Attitude control of a hopping robot: a feasibility study

Size: px
Start display at page:

Download "Attitude control of a hopping robot: a feasibility study"

Transcription

1 Attitude control of a hopping robot: a feasibility study Tammepõld, R. and Kruusmaa, M. Tallinn University of Technology, Estonia Fiorini, P. University of Verona, Italy

2 Summary Motivation Small mobile rovers. Benefits and limitations. Past work on hopping robots Methods for attitude control Proposed approach of a hopper with attitude control Results on feasibility Conclusions

3 Motivation of this work Hopping mobility: could overcome obstacles pass rough terrain would give good visibility during the hop allows for smaller and more mobile robot can complement bigger rovers But... hopping trajectory is unpredictable landing can be damaging a small robot would have limited visibility on the ground Therefore in this work we propose an attitude control system that would overcome these limitations

4 Smaller rovers for planetary Planetary exploration with wheeled rovers Desirable to make smaller rovers Cheaper transportation Additional scouts robots Small wheeled rovers would have less mobility Small hopping robot would be more mobile exploration

5 Past work on hopping robots Hopping investigated in different contexts: Search & Rescue Surveillance in security and military Locomotion in general and in the context of biomimetics 7g hopper from EPFL The Moon Car (1959) NASA-JPL hoppers CSA Mars hopper Soviet Phobos 2 mission Japan s MINERVA lander Soviet hopper MINERVA JPL hoppers CSA Mars hopper

6 Past work on hopping robots Possibilities of landing protection: Reinflatable airbags surrounding the robot Elastic cage: propulsion and landing protection in one. Both limit accessibility of instrumentation to the environment Jollbot from University of Bath Elastic cage design from University of Verona.

7 Example of hopping motion

8 Example of hopping motion

9 Attitude control Controlling the landing attitude allows optimized design and cushioning of the mechanical structure Attitude control during flight allows directing the camera/instrumentation towards area of interest

10 Methods for attitude control Gas thrusters Use fuel that must be carried and will run out Angular momentum exchange devices using electrical power Reaction wheels Momentum wheels Control moment gyroscopes Variable speed control moment gyroscopes. Very interesting, but new and complex system Can an attitude control system be implemented with the small mass and volume budget of a small hopping robot?

11 Proposed approach 2nd generation hopper developed in JPL Simulate an attitude control system with 2 reaction-wheels to control orientation of a robot s axis during flight Theoretical mission on Earth s Moon Due to spring energy, the 1.7 kg robot had hop distance 22 m and hop duration 5 s 5 second to take an image of a distant object and make a rotation to land safely In an ideal case, the unactuated axis would be principal axis of inertia

12 Design parameters A reaction-wheel with more moment inertia will provide more reaction Need to compromise : Moment of inertia Mass Maximum RPM Power consumption Chosen actuator parameters: Moment inertia equivalent of a steel disk 2mm thick, with a diameter of 90mm and mass of 80 grams RPM, 100 W maximum

13 Attitude control with 2 RWs In the special case of zero initial angular momentum, 2 reaction-wheels can give full attitude control Due to possible disturbance torques during take-off, zero initial angular momentum cannot be assumed. With non-zero angular momentum, only axis perpendicular to the wheel axes is controllable Spin-axis control law makes use of w-parameterization that describes direction of a vector with two variables Kinematic equation for the w-parameterization: Control law (by Sungil, Youdan, 2001) : w 1 = ω 3 w 2 + ω 2 w 1 w 2 + ω w 1 2 w 2 2 w 2 = ω 3 w 1 + ω 1 w 1 w 2 + ω 2 2 (1 + w 2 2 w 1 2 ) T w1 = I 2 ω 2 ω 3 + h w2 ω 3 + k 1 w 1 + k 2 ω 1 T w2 = I 1 ω 1 ω 3 h w1 ω 3 + k 1 w 2 + k 2 ω 2

14 Simulation goals A simple maneuver from worst-case attitude error Unactuated axis is principal axis of inertia Unactuated axis is not principal axis of inertia Realistic hopping maneuver with attitude tracking and attitude maneuver before landing

15 Robustness towards initial angular momentum System with ideal inertia Robustness better towards angular momentum in some axes. Non-ideal inertia Longer convergence and more irregular robustness towards initial angular momentum. Times to rotate from 179 degrees error angle to less than 5 degrees error with different initial angular velocities.

16 Attitude tracking and landing After take-off, the attitude control will start to aim an axis of the robot to the target (black box). Predetermined time before landing, it will rotate to landing attitude. Energy to accelerate the RWs: 180J. Equivalent of only 7mAh from 7.4V battery. maneuver

17 Attitude tracking and landing maneuver

18 Conclusion and future work Hopping robots are a viable alternative to wheeled rovers We presented a feasible solution to improve functionality and survivability of a hopping robot Designing these small, but powerful reactionwheels and integrating them to a hopping robot is the challenge of this approach

Advanced Probes for Planetary Surface and Subsurface Exploration

Advanced Probes for Planetary Surface and Subsurface Exploration Workshop on Space Robotics, ICRA 2011 Advanced Probes for Planetary Surface and Subsurface Exploration Takashi Kubota (JAXA/ISAS/JSPEC) Hayato Omori, Taro Nakamura (Chuo Univ.) JAXA Space Exploration Program

More information

Sliding Mode Control Strategies for Spacecraft Rendezvous Maneuvers

Sliding Mode Control Strategies for Spacecraft Rendezvous Maneuvers Osaka University March 15, 2018 Sliding Mode Control Strategies for Spacecraft Rendezvous Maneuvers Elisabetta Punta CNR-IEIIT, Italy Problem Statement First Case Spacecraft Model Position Dynamics Attitude

More information

Quaternion-Based Tracking Control Law Design For Tracking Mode

Quaternion-Based Tracking Control Law Design For Tracking Mode A. M. Elbeltagy Egyptian Armed forces Conference on small satellites. 2016 Logan, Utah, USA Paper objectives Introduction Presentation Agenda Spacecraft combined nonlinear model Proposed RW nonlinear attitude

More information

16.07 Dynamics Final Exam

16.07 Dynamics Final Exam Name:... Massachusetts Institute of Technology 16.07 Dynamics Final Exam Tuesday, December 20, 2005 Problem 1 (8) Problem 2 (8) Problem 3 (10) Problem 4 (10) Problem 5 (10) Problem 6 (10) Problem 7 (10)

More information

Advanced robotic system of hopping rovers for small solar system bodies

Advanced robotic system of hopping rovers for small solar system bodies Advanced robotic system of hopping rovers for small solar system bodies Tetsuo YOSHIMITSU (1), Takashi KUBOTA (1), Tadashi ADACHI (2), and Yoji KURODA (3) (1) Institute of Space and Astronautical Science

More information

PRELIMINARY HARDWARE DESIGN OF ATTITUDE CONTROL SUBSYSTEM OF LEONIDAS SPACECRAFT

PRELIMINARY HARDWARE DESIGN OF ATTITUDE CONTROL SUBSYSTEM OF LEONIDAS SPACECRAFT PRELIMINARY HARDWARE DESIGN OF ATTITUDE CONTROL SUBSYSTEM OF LEONIDAS SPACECRAFT Chak Shing Jackie Chan College of Engineering University of Hawai i at Mānoa Honolulu, HI 96822 ABSTRACT In order to monitor

More information

Terramechanics Based Analysis and Motion Control of Rovers on Simulated Lunar Soil

Terramechanics Based Analysis and Motion Control of Rovers on Simulated Lunar Soil ICRA '07 Space Robotics Workshop 14 April, 2007 Terramechanics Based Analysis and Motion Control of Rovers on Simulated Lunar Soil Kazuya Yoshida and Keiji Nagatani Dept. Aerospace Engineering Graduate

More information

Visual Feedback Attitude Control of a Bias Momentum Micro Satellite using Two Wheels

Visual Feedback Attitude Control of a Bias Momentum Micro Satellite using Two Wheels Visual Feedback Attitude Control of a Bias Momentum Micro Satellite using Two Wheels Fuyuto Terui a, Nobutada Sako b, Keisuke Yoshihara c, Toru Yamamoto c, Shinichi Nakasuka b a National Aerospace Laboratory

More information

ESSE Payload Design. 1.2 Introduction to Space Missions

ESSE Payload Design. 1.2 Introduction to Space Missions ESSE4360 - Payload Design 1.2 Introduction to Space Missions Earth, Moon, Mars, and Beyond Department of Earth and Space Science and Engineering Room 255, Petrie Science and Engineering Building Tel: 416-736

More information

A Ferris wheel in Japan has a radius of 50m and a mass of 1.2 x 10 6 kg. If a torque of 1 x 10 9 Nm is needed to turn the wheel when it starts at

A Ferris wheel in Japan has a radius of 50m and a mass of 1.2 x 10 6 kg. If a torque of 1 x 10 9 Nm is needed to turn the wheel when it starts at Option B Quiz 1. A Ferris wheel in Japan has a radius of 50m and a mass of 1. x 10 6 kg. If a torque of 1 x 10 9 Nm is needed to turn the wheel when it starts at rest, what is the wheel s angular acceleration?

More information

AS3010: Introduction to Space Technology

AS3010: Introduction to Space Technology AS3010: Introduction to Space Technology L E C T U R E 22 Part B, Lecture 22 19 April, 2017 C O N T E N T S Attitude stabilization passive and active. Actuators for three axis or active stabilization.

More information

A) 1 gm 2 /s. B) 3 gm 2 /s. C) 6 gm 2 /s. D) 9 gm 2 /s. E) 10 gm 2 /s. A) 0.1 kg. B) 1 kg. C) 2 kg. D) 5 kg. E) 10 kg A) 2:5 B) 4:5 C) 1:1 D) 5:4

A) 1 gm 2 /s. B) 3 gm 2 /s. C) 6 gm 2 /s. D) 9 gm 2 /s. E) 10 gm 2 /s. A) 0.1 kg. B) 1 kg. C) 2 kg. D) 5 kg. E) 10 kg A) 2:5 B) 4:5 C) 1:1 D) 5:4 1. A 4 kg object moves in a circle of radius 8 m at a constant speed of 2 m/s. What is the angular momentum of the object with respect to an axis perpendicular to the circle and through its center? A)

More information

1. The first thing you need to find is the mass of piece three. In order to find it you need to realize that the masses of the three pieces must be

1. The first thing you need to find is the mass of piece three. In order to find it you need to realize that the masses of the three pieces must be 1. The first thing you need to find is the mass of piece three. In order to find it you need to realize that the masses of the three pieces must be equal to the initial mass of the starting rocket. Now

More information

AA 528 Spacecraft Dynamics and Control. Mehran Mesbahi Aeronautics & Astronautics Winter 2017 University of Washington

AA 528 Spacecraft Dynamics and Control. Mehran Mesbahi Aeronautics & Astronautics Winter 2017 University of Washington AA 528 Spacecraft Dynamics and Control Mehran Mesbahi Aeronautics & Astronautics Winter 2017 University of Washington Spacecraft dynamics and control What is this class all about? what is in the name?

More information

Agile Maneuvers for Near Earth Object (NEO) Fly-by Missions

Agile Maneuvers for Near Earth Object (NEO) Fly-by Missions Agile Maneuvers for Near Earth Object (NEO) Fly-by Missions Vaios Lappas 1, Bong Wie 2 and Jozef van der Ha 3 1 Surrey Space Centre, University of Surrey, GU2 7XH, United Kingdom, E-mail: v.lappas@surrey.ac.uk

More information

MOBILITY PERFORMENCE OF CILIARY LOCOMOTION FOR AN ASTEROID EXPLORATION ROBOT UNDER VARIOUS EXPERIMENTAL CONDITIONS

MOBILITY PERFORMENCE OF CILIARY LOCOMOTION FOR AN ASTEROID EXPLORATION ROBOT UNDER VARIOUS EXPERIMENTAL CONDITIONS MOBILITY PERFORMENCE OF CILIARY LOCOMOTION FOR AN ASTEROID EXPLORATION ROBOT UNDER VARIOUS EXPERIMENTAL CONDITIONS *Kenji Nagaoka 1, Kazuki Watanabe 2, Toshiyasu Kaneko 3, Kazuya Yoshida 4 1 Tohoku University,

More information

Design of Attitude Determination and Control Subsystem

Design of Attitude Determination and Control Subsystem Design of Attitude Determination and Control Subsystem 1) Control Modes and Requirements Control Modes: Control Modes Explanation 1 ) Spin-Up Mode - Acquisition of Stability through spin-up maneuver -

More information

Mixed Control Moment Gyro and Momentum Wheel Attitude Control Strategies

Mixed Control Moment Gyro and Momentum Wheel Attitude Control Strategies AAS03-558 Mixed Control Moment Gyro and Momentum Wheel Attitude Control Strategies C. Eugene Skelton II and Christopher D. Hall Department of Aerospace & Ocean Engineering Virginia Polytechnic Institute

More information

Design and performance simulation of a satellite momentum exchange actuator

Design and performance simulation of a satellite momentum exchange actuator Australian Journal of Mechanical Engineering ISSN: 1448-4846 (Print) 2204-2253 (Online) Journal homepage: http://www.tandfonline.com/loi/tmec20 Design and performance simulation of a satellite momentum

More information

PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2)

PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2) PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2) We will limit our study of planar kinetics to rigid bodies that are symmetric with respect to a fixed reference plane. As discussed in Chapter 16, when

More information

EF 151 Exam #4 - Spring, 2016 Page 1 Copy 205

EF 151 Exam #4 - Spring, 2016 Page 1 Copy 205 EF 151 Exam #4 - Spring, 016 Page 1 Copy 05 Name: Section: Instructions: Sit in assigned seat; failure to sit in assigned seat results in a 0 for the exam. Put name and section on your exam. Put seating

More information

Spacecraft Bus / Platform

Spacecraft Bus / Platform Spacecraft Bus / Platform Propulsion Thrusters ADCS: Attitude Determination and Control Subsystem Shield CDH: Command and Data Handling Subsystem Payload Communication Thermal Power Structure and Mechanisms

More information

Internally-Actuated Rovers for All-Access Surface Mobility: Theory and Experimentation

Internally-Actuated Rovers for All-Access Surface Mobility: Theory and Experimentation Internally-Actuated Rovers for All-Access Surface Mobility: Theory and Experimentation Ross Allen, Marco Pavone, Christopher McQuin, Issa A D Nesnas, Julie C Castillo-Rogez, Tam-Nguyen Nguyen, Jeffrey

More information

Jitter and Basic Requirements of the Reaction Wheel Assembly in the Attitude Control System

Jitter and Basic Requirements of the Reaction Wheel Assembly in the Attitude Control System Jitter and Basic Requirements of the Reaction Wheel Assembly in the Attitude Control System Lulu Liu August, 7 1 Brief Introduction Photometric precision is a major concern in this space mission. A pointing

More information

Physics 121. March 18, Physics 121. March 18, Course Announcements. Course Information. Topics to be discussed today:

Physics 121. March 18, Physics 121. March 18, Course Announcements. Course Information. Topics to be discussed today: Physics 121. March 18, 2008. Physics 121. March 18, 2008. Course Information Topics to be discussed today: Variables used to describe rotational motion The equations of motion for rotational motion Course

More information

FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING

FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING Elias F. Solorzano University of Toronto (Space Flight Laboratory) Toronto, ON (Canada) August 10 th, 2016 30 th AIAA/USU

More information

SPACE SHUTTLE ROLL MANEUVER

SPACE SHUTTLE ROLL MANEUVER SPACE SHUTTLE ROLL MANEUVER Instructional Objectives Students will analyze space shuttle schematics and data to: demonstrate graph and schematic interpretation skills; apply integration techniques to evaluate

More information

King Fahd University of Petroleum and Minerals Department of Physics. Final Exam 041. Answer key - First choice is the correct answer

King Fahd University of Petroleum and Minerals Department of Physics. Final Exam 041. Answer key - First choice is the correct answer King Fahd University of Petroleum and Minerals Department of Physics MSK Final Exam 041 Answer key - First choice is the correct answer Q1 A 20 kg uniform ladder is leaning against a frictionless wall

More information

Spacecraft Attitude Control with RWs via LPV Control Theory: Comparison of Two Different Methods in One Framework

Spacecraft Attitude Control with RWs via LPV Control Theory: Comparison of Two Different Methods in One Framework Trans. JSASS Aerospace Tech. Japan Vol. 4, No. ists3, pp. Pd_5-Pd_, 6 Spacecraft Attitude Control with RWs via LPV Control Theory: Comparison of Two Different Methods in One Framework y Takahiro SASAKI,),

More information

Kinetic Energy of Rolling

Kinetic Energy of Rolling Kinetic Energy of Rolling A solid disk and a hoop (with the same mass and radius) are released from rest and roll down a ramp from a height h. Which one is moving faster at the bottom of the ramp? A. they

More information

Mission to Mars. MAE 598: Design Optimization Final Project. By: Trevor Slawson, Jenna Lynch, Adrian Maranon, and Matt Catlett

Mission to Mars. MAE 598: Design Optimization Final Project. By: Trevor Slawson, Jenna Lynch, Adrian Maranon, and Matt Catlett Mission to Mars MAE 598: Design Optimization Final Project By: Trevor Slawson, Jenna Lynch, Adrian Maranon, and Matt Catlett Motivation Manned missions beyond low Earth orbit have not occurred since Apollo

More information

1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches

1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches AP Physics B Practice Questions: Rotational Motion Multiple-Choice Questions 1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches

More information

Experimental Methods for Mobility and Surface Operations of Microgravity Robots

Experimental Methods for Mobility and Surface Operations of Microgravity Robots Experimental Methods for Mobility and Surface Operations of Microgravity Robots Benjamin Hockman 1, Robert G. Reid 2, Issa A. D. Nesnas 2, and Marco Pavone 1 1 Dept. of Aeronautics and Astronautics, Stanford

More information

6. 3D Kinematics DE2-EA 2.1: M4DE. Dr Connor Myant

6. 3D Kinematics DE2-EA 2.1: M4DE. Dr Connor Myant DE2-EA 2.1: M4DE Dr Connor Myant 6. 3D Kinematics Comments and corrections to connor.myant@imperial.ac.uk Lecture resources may be found on Blackboard and at http://connormyant.com Contents Three-Dimensional

More information

Physics 130: Questions to study for midterm #1 from Chapter 8

Physics 130: Questions to study for midterm #1 from Chapter 8 Physics 130: Questions to study for midterm #1 from Chapter 8 1. If the beaters on a mixer make 800 revolutions in 5 minutes, what is the average rotational speed of the beaters? a. 2.67 rev/min b. 16.8

More information

Lecture 6 Physics 106 Spring 2006

Lecture 6 Physics 106 Spring 2006 Lecture 6 Physics 106 Spring 2006 Angular Momentum Rolling Angular Momentum: Definition: Angular Momentum for rotation System of particles: Torque: l = r m v sinφ l = I ω [kg m 2 /s] http://web.njit.edu/~sirenko/

More information

Mission Analysis of Sample Return from Jovian Trojan Asteroid by Solar Power Sail

Mission Analysis of Sample Return from Jovian Trojan Asteroid by Solar Power Sail Trans. JSASS Aerospace Tech. Japan Vol. 12, No. ists29, pp. Pk_43-Pk_50, 2014 Original Paper Mission Analysis of Sample Return from Jovian Trojan Asteroid by Solar Power Sail By Jun MATSUMOTO 1), Ryu FUNASE

More information

An Inverse Dynamics Attitude Control System with Autonomous Calibration. Sanny Omar Dr. David Beale Dr. JM Wersinger

An Inverse Dynamics Attitude Control System with Autonomous Calibration. Sanny Omar Dr. David Beale Dr. JM Wersinger An Inverse Dynamics Attitude Control System with Autonomous Calibration Sanny Omar Dr. David Beale Dr. JM Wersinger Outline Attitude Determination and Control Systems (ADACS) Overview Coordinate Frames

More information

SELENE TRANSLUNAR TRAJECTORY AND LUNAR ORBIT INJECTION

SELENE TRANSLUNAR TRAJECTORY AND LUNAR ORBIT INJECTION SELENE TRANSLUNAR TRAJECTORY AND LUNAR ORBIT INJECTION Yasuihiro Kawakatsu (*1) Ken Nakajima (*2), Masahiro Ogasawara (*3), Yutaka Kaneko (*1), Yoshisada Takizawa (*1) (*1) National Space Development Agency

More information

Satellite Attitude Control System Design Using Reaction Wheels Bhanu Gouda Brian Fast Dan Simon

Satellite Attitude Control System Design Using Reaction Wheels Bhanu Gouda Brian Fast Dan Simon Satellite Attitude Control System Design Using Reaction Wheels Bhanu Gouda Brian Fast Dan Simon Outline 1. Overview of Attitude Determination and Control system. Problem formulation 3. Control schemes

More information

Stabilization of Angular Velocity of Asymmetrical Rigid Body. Using Two Constant Torques

Stabilization of Angular Velocity of Asymmetrical Rigid Body. Using Two Constant Torques Stabilization of Angular Velocity of Asymmetrical Rigid Body Using Two Constant Torques Hirohisa Kojima Associate Professor Department of Aerospace Engineering Tokyo Metropolitan University 6-6, Asahigaoka,

More information

InSight Spacecraft Launch for Mission to Interior of Mars

InSight Spacecraft Launch for Mission to Interior of Mars InSight Spacecraft Launch for Mission to Interior of Mars InSight is a robotic scientific explorer to investigate the deep interior of Mars set to launch May 5, 2018. It is scheduled to land on Mars November

More information

Attitude Control Strategy for HAUSAT-2 with Pitch Bias Momentum System

Attitude Control Strategy for HAUSAT-2 with Pitch Bias Momentum System SSC06-VII-5 Attitude Control Strategy for HAUSAT-2 with Pitch Bias Momentum System Young-Keun Chang, Seok-Jin Kang, Byung-Hoon Lee, Jung-on Choi, Mi-Yeon Yun and Byoung-Young Moon School of Aerospace and

More information

Rotational Kinematics

Rotational Kinematics Rotational Kinematics Rotational Coordinates Ridged objects require six numbers to describe their position and orientation: 3 coordinates 3 axes of rotation Rotational Coordinates Use an angle θ to describe

More information

Lecture Module 5: Introduction to Attitude Stabilization and Control

Lecture Module 5: Introduction to Attitude Stabilization and Control 1 Lecture Module 5: Introduction to Attitude Stabilization and Control Lectures 1-3 Stability is referred to as a system s behaviour to external/internal disturbances (small) in/from equilibrium states.

More information

Gyroscopes and statics

Gyroscopes and statics Gyroscopes and statics Announcements: Welcome back from Spring Break! CAPA due Friday at 10pm We will finish Chapter 11 in H+R on angular momentum and start Chapter 12 on stability. Friday we will begin

More information

Attitude Determination and. Attitude Control

Attitude Determination and. Attitude Control Attitude Determination and Placing the telescope in orbit is not the end of the story. It is necessary to point the telescope towards the selected targets, or to scan the selected sky area with the telescope.

More information

BOUNCING, SLIDING AND ROLLING DYNAMICS OF A SPHERICAL ROVER CROSSING A RAVINE

BOUNCING, SLIDING AND ROLLING DYNAMICS OF A SPHERICAL ROVER CROSSING A RAVINE Abstract HARTL, ALEXANDRE EMMANUEL. Bouncing, Sliding and Rolling Dynamics of a Spherical Rover Crossing a Ravine. (Under the direction of Dr. Andre Mazzoleni) This study presents a numerical simulation

More information

Chapters 10 & 11: Rotational Dynamics Thursday March 8 th

Chapters 10 & 11: Rotational Dynamics Thursday March 8 th Chapters 10 & 11: Rotational Dynamics Thursday March 8 th Review of rotational kinematics equations Review and more on rotational inertia Rolling motion as rotation and translation Rotational kinetic energy

More information

General Remarks and Instructions

General Remarks and Instructions Delft University of Technology Faculty of Aerospace Engineering 1 st Year Examination: AE1201 Aerospace Design and System Engineering Elements I Date: 25 August 2010, Time: 9.00, Duration: 3 hrs. General

More information

Exam 3 Practice Solutions

Exam 3 Practice Solutions Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at

More information

Scalar product Work Kinetic energy Work energy theorem Potential energy Conservation of energy Power Collisions

Scalar product Work Kinetic energy Work energy theorem Potential energy Conservation of energy Power Collisions BLOOM PUBLIC SCHOOL Vasant Kunj, New Delhi Lesson Plan Class: XI Subject: Physics Month: August No of Periods: 11 Chapter No. 6: Work, energy and power TTT: 5 WT: 6 Chapter : Work, energy and power Scalar

More information

Electric Sail Propulsion Modeling and Mission Analysis

Electric Sail Propulsion Modeling and Mission Analysis Electric Sail Propulsion Modeling and Mission Analysis IEPC-007-35 Presented at the 30 th International Electric Propulsion Conference, Florence, Italy Pekka Janhunen Finnish Meteorological Institute,

More information

Asteroid Impact Mission AIM Workshop. Electric Propulsion for Attitude & Orbit Control

Asteroid Impact Mission AIM Workshop. Electric Propulsion for Attitude & Orbit Control Asteroid Impact Mission AIM Workshop Electric Propulsion for Attitude & Orbit Control ESA, ESTEC, Noordwijk, The Netherlands, 22-23 February 2016 Christophe R. Koppel Consulting Ind., 75008 Paris, France

More information

TERMINAL ATTITUDE-CONSTRAINED GUIDANCE AND CONTROL FOR LUNAR SOFT LANDING

TERMINAL ATTITUDE-CONSTRAINED GUIDANCE AND CONTROL FOR LUNAR SOFT LANDING IAA-AAS-DyCoSS2-14 -02-05 TERMINAL ATTITUDE-CONSTRAINED GUIDANCE AND CONTROL FOR LUNAR SOFT LANDING Zheng-Yu Song, Dang-Jun Zhao, and Xin-Guang Lv This work concentrates on a 3-dimensional guidance and

More information

Paper Session III-B - Mars Global Surveyor: Cruising to Mars

Paper Session III-B - Mars Global Surveyor: Cruising to Mars The Space Congress Proceedings 1997 (34th) Our Space Future - Uniting For Success May 1st, 1:00 PM Paper Session III-B - Mars Global Surveyor: Cruising to Mars Glenn E. Cunningham Project Manager Mars

More information

3. ROTATIONAL MOTION

3. ROTATIONAL MOTION 3. ROTATONAL OTON. A circular disc of mass 0 kg and radius 0. m is set into rotation about an axis passing through its centre and perpendicular to its plane by applying torque 0 Nm. Calculate the angular

More information

UNIT HW ROTATION ANSWER KEY

UNIT HW ROTATION ANSWER KEY Conceptual Questions UNIT HW ROTATION ANSWER KEY 1) D_What type of linear acceleration does an object moving with constant linear speed (st) in a circular path experience? A) free fall C) linear acceleration

More information

EF 151 Final Exam, Fall, 2011 Page 1 of 11

EF 151 Final Exam, Fall, 2011 Page 1 of 11 EF 5 Final Exam, Fall, 0 Page of Instructions Do not open or turn over the exam until instructed to do so. Name, and section will be written on the st page of the exam after time starts. Do not leave your

More information

A Long-Duration Propulsive Lunar Landing Testbed

A Long-Duration Propulsive Lunar Landing Testbed A Long-Duration Propulsive Lunar Landing Testbed Krishna Shankar, Kevin Peterson, Heather Jones, Justin Moidel and William Red Whittaker Abstract Affordable test articles for descent and landing are crucial

More information

CNESOC FLIGHT DYNAMICS MONITORING AND COMMAND OPERATIONS DURING GALILEO FOC1 LEOP AND RECOVERY.

CNESOC FLIGHT DYNAMICS MONITORING AND COMMAND OPERATIONS DURING GALILEO FOC1 LEOP AND RECOVERY. CNESOC FLIGHT DYNAMICS MONITORING AND COMMAND OPERATIONS DURING GALILEO FOC1 LEOP AND RECOVERY Jorge Lopez Merida (1), Livio Tucci (2), Riccardo Di Corato (3), Fernando Alonso Zotes (4) (1) GMV @ESA/ESOC,

More information

Q2. A machine carries a 4.0 kg package from an initial position of d ˆ. = (2.0 m)j at t = 0 to a final position of d ˆ ˆ

Q2. A machine carries a 4.0 kg package from an initial position of d ˆ. = (2.0 m)j at t = 0 to a final position of d ˆ ˆ Coordinator: Dr. S. Kunwar Monday, March 25, 2019 Page: 1 Q1. An object moves in a horizontal circle at constant speed. The work done by the centripetal force is zero because: A) the centripetal force

More information

Center of Gravity Pearson Education, Inc.

Center of Gravity Pearson Education, Inc. Center of Gravity = The center of gravity position is at a place where the torque from one end of the object is balanced by the torque of the other end and therefore there is NO rotation. Fulcrum Point

More information

Chapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum:

Chapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum: linear momentum: Chapter 8: Momentum, Impulse, & Collisions Newton s second law in terms of momentum: impulse: Under what SPECIFIC condition is linear momentum conserved? (The answer does not involve collisions.)

More information

EXTENDED GRIPPING CONDITIONS OF ROCK CLIMBER-LIKE ROBOT FOR ASYMMETRIC GRIPPING CONFIGURATION IN MICROGRAVITY

EXTENDED GRIPPING CONDITIONS OF ROCK CLIMBER-LIKE ROBOT FOR ASYMMETRIC GRIPPING CONFIGURATION IN MICROGRAVITY EXTENDED GRIPPING CONDITIONS OF ROCK CLIMBER-LIKE ROBOT FOR ASYMMETRIC GRIPPING CONFIGURATION IN MICROGRAVITY *Kyohei Maruya 1, Yudai Yuguchi, Wudom Tesshin 3, Kenji Nagaoka 4, and Kazuya Yoshida 5 1 Tohoku

More information

Physical Simulation. October 19, 2005

Physical Simulation. October 19, 2005 Physical Simulation October 19, 2005 Objects So now that we have objects, lets make them behave like real objects Want to simulate properties of matter Physical properties (dynamics, kinematics) [today

More information

ENAE483: Principles of Space System Design Power Propulsion Thermal System

ENAE483: Principles of Space System Design Power Propulsion Thermal System Power Propulsion Thermal System Team B4: Ben Abresch Jason Burr Kevin Lee Scott Wingate November 8th, 2012 Presentation Overview Mission Guidelines Project Specifications Initial Design Power Thermal Insulation

More information

Lab #4 - Gyroscopic Motion of a Rigid Body

Lab #4 - Gyroscopic Motion of a Rigid Body Lab #4 - Gyroscopic Motion of a Rigid Body Last Updated: April 6, 2007 INTRODUCTION Gyroscope is a word used to describe a rigid body, usually with symmetry about an axis, that has a comparatively large

More information

Dive In What is an advantage of sending unmanned crafts to space?

Dive In What is an advantage of sending unmanned crafts to space? Dive In What is an advantage of sending unmanned crafts to space? Manned and Robotic Spacecraft For Each Space Vehicle, complete the worksheet including: 1. If the spacecraft is manned or unmanned. 2.

More information

EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid

EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid body undergoing rotational motion. APPLICATIONS The crank

More information

EXAMPLE: MODELING THE PT326 PROCESS TRAINER

EXAMPLE: MODELING THE PT326 PROCESS TRAINER CHAPTER 1 By Radu Muresan University of Guelph Page 1 EXAMPLE: MODELING THE PT326 PROCESS TRAINER The PT326 apparatus models common industrial situations in which temperature control is required in the

More information

Spacecraft Attitude Control using CMGs: Singularities and Global Controllability

Spacecraft Attitude Control using CMGs: Singularities and Global Controllability 1 / 28 Spacecraft Attitude Control using CMGs: Singularities and Global Controllability Sanjay Bhat TCS Innovation Labs Hyderabad International Workshop on Perspectives in Dynamical Systems and Control

More information

PHYSICS I RESOURCE SHEET

PHYSICS I RESOURCE SHEET PHYSICS I RESOURCE SHEET Cautions and Notes Kinematic Equations These are to be used in regions with constant acceleration only You must keep regions with different accelerations separate (for example,

More information

Mission Scenarios for a Controlled Lunar Impact of a Small Satellite

Mission Scenarios for a Controlled Lunar Impact of a Small Satellite IAC-4-IAA.4.11.P.5 Mission Scenarios for a Controlled Lunar Impact of a Small Satellite Nikolas Trawny, Michael Graesslin, Rene Laufer and Hans-Peter Roeser Email: n.trawny@gmx.de, {graesslin,laufer,roeser}@irs.uni-stuttgart.de

More information

Elementary Mechanics Using Matlab

Elementary Mechanics Using Matlab Anders Malthe-S0renssen Elementary Mechanics Using Matlab A Modern Course Combining Analytical and Numerical Techniques ^ Springer Contents 1 Introduction 1 1.1 Physics 1 1.2 Mechanics 2 1.3 Integrating

More information

Overview of China Chang'e-3 Mission and Development of Follow-on Mission

Overview of China Chang'e-3 Mission and Development of Follow-on Mission Overview of China Chang'e-3 Mission and Development of Follow-on Mission Ming Li, Zezhou Sun, He Zhang, Xueying Wu, Fei Li, Leyang Zou, Ke Wu liming@cast.cn China Academy of Space Technology (CAST), Beijing

More information

Dynamics of Multi-Body Space Interferometers Including Reaction Wheel Gyroscopic Stiffening Effects:

Dynamics of Multi-Body Space Interferometers Including Reaction Wheel Gyroscopic Stiffening Effects: Dynamics of Multi-Body Space Interferometers Including Reaction Wheel Gyroscopic Stiffening Effects: Structurally Connected and Electromagnetic Formation Flying Architectures Laila Mireille Elias, David

More information

PHY131H1S - Class 20. Pre-class reading quiz on Chapter 12

PHY131H1S - Class 20. Pre-class reading quiz on Chapter 12 PHY131H1S - Class 20 Today: Gravitational Torque Rotational Kinetic Energy Rolling without Slipping Equilibrium with Rotation Rotation Vectors Angular Momentum Pre-class reading quiz on Chapter 12 1 Last

More information

Physics 121, March 27, Angular Momentum, Torque, and Precession. Department of Physics and Astronomy, University of Rochester

Physics 121, March 27, Angular Momentum, Torque, and Precession. Department of Physics and Astronomy, University of Rochester Physics 121, March 27, 2008. Angular Momentum, Torque, and Precession. Physics 121. March 27, 2008. Course Information Quiz Topics to be discussed today: Review of Angular Momentum Conservation of Angular

More information

is acting on a body of mass m = 3.0 kg and changes its velocity from an initial

is acting on a body of mass m = 3.0 kg and changes its velocity from an initial PHYS 101 second major Exam Term 102 (Zero Version) Q1. A 15.0-kg block is pulled over a rough, horizontal surface by a constant force of 70.0 N acting at an angle of 20.0 above the horizontal. The block

More information

Physics Curriculum Guide for High School SDP Science Teachers

Physics Curriculum Guide for High School SDP Science Teachers Physics Curriculum Guide for High School SDP Science Teachers Please note: Pennsylvania & Next Generation Science Standards as well as Instructional Resources are found on the SDP Curriculum Engine Prepared

More information

BravoSat: Optimizing the Delta-V Capability of a CubeSat Mission. with Novel Plasma Propulsion Technology ISSC 2013

BravoSat: Optimizing the Delta-V Capability of a CubeSat Mission. with Novel Plasma Propulsion Technology ISSC 2013 BravoSat: Optimizing the Delta-V Capability of a CubeSat Mission with Novel Plasma Propulsion Technology Sara Spangelo, NASA JPL, Caltech Benjamin Longmier, University of Michigan Interplanetary Small

More information

Design and modelling of an airship station holding controller for low cost satellite operations

Design and modelling of an airship station holding controller for low cost satellite operations AIAA Guidance, Navigation, and Control Conference and Exhibit 15-18 August 25, San Francisco, California AIAA 25-62 Design and modelling of an airship station holding controller for low cost satellite

More information

ELEC4631 s Lecture 2: Dynamic Control Systems 7 March Overview of dynamic control systems

ELEC4631 s Lecture 2: Dynamic Control Systems 7 March Overview of dynamic control systems ELEC4631 s Lecture 2: Dynamic Control Systems 7 March 2011 Overview of dynamic control systems Goals of Controller design Autonomous dynamic systems Linear Multi-input multi-output (MIMO) systems Bat flight

More information

Project of Lithuanian Nano-Satellite

Project of Lithuanian Nano-Satellite Project of Lithuanian Nano-Satellite Domantas BRUČAS 1), Vidmantas TOMKUS 2), Romualdas Zykus 2), Raimundas Bastys 2) 1) Department of Aviation Mechanics, Vilnius Gediminas Technical University/Space Science

More information

Lesson 7. Luis Anchordoqui. Physics 168. Tuesday, October 10, 17

Lesson 7. Luis Anchordoqui. Physics 168. Tuesday, October 10, 17 Lesson 7 Physics 168 1 Eruption of a large volcano on Jupiter s moon When volcano erupts speed of effluence exceeds escape speed of Io and so a stream of particles is projected into space Material in stream

More information

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque 7 1. Define Torque 2. State the conditions for equilibrium of rigid body (Hint: 2 conditions) 3. Define angular displacement 4. Define average angular velocity 5. Define instantaneous angular velocity

More information

Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular

Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular Unit 7: Rotational Motion (angular kinematics, dynamics, momentum & energy) Name: Big Idea 3: The interactions of an object with other objects can be described by forces. Essential Knowledge 3.F.1: Only

More information

CHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WEN-BIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY

CHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WEN-BIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY CHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WEN-BIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY OUTLINE 1. Angular Position, Velocity, and Acceleration 2. Rotational

More information

Physics for Scientists and Engineers 4th Edition, 2017

Physics for Scientists and Engineers 4th Edition, 2017 A Correlation of Physics for Scientists and Engineers 4th Edition, 2017 To the AP Physics C: Mechanics Course Descriptions AP is a trademark registered and/or owned by the College Board, which was not

More information

Mechanics 5 Dynamics of a rigid body. Basic phenomena

Mechanics 5 Dynamics of a rigid body. Basic phenomena Mechanics 5 Dynamics of a rigid body Torque Moment of Inertia Newton s laws for a rigid body Angular momentum Conservation law Basic phenomena In an empty space with no external forces acting on the body,

More information

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10 Units of Chapter 10 Determining Moments of Inertia Rotational Kinetic Energy Rotational Plus Translational Motion; Rolling Why Does a Rolling Sphere Slow Down? General Definition of Torque, final Taking

More information

ASTEX An In-Situ Exploration Mission to two Near-Earth-Asteroids

ASTEX An In-Situ Exploration Mission to two Near-Earth-Asteroids ASTEX An In-Situ Exploration Mission to two Near-Earth-Asteroids A. Nathues 1, H. Boehnhardt 1, A. W. Harris 2, W. Goetz 1,C. Gritzner 3, C. Jentsch 4, N. Schmitz 2, S. Schaeff 6, F. Weischede 5, A. Wiegand

More information

Planning for a Supersonic Retropropulsion Test in the NASA Langley Unitary Plan Wind Tunnel

Planning for a Supersonic Retropropulsion Test in the NASA Langley Unitary Plan Wind Tunnel National Aeronautics and Space Administration Planning for a Supersonic Retropropulsion Test in the NASA Langley Unitary Plan Wind Tunnel Karl Edquist (Karl.T.Edquist@nasa.gov) and Ashley Korzun NASA Langley

More information

Science benefits for Marco Polo with surface station

Science benefits for Marco Polo with surface station Science benefits for Marco Polo with surface station S. Ulamec and J. Biele DLR, Germany Why to have a Lander on a Sample Return Mission The prime scientific objective of Marco Polo is to return samples

More information

Detumbling and Capturing Strategies with Eddy Current Brake System on Orbital Space Robot

Detumbling and Capturing Strategies with Eddy Current Brake System on Orbital Space Robot Detumbling and Capturing Strategies with Eddy Current Brake System on Orbital Space Robot The Next Generation of Space Robotic Servicing Technologies IEEE International Conference on Robotics and Automation

More information

Lunette: Satellite to Satellite Gravity Mapping of the Moon

Lunette: Satellite to Satellite Gravity Mapping of the Moon Lunette: Satellite to Satellite Gravity Mapping of the Moon Maria Short 9th ILEWG International Conference on Exploration and Utilisation n of the Moon Authors: M. Short, C. Short, A. Philip, J. Gryzmisch,

More information

Spinning Satellites Examples. ACS: Gravity Gradient. ACS: Single Spin

Spinning Satellites Examples. ACS: Gravity Gradient. ACS: Single Spin Attitude Determination and Attitude Control Placing the telescope in orbit is not the end of the story. It is necessary to point the telescope towards the selected targets, or to scan the selected sky

More information

CoM Control for Underactuated 2D Hopping Robots with Series-Elastic Actuation via Higher Order Partial Feedback Linearization

CoM Control for Underactuated 2D Hopping Robots with Series-Elastic Actuation via Higher Order Partial Feedback Linearization CoM Control for Underactuated D Hopping Robots with Series-Elastic Actuation via Higher Order Partial Feedback Linearization Pat Terry and Katie Byl Abstract In this work we introduce a method for enforcing

More information