DISCRETE GRONWALL LEMMA AND APPLICATIONS

Size: px
Start display at page:

Download "DISCRETE GRONWALL LEMMA AND APPLICATIONS"

Transcription

1 DISCRETE GRONWALL LEMMA AND APPLICATIONS JOHN M. HOLTE MAA NORTH CENTRAL SECTION MEETING AT UND 24 OCTOBER 29 Gronwall s lemma saes an inequaliy ha is useful in he heory of differenial equaions. Here is one version of i [1, p, 283]:. Gronwall s lemma. Le y(),f(), and g() be nonnegaive funcions on [,T] having one-sided limis a every [,T], and assume ha for T we have Then for T we also have Proof. y() f()+ y() f()+ g(s)y(s) ds. g(s)f(s)exp g(u) du ds. s Le I() := g(s)y(s) ds and G() := g(s) ds. Now I () = g()y() g()f()+g()i() ouside a denumerable se, and d d e G() I() =e G() {I () g()i()} e G() g()f(), so e G() I() and y() f()+i() f()+ e G(s) g(s)f(s) ds. Therefore, I() e G() G(s) g(s)f(s) ds. e G() G(s) g(s)f(s) ds Here is our firs formulaion of a discree version of his lemma: 1. Discree Gronwall inequaliy. If y n, f n, and g n are nonnegaive sequences and (1) y n f n + g k y k for n, hen (2) y n f n + f k g k exp( k<j<n g j ) for n. The proof ha follows firs gives he exac soluion for y n when inequaliy in (1) is replaced by equaliy. Then i shows ha any soluion of he inequaliy is dominaed by his exac soluion, from which (2) quickly follows. Firs we prove a lemma giving a soluion of he equaliy when f n Lemma. Le g n be a sequence. For n le (3) G n := (1 + g j ). j<n 1

2 Then G n =1+ j<n g j G j for n, and, more generally, for k n, (4) G n = G k + k j<n g j G j. Proof. An empy produc is 1, and an empy sum is, so he formulas hold for n = (and k = ). Lem. Assuming he formulas hold for n = m, we have G m+1 =(1+g m )G m = G m + g m G m =1+ g k G k + g m G m =1+ g k G k, and for k<m k m, G m+1 = G m + g m G m = G k + k j<m conclusions follow by mahemaical inducion. g j G j + g m G m = G k + k<m+1 k j<m+1 g j G j. The 3. Proposiion. Assume x n, f n, and g n are nonnegaive sequences and (5) x n = f n + g k x k for n. Then (6) x n = f n + f k g k (1 + g j )=f n + f k g k G n /G k+1 k<j<n for n. Here G n is defined by (3). Proof. Le χ n := f n + f k g k G n /G k+1. We prove ha x n = χ n for n by inducion. For n = boh sides equal f.lem>. Assume x n = χ n for n<m.by

3 (5), x m g k x k g k χ k k<m k<m k<m k<m k<m g k {f k + j<k g k f k + g k f k + g k f k + k<m k<m j<k f j g j G k /G j+1 } g k f j g j G k /G j+1 j<m 1 j<k<m f m 1 g m 1 + k<m k<m 1 k<j<m g k f j g j G k /G j+1 g j f k g k G j /G k+1 {f k g k (1 + g j G j /G k+1 )} k<m 1 k<j<m f k g k G m /G k+1 = χ m by (4). The conclusion follows by inducion. The following heorem acually gives a sharper resul han he discree Gronwall inequaliy. 4. Theorem: Sharp Gronwall Inequaliy. Assume y n, f n, and g n are nonnegaive sequences and (7) y n f n + g k y k for n. Then (8) y n f n + f k g k (1 + g j ) k<j<n for n. Proof. Le x n be as in he previous proposiion. Then an easy inducion shows ha y n x n for every n. Alernaive Proof. For n = inequaliy (7) implies y f, whence inequaliy (8) holds for n =. Lem>. Assume ha (8) holds for n<m. By hypohesis (7) and his

4 inducion hypohesis, G (m) j y m f m + k<m f m + k<m j<k<m g k j<m j<i<k g k y k g k f j g j G (m) j where (by an implici inducion) =1+ (1 + g i ) f k + j<k f j g j j<i<k (1 + g i ) =1+g j+1 1+g j+2 (1 + g j+1 )+ + g m 1 (1 + g j+1 ) (1 + g m 2 ) =(1+g j+1 )(1 + g j g m 1 (1 + g j+2 ) (1 + g m 2 )) = = j<i<m (1 + g i ). Thus inequaliy (8) holds for n = m. By mahemaical inducion, inequaliy (8) holds for every n. Proof of he Discree Gronwall inequaliy. he previous heorem. Use he inequaliy 1 + g j exp(g j ) in 5. Anoher discree Gronwall inequaliy Here is anoher form of Gronwall s lemma ha is someimes invoked in differenial equaions [2, pp ]: Le y and g be nonnegaive inegrable funcions and c a nonnegaive consan. If y() c + g(s)y(s) ds for, hen y() c exp g(s) ds for. Proposiion: Special Gronwall Inequaliy. Le y n and g n be nonnegaive sequences and c a nonnegaive consan. If y n c + g k y k for n, hen y n c j<n (1 + g j ) c exp j<n g j for n.

5 Proof. Assume he hypohesis and apply he Sharp Gronwall Inequaliy wih f n c: y n c + cg k (1 + g j ) = c + c = c + c{ = c j<n c exp j<n k<j<n { k j<n (1 + g j ) (1 + g j ) n j<n k+1 j<n (1 + g j ) [empy produc is 1] j<n g j (1 + g j )} (1 + g j )} [elescoping sum] [1 + g j e g j ]. Nonhomogeneous Linear Sysems One area where Gronwall s inequaliy is used is he sudy of he asympoic behavior of nonhomogeneous linear sysems of differenial equaions. We are ineresed in obaining discree analogs. 6. Firs-order nonhomogeneous linear differenial equaions Consider he firs-order nonhomogenous vecor differenial equaion dx = A()x + f() d for wih iniial condiion x() = c, where A() is a coninuous d d marix, f() is a coninuous d 1 vecor, and x() and c are a d 1 vecors. Is soluion may be obained in erms of d linearly independen soluions of he corresponding homogeneous equaion as follows: x() =Y ()c + Y () where Y () is he d d marix soluion of dy d Y (s) 1 f(s) ds = A()Y wih Y () = I. [2, pp ] 7. Firs-order nonhomogeneous linear difference equaions We prove he discree counerpar. For vecor sequences x(n) he forward difference operaor is defined by: x(n) = x(n + 1) x(n). The analog of he differenial equaion is x(n) =A(n)x(n)+f(n), or for n wih x() = c. x(n +1)=(I + A(n))x(n)+f(n) Proposiion. Le x(n) and f(n) be sequences of d 1 vecors, le c be a fixed d 1 vecor, and le A(n) be a sequence of d d marices. Assume ha I + A(n) is inverible

6 for each n. If x(n) =A(n)x(n)+f(n) for n and x() = c, and if Y (n) is he d d soluion of Y (n) =A(n)Y (n) wih Y () = I, hen (9) x(n) =Y (n)c + Y (n) Y (k +1) 1 f(k) for n. Proof. Assuming I + A(n) is inverible for n, we le Z(n) be he marix soluion of he adjoin equaion Z(n) = Z(n +1)A(n) for n wih Z() = I. Then ( Z(n))Y (n) = Z(n +1)A(n)Y (n) and Z(n +1) Y (n) =Z(n +1)A(n)Y (n), so ( Z(n))Y (n)+z(n +1)A(n)Y (n) =, he zero marix, i.e., (Z(n)Y (n)) =. Therefore Z(n)Y (n) =C, a consan marix. Because Z() = I and Y () = I, we have Z(n)Y (n) =I, whence Z(n) =Y (n) 1 for n. Now muliply x(n) =A(n)x(n)+f(n) on he lef by Z(n +1)oge Z(n +1) x(n) =Z(n +1)A(n)x(n)+Z(n +1)f(n), muliply Z(n) = Z(n +1)A(n) on he righ by x(n) oge and add o ge for n, i.e., Therefore, so ( Z(n))x(n) = Z(n +1)A(n)x(n), Z(n +1) x(n)+( Z(n))x(n) =Z(n +1)f(n) (Z(n)x(n)) = Z(n +1)f(n). (Z(k)x(k)) = Z(n)x(n) Z()x() = Since Z() = I and each Z(n) =Y (n) 1, x(n) =Y (n)x() + Y (n) Z(k +1)f(k), Z(k +1)f(k). Y (k +1) 1 f(k). 8. Marix differenial equaions and linearly independen soluions In he case of he marix differenial equaion dx d X = A()X() one can show ha = d d (race A()) X(), where X() = de X(), whence X() = X() exp race A(s) ds. [2, p. 88] From his i follows ha a se of d linearly independen vecor soluions of dx = A()x will remain linearly independen as ime goes on. d 9. Marix difference equaions and linearly independen soluions The discree analog does no play ou in he same nea way, bu i is even simpler. If he sequence X(n) of d d marices saisfies X(n) =A(n)X(n) forn, hen X(n +1)= (I +A(n))X(n) forn, so ha X(n) =(I +A(n 1))(I +A(n 2)) (I +A())X() for

7 n>. Thus, if each I + A(k) is inverible, hen X(n) is nonsingular whenever X() is, and so a se of d linearly independen vecor soluions of x(n) = A(n)x(n) will remain linearly independen as ime n goes on. Le denoe a norm for d-vecors and he corresponding operaor norm for d d marices. For example, x and A could be defined as he sums of he absolue values of heir componens. 1. A differenial equaion applicaion of Gronwall s inequaliy One applicaion of Gronwall s inequaliy is in he proof of he following heorem. [2, pp ] Theorem. Assume lim A() =A, a consan marix. If all he soluions of he limiing homogeneous equaion dx d = Ax remain bounded as, hen he same is rue of all soluions of he nonhomogeneous equaion provided ha and dx d = A()x + f() A() A d < f() d <. 11. A difference equaion applicaion of Gronwall s inequaliy Our analogous heorem is he following. Theorem. Assume ha lim n A(n) =A, a consan marix. If all he soluions of he limiing homogeneous equaion x(n) =Ax(n) for n remain bounded as n, hen he same is rue of all soluions of he nonhomogeneous equaion (1) x(n) =A(n)x(n)+f(n) for n provided ha and Proof. A(n) A < n= f(n) <. n= Le B(n) =A(n) A and rewrie (1) as x(n) =Ax(n)+B(n)x(n)+f(n).

8 By (9) wih f(n) replaced by B(n)x(n)+f(n), we find x(n) =Y (n)x() + Y (n) Y (k +1) 1 (B(k)x(k)+f(k)) where Y (n) =AY (n) forn and Y () = I. Therefore Y (n) =(I + A) n for n and Y (n)y (k +1) 1 =(I + A) n (I + A) (k+1) =(I + A) n k 1 = Y (n k 1) and x(n) =Y (n)x() + Y (n k 1)(B(k)x(k)+f(k)). By hypohesis, every Y (n) c 1, a consan, so, upon aking norms, we ge x(n) Y (n) x() + Y (n k 1) ( B(k) x(k) + f(k) ) c 1 x() +c 1 = f n + g k x(k) f(k) + c 1 B(k) x(k) where f n is he sum of he firs wo erms and g k = c 1 B(k). Here f n = c 1 x() +c 1 f(k) so c 1 x() +c 1 x(n) c 2 + k< f(k) =: c 2 <, c 1 B(k) x(k). By he Special Gronwall Inequaliy, x(n) c 2 exp c 1 B(k) c 2 exp showing ha he soluions are bounded. References k< c 1 A(k) A [1] Dieudonné, J., Foundaions of Modern Analysis, Academic Press, 196. [2] Sruble, Raimond A., Nonlinear Differenial Equaions, McGraw-Hill, New York, address: hole@gusavus.edu <,

DISCRETE GRONWALL LEMMA AND APPLICATIONS

DISCRETE GRONWALL LEMMA AND APPLICATIONS DISCRETE GRONWALL LEMMA AND APPLICATIONS JOHN M. HOLTE Variations of Gronwall s Lemma Gronwall s lemma, which solves a certain kind of inequality for a function, is useful in the theory of differential

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

Chapter 3 Boundary Value Problem

Chapter 3 Boundary Value Problem Chaper 3 Boundary Value Problem A boundary value problem (BVP) is a problem, ypically an ODE or a PDE, which has values assigned on he physical boundary of he domain in which he problem is specified. Le

More information

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales Advances in Dynamical Sysems and Applicaions. ISSN 0973-5321 Volume 1 Number 1 (2006, pp. 103 112 c Research India Publicaions hp://www.ripublicaion.com/adsa.hm The Asympoic Behavior of Nonoscillaory Soluions

More information

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t... Mah 228- Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger

More information

Math 10B: Mock Mid II. April 13, 2016

Math 10B: Mock Mid II. April 13, 2016 Name: Soluions Mah 10B: Mock Mid II April 13, 016 1. ( poins) Sae, wih jusificaion, wheher he following saemens are rue or false. (a) If a 3 3 marix A saisfies A 3 A = 0, hen i canno be inverible. True.

More information

Lecture 20: Riccati Equations and Least Squares Feedback Control

Lecture 20: Riccati Equations and Least Squares Feedback Control 34-5 LINEAR SYSTEMS Lecure : Riccai Equaions and Leas Squares Feedback Conrol 5.6.4 Sae Feedback via Riccai Equaions A recursive approach in generaing he marix-valued funcion W ( ) equaion for i for he

More information

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations IOSR Journal of Mahemaics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 1, Issue 6 Ver. II (Nov - Dec. 214), PP 48-54 Variaional Ieraion Mehod for Solving Sysem of Fracional Order Ordinary Differenial

More information

L p -L q -Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity

L p -L q -Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity ANNALES POLONICI MATHEMATICI LIV.2 99) L p -L q -Time decay esimae for soluion of he Cauchy problem for hyperbolic parial differenial equaions of linear hermoelasiciy by Jerzy Gawinecki Warszawa) Absrac.

More information

On Gronwall s Type Integral Inequalities with Singular Kernels

On Gronwall s Type Integral Inequalities with Singular Kernels Filoma 31:4 (217), 141 149 DOI 1.2298/FIL17441A Published by Faculy of Sciences and Mahemaics, Universiy of Niš, Serbia Available a: hp://www.pmf.ni.ac.rs/filoma On Gronwall s Type Inegral Inequaliies

More information

Asymptotic instability of nonlinear differential equations

Asymptotic instability of nonlinear differential equations Elecronic Journal of Differenial Equaions, Vol. 1997(1997), No. 16, pp. 1 7. ISSN: 172-6691. URL: hp://ejde.mah.sw.edu or hp://ejde.mah.un.edu fp (login: fp) 147.26.13.11 or 129.12.3.113 Asympoic insabiliy

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information

Math 334 Fall 2011 Homework 11 Solutions

Math 334 Fall 2011 Homework 11 Solutions Dec. 2, 2 Mah 334 Fall 2 Homework Soluions Basic Problem. Transform he following iniial value problem ino an iniial value problem for a sysem: u + p()u + q() u g(), u() u, u () v. () Soluion. Le v u. Then

More information

The expectation value of the field operator.

The expectation value of the field operator. The expecaion value of he field operaor. Dan Solomon Universiy of Illinois Chicago, IL dsolom@uic.edu June, 04 Absrac. Much of he mahemaical developmen of quanum field heory has been in suppor of deermining

More information

System of Linear Differential Equations

System of Linear Differential Equations Sysem of Linear Differenial Equaions In "Ordinary Differenial Equaions" we've learned how o solve a differenial equaion for a variable, such as: y'k5$e K2$x =0 solve DE yx = K 5 2 ek2 x C_C1 2$y''C7$y

More information

Example on p. 157

Example on p. 157 Example 2.5.3. Le where BV [, 1] = Example 2.5.3. on p. 157 { g : [, 1] C g() =, g() = g( + ) [, 1), var (g) = sup g( j+1 ) g( j ) he supremum is aken over all he pariions of [, 1] (1) : = < 1 < < n =

More information

dy dx = xey (a) y(0) = 2 (b) y(1) = 2.5 SOLUTION: See next page

dy dx = xey (a) y(0) = 2 (b) y(1) = 2.5 SOLUTION: See next page Assignmen 1 MATH 2270 SOLUTION Please wrie ou complee soluions for each of he following 6 problems (one more will sill be added). You may, of course, consul wih your classmaes, he exbook or oher resources,

More information

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004 ODEs II, Lecure : Homogeneous Linear Sysems - I Mike Raugh March 8, 4 Inroducion. In he firs lecure we discussed a sysem of linear ODEs for modeling he excreion of lead from he human body, saw how o ransform

More information

Chapter 6. Systems of First Order Linear Differential Equations

Chapter 6. Systems of First Order Linear Differential Equations Chaper 6 Sysems of Firs Order Linear Differenial Equaions We will only discuss firs order sysems However higher order sysems may be made ino firs order sysems by a rick shown below We will have a sligh

More information

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k Challenge Problems DIS 03 and 0 March 6, 05 Choose one of he following problems, and work on i in your group. Your goal is o convince me ha your answer is correc. Even if your answer isn compleely correc,

More information

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx.

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx. . Use Simpson s rule wih n 4 o esimae an () +. Soluion: Since we are using 4 seps, 4 Thus we have [ ( ) f() + 4f + f() + 4f 3 [ + 4 4 6 5 + + 4 4 3 + ] 5 [ + 6 6 5 + + 6 3 + ]. 5. Our funcion is f() +.

More information

t 2 B F x,t n dsdt t u x,t dxdt

t 2 B F x,t n dsdt t u x,t dxdt Evoluion Equaions For 0, fixed, le U U0, where U denoes a bounded open se in R n.suppose ha U is filled wih a maerial in which a conaminan is being ranspored by various means including diffusion and convecion.

More information

Properties Of Solutions To A Generalized Liénard Equation With Forcing Term

Properties Of Solutions To A Generalized Liénard Equation With Forcing Term Applied Mahemaics E-Noes, 8(28), 4-44 c ISSN 67-25 Available free a mirror sies of hp://www.mah.nhu.edu.w/ amen/ Properies Of Soluions To A Generalized Liénard Equaion Wih Forcing Term Allan Kroopnick

More information

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS May 4 7, 00, Wilmingon, NC, USA pp 0 Oscillaion of an Euler Cauchy Dynamic Equaion S Huff, G Olumolode,

More information

On Oscillation of a Generalized Logistic Equation with Several Delays

On Oscillation of a Generalized Logistic Equation with Several Delays Journal of Mahemaical Analysis and Applicaions 253, 389 45 (21) doi:1.16/jmaa.2.714, available online a hp://www.idealibrary.com on On Oscillaion of a Generalized Logisic Equaion wih Several Delays Leonid

More information

Lecture 1 Overview. course mechanics. outline & topics. what is a linear dynamical system? why study linear systems? some examples

Lecture 1 Overview. course mechanics. outline & topics. what is a linear dynamical system? why study linear systems? some examples EE263 Auumn 27-8 Sephen Boyd Lecure 1 Overview course mechanics ouline & opics wha is a linear dynamical sysem? why sudy linear sysems? some examples 1 1 Course mechanics all class info, lecures, homeworks,

More information

Convergence of the Neumann series in higher norms

Convergence of the Neumann series in higher norms Convergence of he Neumann series in higher norms Charles L. Epsein Deparmen of Mahemaics, Universiy of Pennsylvania Version 1.0 Augus 1, 003 Absrac Naural condiions on an operaor A are given so ha he Neumann

More information

t + t sin t t cos t sin t. t cos t sin t dt t 2 = exp 2 log t log(t cos t sin t) = Multiplying by this factor and then integrating, we conclude that

t + t sin t t cos t sin t. t cos t sin t dt t 2 = exp 2 log t log(t cos t sin t) = Multiplying by this factor and then integrating, we conclude that ODEs, Homework #4 Soluions. Check ha y ( = is a soluion of he second-order ODE ( cos sin y + y sin y sin = 0 and hen use his fac o find all soluions of he ODE. When y =, we have y = and also y = 0, so

More information

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL:

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL: Ann. Func. Anal. 2 2011, no. 2, 34 41 A nnals of F uncional A nalysis ISSN: 2008-8752 elecronic URL: www.emis.de/journals/afa/ CLASSIFICAION OF POSIIVE SOLUIONS OF NONLINEAR SYSEMS OF VOLERRA INEGRAL EQUAIONS

More information

CONTRIBUTION TO IMPULSIVE EQUATIONS

CONTRIBUTION TO IMPULSIVE EQUATIONS European Scienific Journal Sepember 214 /SPECIAL/ ediion Vol.3 ISSN: 1857 7881 (Prin) e - ISSN 1857-7431 CONTRIBUTION TO IMPULSIVE EQUATIONS Berrabah Faima Zohra, MA Universiy of sidi bel abbes/ Algeria

More information

STABILITY OF PEXIDERIZED QUADRATIC FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN FUZZY NORMED SPASES

STABILITY OF PEXIDERIZED QUADRATIC FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN FUZZY NORMED SPASES Novi Sad J. Mah. Vol. 46, No. 1, 2016, 15-25 STABILITY OF PEXIDERIZED QUADRATIC FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN FUZZY NORMED SPASES N. Eghbali 1 Absrac. We deermine some sabiliy resuls concerning

More information

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities: Mah 4 Eam Review Problems Problem. Calculae he 3rd Taylor polynomial for arcsin a =. Soluion. Le f() = arcsin. For his problem, we use he formula f() + f () + f ()! + f () 3! for he 3rd Taylor polynomial

More information

On a Fractional Stochastic Landau-Ginzburg Equation

On a Fractional Stochastic Landau-Ginzburg Equation Applied Mahemaical Sciences, Vol. 4, 1, no. 7, 317-35 On a Fracional Sochasic Landau-Ginzburg Equaion Nguyen Tien Dung Deparmen of Mahemaics, FPT Universiy 15B Pham Hung Sree, Hanoi, Vienam dungn@fp.edu.vn

More information

Vanishing Viscosity Method. There are another instructive and perhaps more natural discontinuous solutions of the conservation law

Vanishing Viscosity Method. There are another instructive and perhaps more natural discontinuous solutions of the conservation law Vanishing Viscosiy Mehod. There are anoher insrucive and perhaps more naural disconinuous soluions of he conservaion law (1 u +(q(u x 0, he so called vanishing viscosiy mehod. This mehod consiss in viewing

More information

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0.

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0. Time-Domain Sysem Analysis Coninuous Time. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 1. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 2 Le a sysem be described by a 2 y ( ) + a 1

More information

The L p -Version of the Generalized Bohl Perron Principle for Vector Equations with Infinite Delay

The L p -Version of the Generalized Bohl Perron Principle for Vector Equations with Infinite Delay Advances in Dynamical Sysems and Applicaions ISSN 973-5321, Volume 6, Number 2, pp. 177 184 (211) hp://campus.ms.edu/adsa The L p -Version of he Generalized Bohl Perron Principle for Vecor Equaions wih

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS ne. J. Ma. Mah. Vo1. {1978)1-1 BEHAVOR OF SECOND ORDER NONLNEAR DFFERENTAL EQUATONS RNA LNG Deparmen of Mahemaics California Sae Universiy Los Angeles, California 93 (Received November 9, 1977 and in revised

More information

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems.

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems. Mah 2250-004 Week 4 April 6-20 secions 7.-7.3 firs order sysems of linear differenial equaions; 7.4 mass-spring sysems. Mon Apr 6 7.-7.2 Sysems of differenial equaions (7.), and he vecor Calculus we need

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law Predaor - Prey Model Trajecories and he nonlinear conservaion law James K. Peerson Deparmen of Biological Sciences and Deparmen of Mahemaical Sciences Clemson Universiy Ocober 28, 213 Ouline Drawing Trajecories

More information

Ordinary Differential Equations

Ordinary Differential Equations Lecure 22 Ordinary Differenial Equaions Course Coordinaor: Dr. Suresh A. Karha, Associae Professor, Deparmen of Civil Engineering, IIT Guwahai. In naure, mos of he phenomena ha can be mahemaically described

More information

Solutions of Sample Problems for Third In-Class Exam Math 246, Spring 2011, Professor David Levermore

Solutions of Sample Problems for Third In-Class Exam Math 246, Spring 2011, Professor David Levermore Soluions of Sample Problems for Third In-Class Exam Mah 6, Spring, Professor David Levermore Compue he Laplace ransform of f e from is definiion Soluion The definiion of he Laplace ransform gives L[f]s

More information

Existence Theory of Second Order Random Differential Equations

Existence Theory of Second Order Random Differential Equations Global Journal of Mahemaical Sciences: Theory and Pracical. ISSN 974-32 Volume 4, Number 3 (22), pp. 33-3 Inernaional Research Publicaion House hp://www.irphouse.com Exisence Theory of Second Order Random

More information

A Necessary and Sufficient Condition for the Solutions of a Functional Differential Equation to Be Oscillatory or Tend to Zero

A Necessary and Sufficient Condition for the Solutions of a Functional Differential Equation to Be Oscillatory or Tend to Zero JOURNAL OF MAEMAICAL ANALYSIS AND APPLICAIONS 24, 7887 1997 ARICLE NO. AY965143 A Necessary and Sufficien Condiion for he Soluions of a Funcional Differenial Equaion o Be Oscillaory or end o Zero Piambar

More information

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation:

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation: M ah 5 7 Fall 9 L ecure O c. 4, 9 ) Hamilon- J acobi Equaion: Weak S oluion We coninue he sudy of he Hamilon-Jacobi equaion: We have shown ha u + H D u) = R n, ) ; u = g R n { = }. ). In general we canno

More information

Research Article Existence and Uniqueness of Periodic Solution for Nonlinear Second-Order Ordinary Differential Equations

Research Article Existence and Uniqueness of Periodic Solution for Nonlinear Second-Order Ordinary Differential Equations Hindawi Publishing Corporaion Boundary Value Problems Volume 11, Aricle ID 19156, 11 pages doi:1.1155/11/19156 Research Aricle Exisence and Uniqueness of Periodic Soluion for Nonlinear Second-Order Ordinary

More information

Hamilton Jacobi equations

Hamilton Jacobi equations Hamilon Jacobi equaions Inoducion o PDE The rigorous suff from Evans, mosly. We discuss firs u + H( u = 0, (1 where H(p is convex, and superlinear a infiniy, H(p lim p p = + This by comes by inegraion

More information

arxiv: v1 [math.fa] 9 Dec 2018

arxiv: v1 [math.fa] 9 Dec 2018 AN INVERSE FUNCTION THEOREM CONVERSE arxiv:1812.03561v1 [mah.fa] 9 Dec 2018 JIMMIE LAWSON Absrac. We esablish he following converse of he well-known inverse funcion heorem. Le g : U V and f : V U be inverse

More information

Olaru Ion Marian. In 1968, Vasilios A. Staikos [6] studied the equation:

Olaru Ion Marian. In 1968, Vasilios A. Staikos [6] studied the equation: ACTA UNIVERSITATIS APULENSIS No 11/2006 Proceedings of he Inernaional Conference on Theory and Applicaion of Mahemaics and Informaics ICTAMI 2005 - Alba Iulia, Romania THE ASYMPTOTIC EQUIVALENCE OF THE

More information

THE WAVE EQUATION. part hand-in for week 9 b. Any dilation v(x, t) = u(λx, λt) of u(x, t) is also a solution (where λ is constant).

THE WAVE EQUATION. part hand-in for week 9 b. Any dilation v(x, t) = u(λx, λt) of u(x, t) is also a solution (where λ is constant). THE WAVE EQUATION 43. (S) Le u(x, ) be a soluion of he wave equaion u u xx = 0. Show ha Q43(a) (c) is a. Any ranslaion v(x, ) = u(x + x 0, + 0 ) of u(x, ) is also a soluion (where x 0, 0 are consans).

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details!

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details! MAT 257, Handou 6: Ocober 7-2, 20. I. Assignmen. Finish reading Chaper 2 of Spiva, rereading earlier secions as necessary. handou and fill in some missing deails! II. Higher derivaives. Also, read his

More information

Math 333 Problem Set #2 Solution 14 February 2003

Math 333 Problem Set #2 Solution 14 February 2003 Mah 333 Problem Se #2 Soluion 14 February 2003 A1. Solve he iniial value problem dy dx = x2 + e 3x ; 2y 4 y(0) = 1. Soluion: This is separable; we wrie 2y 4 dy = x 2 + e x dx and inegrae o ge The iniial

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differenial Equaions 5. Examples of linear differenial equaions and heir applicaions We consider some examples of sysems of linear differenial equaions wih consan coefficiens y = a y +... + a

More information

Concourse Math Spring 2012 Worked Examples: Matrix Methods for Solving Systems of 1st Order Linear Differential Equations

Concourse Math Spring 2012 Worked Examples: Matrix Methods for Solving Systems of 1st Order Linear Differential Equations Concourse Mah 80 Spring 0 Worked Examples: Marix Mehods for Solving Sysems of s Order Linear Differenial Equaions The Main Idea: Given a sysem of s order linear differenial equaions d x d Ax wih iniial

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

SUFFICIENT CONDITIONS FOR EXISTENCE SOLUTION OF LINEAR TWO-POINT BOUNDARY PROBLEM IN MINIMIZATION OF QUADRATIC FUNCTIONAL

SUFFICIENT CONDITIONS FOR EXISTENCE SOLUTION OF LINEAR TWO-POINT BOUNDARY PROBLEM IN MINIMIZATION OF QUADRATIC FUNCTIONAL HE PUBLISHING HOUSE PROCEEDINGS OF HE ROMANIAN ACADEMY, Series A, OF HE ROMANIAN ACADEMY Volume, Number 4/200, pp 287 293 SUFFICIEN CONDIIONS FOR EXISENCE SOLUION OF LINEAR WO-POIN BOUNDARY PROBLEM IN

More information

Undetermined coefficients for local fractional differential equations

Undetermined coefficients for local fractional differential equations Available online a www.isr-publicaions.com/jmcs J. Mah. Compuer Sci. 16 (2016), 140 146 Research Aricle Undeermined coefficiens for local fracional differenial equaions Roshdi Khalil a,, Mohammed Al Horani

More information

Attractors for a deconvolution model of turbulence

Attractors for a deconvolution model of turbulence Aracors for a deconvoluion model of urbulence Roger Lewandowski and Yves Preaux April 0, 2008 Absrac We consider a deconvoluion model for 3D periodic flows. We show he exisence of a global aracor for he

More information

556: MATHEMATICAL STATISTICS I

556: MATHEMATICAL STATISTICS I 556: MATHEMATICAL STATISTICS I INEQUALITIES 5.1 Concenraion and Tail Probabiliy Inequaliies Lemma (CHEBYCHEV S LEMMA) c > 0, If X is a random variable, hen for non-negaive funcion h, and P X [h(x) c] E

More information

Announcements: Warm-up Exercise:

Announcements: Warm-up Exercise: Fri Apr 13 7.1 Sysems of differenial equaions - o model muli-componen sysems via comparmenal analysis hp//en.wikipedia.org/wiki/muli-comparmen_model Announcemens Warm-up Exercise Here's a relaively simple

More information

Tracking Adversarial Targets

Tracking Adversarial Targets A. Proofs Proof of Lemma 3. Consider he Bellman equaion λ + V π,l x, a lx, a + V π,l Ax + Ba, πax + Ba. We prove he lemma by showing ha he given quadraic form is he unique soluion of he Bellman equaion.

More information

( ) a system of differential equations with continuous parametrization ( T = R + These look like, respectively:

( ) a system of differential equations with continuous parametrization ( T = R + These look like, respectively: XIII. DIFFERENCE AND DIFFERENTIAL EQUATIONS Ofen funcions, or a sysem of funcion, are paramerized in erms of some variable, usually denoed as and inerpreed as ime. The variable is wrien as a funcion of

More information

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions MA 14 Calculus IV (Spring 016) Secion Homework Assignmen 1 Soluions 1 Boyce and DiPrima, p 40, Problem 10 (c) Soluion: In sandard form he given firs-order linear ODE is: An inegraing facor is given by

More information

EXISTENCE AND UNIQUENESS THEOREMS ON CERTAIN DIFFERENCE-DIFFERENTIAL EQUATIONS

EXISTENCE AND UNIQUENESS THEOREMS ON CERTAIN DIFFERENCE-DIFFERENTIAL EQUATIONS Elecronic Journal of Differenial Equaions, Vol. 29(29), No. 49, pp. 2. ISSN: 72-669. URL: hp://ejde.mah.xsae.edu or hp://ejde.mah.un.edu fp ejde.mah.xsae.edu EXISTENCE AND UNIQUENESS THEOREMS ON CERTAIN

More information

arxiv:math/ v1 [math.nt] 3 Nov 2005

arxiv:math/ v1 [math.nt] 3 Nov 2005 arxiv:mah/0511092v1 [mah.nt] 3 Nov 2005 A NOTE ON S AND THE ZEROS OF THE RIEMANN ZETA-FUNCTION D. A. GOLDSTON AND S. M. GONEK Absrac. Le πs denoe he argumen of he Riemann zea-funcion a he poin 1 + i. Assuming

More information

Multi-component Levi Hierarchy and Its Multi-component Integrable Coupling System

Multi-component Levi Hierarchy and Its Multi-component Integrable Coupling System Commun. Theor. Phys. (Beijing, China) 44 (2005) pp. 990 996 c Inernaional Academic Publishers Vol. 44, No. 6, December 5, 2005 uli-componen Levi Hierarchy and Is uli-componen Inegrable Coupling Sysem XIA

More information

2 Some Property of Exponential Map of Matrix

2 Some Property of Exponential Map of Matrix Soluion Se for Exercise Session No8 Course: Mahemaical Aspecs of Symmeries in Physics, ICFP Maser Program for M 22nd, January 205, a Room 235A Lecure by Amir-Kian Kashani-Poor email: kashani@lpensfr Exercise

More information

u(x) = e x 2 y + 2 ) Integrate and solve for x (1 + x)y + y = cos x Answer: Divide both sides by 1 + x and solve for y. y = x y + cos x

u(x) = e x 2 y + 2 ) Integrate and solve for x (1 + x)y + y = cos x Answer: Divide both sides by 1 + x and solve for y. y = x y + cos x . 1 Mah 211 Homework #3 February 2, 2001 2.4.3. y + (2/x)y = (cos x)/x 2 Answer: Compare y + (2/x) y = (cos x)/x 2 wih y = a(x)x + f(x)and noe ha a(x) = 2/x. Consequenly, an inegraing facor is found wih

More information

= ( ) ) or a system of differential equations with continuous parametrization (T = R

= ( ) ) or a system of differential equations with continuous parametrization (T = R XIII. DIFFERENCE AND DIFFERENTIAL EQUATIONS Ofen funcions, or a sysem of funcion, are paramerized in erms of some variable, usually denoed as and inerpreed as ime. The variable is wrien as a funcion of

More information

arxiv: v1 [math.ca] 15 Nov 2016

arxiv: v1 [math.ca] 15 Nov 2016 arxiv:6.599v [mah.ca] 5 Nov 26 Counerexamples on Jumarie s hree basic fracional calculus formulae for non-differeniable coninuous funcions Cheng-shi Liu Deparmen of Mahemaics Norheas Peroleum Universiy

More information

Linear Cryptanalysis

Linear Cryptanalysis Linear Crypanalysis T-79.550 Crypology Lecure 5 February 6, 008 Kaisa Nyberg Linear Crypanalysis /36 SPN A Small Example Linear Crypanalysis /36 Linear Approximaion of S-boxes Linear Crypanalysis 3/36

More information

ENGI 9420 Engineering Analysis Assignment 2 Solutions

ENGI 9420 Engineering Analysis Assignment 2 Solutions ENGI 940 Engineering Analysis Assignmen Soluions 0 Fall [Second order ODEs, Laplace ransforms; Secions.0-.09]. Use Laplace ransforms o solve he iniial value problem [0] dy y, y( 0) 4 d + [This was Quesion

More information

SOLUTIONS TO ECE 3084

SOLUTIONS TO ECE 3084 SOLUTIONS TO ECE 384 PROBLEM 2.. For each sysem below, specify wheher or no i is: (i) memoryless; (ii) causal; (iii) inverible; (iv) linear; (v) ime invarian; Explain your reasoning. If he propery is no

More information

Comparison between the Discrete and Continuous Time Models

Comparison between the Discrete and Continuous Time Models Comparison beween e Discree and Coninuous Time Models D. Sulsky June 21, 2012 1 Discree o Coninuous Recall e discree ime model Î = AIS Ŝ = S Î. Tese equaions ell us ow e populaion canges from one day o

More information

Chapter 6. Laplace Transforms

Chapter 6. Laplace Transforms 6- Chaper 6. Laplace Tranform 6.4 Shor Impule. Dirac Dela Funcion. Parial Fracion 6.5 Convoluion. Inegral Equaion 6.6 Differeniaion and Inegraion of Tranform 6.7 Syem of ODE 6.4 Shor Impule. Dirac Dela

More information

Stochastic Model for Cancer Cell Growth through Single Forward Mutation

Stochastic Model for Cancer Cell Growth through Single Forward Mutation Journal of Modern Applied Saisical Mehods Volume 16 Issue 1 Aricle 31 5-1-2017 Sochasic Model for Cancer Cell Growh hrough Single Forward Muaion Jayabharahiraj Jayabalan Pondicherry Universiy, jayabharahi8@gmail.com

More information

An Invariance for (2+1)-Extension of Burgers Equation and Formulae to Obtain Solutions of KP Equation

An Invariance for (2+1)-Extension of Burgers Equation and Formulae to Obtain Solutions of KP Equation Commun Theor Phys Beijing, China 43 2005 pp 591 596 c Inernaional Academic Publishers Vol 43, No 4, April 15, 2005 An Invariance for 2+1-Eension of Burgers Equaion Formulae o Obain Soluions of KP Equaion

More information

18 Biological models with discrete time

18 Biological models with discrete time 8 Biological models wih discree ime The mos imporan applicaions, however, may be pedagogical. The elegan body of mahemaical heory peraining o linear sysems (Fourier analysis, orhogonal funcions, and so

More information

Some operator monotone functions related to Petz-Hasegawa s functions

Some operator monotone functions related to Petz-Hasegawa s functions Some operaor monoone funcions relaed o Pez-Hasegawa s funcions Masao Kawasaki and Masaru Nagisa Absrac Le f be an operaor monoone funcion on [, ) wih f() and f(). If f() is neiher he consan funcion nor

More information

Instructor: Barry McQuarrie Page 1 of 5

Instructor: Barry McQuarrie Page 1 of 5 Procedure for Solving radical equaions 1. Algebraically isolae one radical by iself on one side of equal sign. 2. Raise each side of he equaion o an appropriae power o remove he radical. 3. Simplify. 4.

More information

Dynamical systems method for solving linear ill-posed problems

Dynamical systems method for solving linear ill-posed problems ANNALES POLONICI MATHEMATICI * (2*) Dynamical sysems mehod for solving linear ill-posed problems by A. G. Ramm (Manhaan, KS) Absrac. Various versions of he Dynamical Sysems Mehod (DSM) are proposed for

More information

Differential Equations

Differential Equations Mah 21 (Fall 29) Differenial Equaions Soluion #3 1. Find he paricular soluion of he following differenial equaion by variaion of parameer (a) y + y = csc (b) 2 y + y y = ln, > Soluion: (a) The corresponding

More information

THE GENERALIZED PASCAL MATRIX VIA THE GENERALIZED FIBONACCI MATRIX AND THE GENERALIZED PELL MATRIX

THE GENERALIZED PASCAL MATRIX VIA THE GENERALIZED FIBONACCI MATRIX AND THE GENERALIZED PELL MATRIX J Korean Mah Soc 45 008, No, pp 479 49 THE GENERALIZED PASCAL MATRIX VIA THE GENERALIZED FIBONACCI MATRIX AND THE GENERALIZED PELL MATRIX Gwang-yeon Lee and Seong-Hoon Cho Reprined from he Journal of he

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

4. Advanced Stability Theory

4. Advanced Stability Theory Applied Nonlinear Conrol Nguyen an ien - 4 4 Advanced Sabiliy heory he objecive of his chaper is o presen sabiliy analysis for non-auonomous sysems 41 Conceps of Sabiliy for Non-Auonomous Sysems Equilibrium

More information

Chapter 1 Fundamental Concepts

Chapter 1 Fundamental Concepts Chaper 1 Fundamenal Conceps 1 Signals A signal is a paern of variaion of a physical quaniy, ofen as a funcion of ime (bu also space, disance, posiion, ec). These quaniies are usually he independen variables

More information

A NOTE ON S(t) AND THE ZEROS OF THE RIEMANN ZETA-FUNCTION

A NOTE ON S(t) AND THE ZEROS OF THE RIEMANN ZETA-FUNCTION Bull. London Mah. Soc. 39 2007 482 486 C 2007 London Mahemaical Sociey doi:10.1112/blms/bdm032 A NOTE ON S AND THE ZEROS OF THE RIEMANN ZETA-FUNCTION D. A. GOLDSTON and S. M. GONEK Absrac Le πs denoe he

More information

POSITIVE SOLUTIONS OF NEUTRAL DELAY DIFFERENTIAL EQUATION

POSITIVE SOLUTIONS OF NEUTRAL DELAY DIFFERENTIAL EQUATION Novi Sad J. Mah. Vol. 32, No. 2, 2002, 95-108 95 POSITIVE SOLUTIONS OF NEUTRAL DELAY DIFFERENTIAL EQUATION Hajnalka Péics 1, János Karsai 2 Absrac. We consider he scalar nonauonomous neural delay differenial

More information

Boundedness and Exponential Asymptotic Stability in Dynamical Systems with Applications to Nonlinear Differential Equations with Unbounded Terms

Boundedness and Exponential Asymptotic Stability in Dynamical Systems with Applications to Nonlinear Differential Equations with Unbounded Terms Advances in Dynamical Sysems and Applicaions. ISSN 0973-531 Volume Number 1 007, pp. 107 11 Research India Publicaions hp://www.ripublicaion.com/adsa.hm Boundedness and Exponenial Asympoic Sabiliy in Dynamical

More information

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3 and d = c b - b c c d = c b - b c c This process is coninued unil he nh row has been compleed. The complee array of coefficiens is riangular. Noe ha in developing he array an enire row may be divided or

More information

Essential Microeconomics : OPTIMAL CONTROL 1. Consider the following class of optimization problems

Essential Microeconomics : OPTIMAL CONTROL 1. Consider the following class of optimization problems Essenial Microeconomics -- 6.5: OPIMAL CONROL Consider he following class of opimizaion problems Max{ U( k, x) + U+ ( k+ ) k+ k F( k, x)}. { x, k+ } = In he language of conrol heory, he vecor k is he vecor

More information

THE BERNOULLI NUMBERS. t k. = lim. = lim = 1, d t B 1 = lim. 1+e t te t = lim t 0 (e t 1) 2. = lim = 1 2.

THE BERNOULLI NUMBERS. t k. = lim. = lim = 1, d t B 1 = lim. 1+e t te t = lim t 0 (e t 1) 2. = lim = 1 2. THE BERNOULLI NUMBERS The Bernoulli numbers are defined here by he exponenial generaing funcion ( e The firs one is easy o compue: (2 and (3 B 0 lim 0 e lim, 0 e ( d B lim 0 d e +e e lim 0 (e 2 lim 0 2(e

More information

Ordinary dierential equations

Ordinary dierential equations Chaper 5 Ordinary dierenial equaions Conens 5.1 Iniial value problem........................... 31 5. Forward Euler's mehod......................... 3 5.3 Runge-Kua mehods.......................... 36

More information

POSITIVE AND MONOTONE SYSTEMS IN A PARTIALLY ORDERED SPACE

POSITIVE AND MONOTONE SYSTEMS IN A PARTIALLY ORDERED SPACE Urainian Mahemaical Journal, Vol. 55, No. 2, 2003 POSITIVE AND MONOTONE SYSTEMS IN A PARTIALLY ORDERED SPACE A. G. Mazo UDC 517.983.27 We invesigae properies of posiive and monoone differenial sysems wih

More information

On fuzzy normed algebras

On fuzzy normed algebras Available online a www.jnsa.com J. Nonlinear Sci. Appl. 9 (2016), 5488 5496 Research Aricle On fuzzy normed algebras Tudor Bînzar a,, Flavius Paer a, Sorin Nădăban b a Deparmen of Mahemaics, Poliehnica

More information

Math 315: Linear Algebra Solutions to Assignment 6

Math 315: Linear Algebra Solutions to Assignment 6 Mah 35: Linear Algebra s o Assignmen 6 # Which of he following ses of vecors are bases for R 2? {2,, 3, }, {4,, 7, 8}, {,,, 3}, {3, 9, 4, 2}. Explain your answer. To generae he whole R 2, wo linearly independen

More information

CHAPTER 2 Signals And Spectra

CHAPTER 2 Signals And Spectra CHAPER Signals And Specra Properies of Signals and Noise In communicaion sysems he received waveform is usually caegorized ino he desired par conaining he informaion, and he undesired par. he desired par

More information