Mahemaics, 4:, IJAM_4 6 on-exisence of Global Soluions o a Wave Equaion wih Fracional Daming Mohamed Berbiche, Ali Haem Absrac We consider he nonlinear fracional waveequaion

More information

On Oscillation of a Generalized Logistic Equation with Several Delays

On Oscillation of a Generalized Logistic Equation with Several Delays Journal of Mahemaical Analysis and Applicaions 253, 389 45 (21) doi:1.16/jmaa.2.714, available online a hp://www.idealibrary.com on On Oscillaion of a Generalized Logisic Equaion wih Several Delays Leonid

More information

The expectation value of the field operator.

The expectation value of the field operator. The expecaion value of he field operaor. Dan Solomon Universiy of Illinois Chicago, IL dsolom@uic.edu June, 04 Absrac. Much of he mahemaical developmen of quanum field heory has been in suppor of deermining

More information

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law Predaor - Prey Model Trajecories and he nonlinear conservaion law James K. Peerson Deparmen of Biological Sciences and Deparmen of Mahemaical Sciences Clemson Universiy Ocober 28, 213 Ouline Drawing Trajecories

More information

Class Meeting # 10: Introduction to the Wave Equation

Class Meeting # 10: Introduction to the Wave Equation MATH 8.5 COURSE NOTES - CLASS MEETING # 0 8.5 Inroducion o PDEs, Fall 0 Professor: Jared Speck Class Meeing # 0: Inroducion o he Wave Equaion. Wha is he wave equaion? The sandard wave equaion for a funcion

More information

HOMEWORK # 2: MATH 211, SPRING Note: This is the last solution set where I will describe the MATLAB I used to make my pictures.

HOMEWORK # 2: MATH 211, SPRING Note: This is the last solution set where I will describe the MATLAB I used to make my pictures. HOMEWORK # 2: MATH 2, SPRING 25 TJ HITCHMAN Noe: This is he las soluion se where I will describe he MATLAB I used o make my picures.. Exercises from he ex.. Chaper 2.. Problem 6. We are o show ha y() =

More information

AQA Maths M2. Topic Questions from Papers. Differential Equations. Answers

AQA Maths M2. Topic Questions from Papers. Differential Equations. Answers AQA Mahs M Topic Quesions from Papers Differenial Equaions Answers PhysicsAndMahsTuor.com Q Soluion Marks Toal Commens M 600 0 = A Applying Newonís second law wih 0 and. Correc equaion = 0 dm Separaing

More information

Some New Uniqueness Results of Solutions to Nonlinear Fractional Integro-Differential Equations

Some New Uniqueness Results of Solutions to Nonlinear Fractional Integro-Differential Equations Annals of Pure and Applied Mahemaics Vol. 6, No. 2, 28, 345-352 ISSN: 2279-87X (P), 2279-888(online) Published on 22 February 28 www.researchmahsci.org DOI: hp://dx.doi.org/.22457/apam.v6n2a Annals of

More information

1 st order ODE Initial Condition

1 st order ODE Initial Condition Mah-33 Chapers 1-1 s Order ODE Sepember 1, 17 1 1 s order ODE Iniial Condiion f, sandard form LINEAR NON-LINEAR,, p g differenial form M x dx N x d differenial form is equivalen o a pair of differenial

More information

Haar Wavelet Operational Matrix Method for Solving Fractional Partial Differential Equations

Haar Wavelet Operational Matrix Method for Solving Fractional Partial Differential Equations Copyrigh 22 Tech Science Press CMES, vol.88, no.3, pp.229-243, 22 Haar Wavele Operaional Mari Mehod for Solving Fracional Parial Differenial Equaions Mingu Yi and Yiming Chen Absrac: In his paper, Haar

More information