Lecture 6 Physics 106 Spring 2006

Size: px
Start display at page:

Download "Lecture 6 Physics 106 Spring 2006"

Transcription

1 Lecture 6 Physics 106 Spring 2006 Angular Momentum Rolling Angular Momentum: Definition: Angular Momentum for rotation System of particles: Torque: l = r m v sinφ l = I ω [kg m 2 /s] 02/22/2006 Andrei Sirenko, NJIT 1 02/22/2006 Andrei Sirenko, NJIT 2 Conservation of Angular Momentum Angular momentum of a solid body about a fixed axis Linear Momentum [kg m/s] Both are vectors Angular Momentum [kg m 2 /s] Law of conservation of angular momentum (Valid from microscopic to macroscopic scales!) 02/22/2006 Andrei Sirenko, NJIT 3 If the net external torque τ net acting on a system is zero, the For rotating body: angular momentum L of the system m I remains constant, v ω no matter what changes take place within the system 02/22/2006 Andrei Sirenko, NJIT 4

2 Linear Momentum Conservation: Both, elastic and Inelastic collisions 1. Define a reference frame 2. Calculate P before the collision 3. Compare with P after the collision Example: 1. Define a rotational axis and the origin 2. Calculate L before interaction or any change in I 3. Compare with L after the interaction or any change in I Angular Momentum Conservation: If the external torque is equal to zero, L is conserved 1. Define a rotational axis and the origin 2. Calculate L before interaction or any changes in I 3. Compare with L after the interaction or any change in I 02/22/2006 Andrei Sirenko, NJIT 5 02/22/2006 Andrei Sirenko, NJIT 6 Example: A horizontal disc of rotational inertia I = 1 kg.m 2 and radius 100 cm is rotating about a vertical axis through its center with an angular speed of 1 rad/s /s.. A wad of wet putty of mass 100 grams drops vertically onto the disc from above and sticks to the edge of the disk. What is the angular speed of the disk right after the putty sticks to it? 1. L i = I i ω i = 1 kg.m 2 1 rad/s = 1 kg m 2 /s 2. I f = (I i +mr 2 ) = (11 kg.m kg.m 2 ) 3. L i = L f (angular momentum conserv.) 4. ω f = ω i I i / I f = 1 rad/s (1/1.1) = 0.91 rad/s 02/22/2006 Andrei Sirenko, NJIT 7 Angular Momentum Conservation: If the external torque is equal to zero, L is conserved M 1. M = 1 kg 2. m = 10 g = 0.01 kg 3. r = 1 m 4. ω i = 0 ω f = 1 rad/s 5. v bullet =? K f /K i =? 1. Define a rotational axis and the origin 2. Calculate L before interaction or any changes in I 3. Compare with L after the interaction or any change in I r M m 1. L i = L bullet = m v r sin(π/2) =??? 2. L f = I ω = (Mr 2 + Mr 2 + mr 2 ) ω f = =2 kg m 2 /s 3. L i = L f (angular momentum conserv.) 4. v bullet = ω f (2Mr 2 + mr 2 )/mr = 200 m/s 5. K i = ½ m v 2 bullet = 200 J 6. K f = ½ I ω 2 = 1 J 7. K f /K i = 1/200 02/22/2006 Andrei Sirenko, NJIT 8

3 Rotation and Translation Rolling Smooth rolling motion Reference frame Rolling of the train wheel is it the same or slightly different? P P 02/22/2006 Andrei Sirenko, NJIT 9 02/22/2006 Andrei Sirenko, NJIT 10 Forces A net force F net acting on a rolling wheel speeds it up or slows it down and causes an acceleration. There is a slipping tendency for the wheel, while the friction force prevents it. a c 02/22/2006 Andrei Sirenko, NJIT 11 02/22/2006 Andrei Sirenko, NJIT 12

4 Kinetic Energy Stationary observer Parallel axis axis theorem What is more important: Kinetic Energy Conservation or Angular Momentum Conservation? Sample Problem X12 1: 1: A uniform solid cylindrical disk (M( = 1.4 kg, r = 8.5 cm) roll smoothly across a horizontal table with a speed of 15 cm/s. What is its kinetic energy K? A rolling object has two types of kinetic energy: a rotational kinetic energy due to its rotation about its center of mass and a translational kinetic energy due to translation of its center of mass. Work of external and internal forces can change K. K is a scalar variable, which has no direction Only net external torque τnet can change the angular momentum. L is a vector, direction is important 02/22/2006 Andrei Sirenko, NJIT 13 02/22/2006 Andrei Sirenko, NJIT 14 Forces The acceleration tends to make the wheel slide. A static frictional force f s acts on the wheel to oppose that tendency. 02/22/2006 Andrei Sirenko, NJIT 15 02/22/2006 Andrei Sirenko, NJIT 16

5 Wheel 02/22/2006 Andrei Sirenko, NJIT 17 02/22/2006 Andrei Sirenko, NJIT 18 Example 1 Kinetic Energy of Rolling + Energy conservation!!! Kinetic Energy Potential Energy U U + K K = 0 U initial = K final Mgh = Disk: I com = ½ MR 2 Hoop: Sphere: I com = MR 2 I com = 2/5 MR 2 com Free falling / sliding without friction: For disk: Mgh = ½(1/2M + M) v 2 com ; v com = (4/3 gh) ½ 02/22/2006 Andrei Sirenko, NJIT 19 02/22/2006 Andrei Sirenko, NJIT 20

6 Summary for rotational motion 02/22/2006 Andrei Sirenko, NJIT 21

Lecture 13 REVIEW. Physics 106 Spring What should we know? What should we know? Newton s Laws

Lecture 13 REVIEW. Physics 106 Spring What should we know? What should we know? Newton s Laws Lecture 13 REVIEW Physics 106 Spring 2006 http://web.njit.edu/~sirenko/ What should we know? Vectors addition, subtraction, scalar and vector multiplication Trigonometric functions sinθ, cos θ, tan θ,

More information

Physics 106 Common Exam 2: March 5, 2004

Physics 106 Common Exam 2: March 5, 2004 Physics 106 Common Exam 2: March 5, 2004 Signature Name (Print): 4 Digit ID: Section: Instructions: nswer all questions. Questions 1 through 10 are multiple choice questions worth 5 points each. You may

More information

Physics 106 Sample Common Exam 2, number 2 (Answers on page 6)

Physics 106 Sample Common Exam 2, number 2 (Answers on page 6) Physics 106 Sample Common Exam 2, number 2 (Answers on page 6) Signature Name (Print): 4 Digit ID: Section: Instructions: Answer all questions. Questions 1 through 12 are multiple choice questions worth

More information

Rolling, Torque & Angular Momentum

Rolling, Torque & Angular Momentum PHYS 101 Previous Exam Problems CHAPTER 11 Rolling, Torque & Angular Momentum Rolling motion Torque Angular momentum Conservation of angular momentum 1. A uniform hoop (ring) is rolling smoothly from the

More information

1 MR SAMPLE EXAM 3 FALL 2013

1 MR SAMPLE EXAM 3 FALL 2013 SAMPLE EXAM 3 FALL 013 1. A merry-go-round rotates from rest with an angular acceleration of 1.56 rad/s. How long does it take to rotate through the first rev? A) s B) 4 s C) 6 s D) 8 s E) 10 s. A wheel,

More information

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1 Physics 201 p. 1/1 Physics 201 Professor P. Q. Hung 311B, Physics Building Physics 201 p. 2/1 Rotational Kinematics and Energy Rotational Kinetic Energy, Moment of Inertia All elements inside the rigid

More information

Q1. For a completely inelastic two-body collision the kinetic energy of the objects after the collision is the same as:

Q1. For a completely inelastic two-body collision the kinetic energy of the objects after the collision is the same as: Coordinator: Dr.. Naqvi Monday, January 05, 015 Page: 1 Q1. For a completely inelastic two-body collision the kinetic energy of the objects after the collision is the same as: ) (1/) MV, where M is the

More information

Test 7 wersja angielska

Test 7 wersja angielska Test 7 wersja angielska 7.1A One revolution is the same as: A) 1 rad B) 57 rad C) π/2 rad D) π rad E) 2π rad 7.2A. If a wheel turns with constant angular speed then: A) each point on its rim moves with

More information

Rolling, Torque, and Angular Momentum

Rolling, Torque, and Angular Momentum AP Physics C Rolling, Torque, and Angular Momentum Introduction: Rolling: In the last unit we studied the rotation of a rigid body about a fixed axis. We will now extend our study to include cases where

More information

Momentum. The way to catch a knuckleball is to wait until it stops rolling and then pick it up. -Bob Uecker

Momentum. The way to catch a knuckleball is to wait until it stops rolling and then pick it up. -Bob Uecker Chapter 11 -, Chapter 11 -, Angular The way to catch a knuckleball is to wait until it stops rolling and then pick it up. -Bob Uecker David J. Starling Penn State Hazleton PHYS 211 Chapter 11 -, motion

More information

Chapters 10 & 11: Rotational Dynamics Thursday March 8 th

Chapters 10 & 11: Rotational Dynamics Thursday March 8 th Chapters 10 & 11: Rotational Dynamics Thursday March 8 th Review of rotational kinematics equations Review and more on rotational inertia Rolling motion as rotation and translation Rotational kinetic energy

More information

Chapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum:

Chapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum: linear momentum: Chapter 8: Momentum, Impulse, & Collisions Newton s second law in terms of momentum: impulse: Under what SPECIFIC condition is linear momentum conserved? (The answer does not involve collisions.)

More information

PY205N Spring The vectors a, b, and c. are related by c = a b. The diagram below that best illustrates this relationship is (a) I

PY205N Spring The vectors a, b, and c. are related by c = a b. The diagram below that best illustrates this relationship is (a) I PY205N Spring 2013 Final exam, practice version MODIFIED This practice exam is to help students prepare for the final exam to be given at the end of the semester. Please note that while problems on this

More information

Rolling, Torque, Angular Momentum

Rolling, Torque, Angular Momentum Chapter 11 Rolling, Torque, Angular Momentum Copyright 11.2 Rolling as Translational and Rotation Combined Motion of Translation : i.e.motion along a straight line Motion of Rotation : rotation about a

More information

is acting on a body of mass m = 3.0 kg and changes its velocity from an initial

is acting on a body of mass m = 3.0 kg and changes its velocity from an initial PHYS 101 second major Exam Term 102 (Zero Version) Q1. A 15.0-kg block is pulled over a rough, horizontal surface by a constant force of 70.0 N acting at an angle of 20.0 above the horizontal. The block

More information

Physics 221. Exam III Spring f S While the cylinder is rolling up, the frictional force is and the cylinder is rotating

Physics 221. Exam III Spring f S While the cylinder is rolling up, the frictional force is and the cylinder is rotating Physics 1. Exam III Spring 003 The situation below refers to the next three questions: A solid cylinder of radius R and mass M with initial velocity v 0 rolls without slipping up the inclined plane. N

More information

CHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WEN-BIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY

CHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WEN-BIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY CHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WEN-BIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY OUTLINE 1. Angular Position, Velocity, and Acceleration 2. Rotational

More information

Lecture 13. Impulse and Linear Momentum. Center of Mass for a system of particles. Momentum Conservation And Collisions. Physics 105 Summer 2006

Lecture 13. Impulse and Linear Momentum. Center of Mass for a system of particles. Momentum Conservation And Collisions. Physics 105 Summer 2006 Lecture 13 Center of Mass for a system of particles 2 bodies, 1 dimension Momentum Conservation And Collisions (HR&W, Chapters 9) http://web.njit.edu/~sirenko/ 0 COM Physics 105 Summer 2006 Lecture 13

More information

6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm.

6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm. 1. During a certain period of time, the angular position of a swinging door is described by θ = 5.00 + 10.0t + 2.00t 2, where θ is in radians and t is in seconds. Determine the angular position, angular

More information

Phys101 Second Major-173 Zero Version Coordinator: Dr. M. Al-Kuhaili Thursday, August 02, 2018 Page: 1. = 159 kw

Phys101 Second Major-173 Zero Version Coordinator: Dr. M. Al-Kuhaili Thursday, August 02, 2018 Page: 1. = 159 kw Coordinator: Dr. M. Al-Kuhaili Thursday, August 2, 218 Page: 1 Q1. A car, of mass 23 kg, reaches a speed of 29. m/s in 6.1 s starting from rest. What is the average power used by the engine during the

More information

PHYSICS 221 SPRING EXAM 2: March 30, 2017; 8:15pm 10:15pm

PHYSICS 221 SPRING EXAM 2: March 30, 2017; 8:15pm 10:15pm PHYSICS 221 SPRING 2017 EXAM 2: March 30, 2017; 8:15pm 10:15pm Name (printed): Recitation Instructor: Section # Student ID# INSTRUCTIONS: This exam contains 25 multiple-choice questions plus 2 extra credit

More information

General Physics 1. School of Science, University of Tehran Fall Exercises (set 07)

General Physics 1. School of Science, University of Tehran Fall Exercises (set 07) General Physics 1 School of Science, University of Tehran Fall 1396-97 Exercises (set 07) 1. In Fig., wheel A of radius r A 10cm is coupled by belt B to wheel C of radius r C 25 cm. The angular speed of

More information

Physics 180A Test Points

Physics 180A Test Points Physics 180A Test 3-10 Points Name You must complete six of the nine 10-point problems. You must completely cross off three 10-problems, thanks. Place your answers in the answer box. Watch your units and

More information

A) 4.0 m/s B) 5.0 m/s C) 0 m/s D) 3.0 m/s E) 2.0 m/s. Ans: Q2.

A) 4.0 m/s B) 5.0 m/s C) 0 m/s D) 3.0 m/s E) 2.0 m/s. Ans: Q2. Coordinator: Dr. W. Al-Basheer Thursday, July 30, 2015 Page: 1 Q1. A constant force F ( 7.0ˆ i 2.0 ˆj ) N acts on a 2.0 kg block, initially at rest, on a frictionless horizontal surface. If the force causes

More information

A) 1 gm 2 /s. B) 3 gm 2 /s. C) 6 gm 2 /s. D) 9 gm 2 /s. E) 10 gm 2 /s. A) 0.1 kg. B) 1 kg. C) 2 kg. D) 5 kg. E) 10 kg A) 2:5 B) 4:5 C) 1:1 D) 5:4

A) 1 gm 2 /s. B) 3 gm 2 /s. C) 6 gm 2 /s. D) 9 gm 2 /s. E) 10 gm 2 /s. A) 0.1 kg. B) 1 kg. C) 2 kg. D) 5 kg. E) 10 kg A) 2:5 B) 4:5 C) 1:1 D) 5:4 1. A 4 kg object moves in a circle of radius 8 m at a constant speed of 2 m/s. What is the angular momentum of the object with respect to an axis perpendicular to the circle and through its center? A)

More information

Q2. A machine carries a 4.0 kg package from an initial position of d ˆ. = (2.0 m)j at t = 0 to a final position of d ˆ ˆ

Q2. A machine carries a 4.0 kg package from an initial position of d ˆ. = (2.0 m)j at t = 0 to a final position of d ˆ ˆ Coordinator: Dr. S. Kunwar Monday, March 25, 2019 Page: 1 Q1. An object moves in a horizontal circle at constant speed. The work done by the centripetal force is zero because: A) the centripetal force

More information

z F 3 = = = m 1 F 1 m 2 F 2 m 3 - Linear Momentum dp dt F net = d P net = d p 1 dt d p n dt - Conservation of Linear Momentum Δ P = 0

z F 3 = = = m 1 F 1 m 2 F 2 m 3 - Linear Momentum dp dt F net = d P net = d p 1 dt d p n dt - Conservation of Linear Momentum Δ P = 0 F 1 m 2 F 2 x m 1 O z F 3 m 3 y Ma com = F net F F F net, x net, y net, z = = = Ma Ma Ma com, x com, y com, z p = mv - Linear Momentum F net = dp dt F net = d P dt = d p 1 dt +...+ d p n dt Δ P = 0 - Conservation

More information

Physics 53 Exam 3 November 3, 2010 Dr. Alward

Physics 53 Exam 3 November 3, 2010 Dr. Alward 1. When the speed of a rear-drive car (a car that's driven forward by the rear wheels alone) is increasing on a horizontal road the direction of the frictional force on the tires is: A) forward for all

More information

Chapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc.

Chapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc. Chapter 10 Rotational Kinematics and Energy Copyright 010 Pearson Education, Inc. 10-1 Angular Position, Velocity, and Acceleration Copyright 010 Pearson Education, Inc. 10-1 Angular Position, Velocity,

More information

Exam 2 Solutions. PHY2048 Spring 2017

Exam 2 Solutions. PHY2048 Spring 2017 Exam Solutions. The figure shows an overhead view of three horizontal forces acting on a cargo canister that was initially stationary but that now moves across a frictionless floor. The force magnitudes

More information

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true?

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true? Mechanics II 1. By applying a force F on a block, a person pulls a block along a rough surface at constant velocity v (see Figure below; directions, but not necessarily magnitudes, are indicated). Which

More information

1. An object is dropped from rest. Which of the five following graphs correctly represents its motion? The positive direction is taken to be downward.

1. An object is dropped from rest. Which of the five following graphs correctly represents its motion? The positive direction is taken to be downward. Unless otherwise instructed, use g = 9.8 m/s 2 Rotational Inertia about an axis through com: Hoop about axis(radius=r, mass=m) : MR 2 Hoop about diameter (radius=r, mass=m): 1/2MR 2 Disk/solid cyllinder

More information

Webreview Torque and Rotation Practice Test

Webreview Torque and Rotation Practice Test Please do not write on test. ID A Webreview - 8.2 Torque and Rotation Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A 0.30-m-radius automobile

More information

Chapter 8. Rotational Equilibrium and Rotational Dynamics

Chapter 8. Rotational Equilibrium and Rotational Dynamics Chapter 8 Rotational Equilibrium and Rotational Dynamics Wrench Demo Torque Torque, τ, is the tendency of a force to rotate an object about some axis τ = Fd F is the force d is the lever arm (or moment

More information

1 of 7 4/5/2010 10:25 PM Name Date UNIT 3 TEST 1. In the formula F = Gm m /r, the quantity G: depends on the local value of g is used only when Earth is one of the two masses is greatest at the surface

More information

Chapter 12. Rotation of a Rigid Body

Chapter 12. Rotation of a Rigid Body Chapter 12. Rotation of a Rigid Body Not all motion can be described as that of a particle. Rotation requires the idea of an extended object. This diver is moving toward the water along a parabolic trajectory,

More information

Name Student ID Score Last First. I = 2mR 2 /5 around the sphere s center of mass?

Name Student ID Score Last First. I = 2mR 2 /5 around the sphere s center of mass? NOTE: ignore air resistance in all Questions. In all Questions choose the answer that is the closest!! Question I. (15 pts) Rotation 1. (5 pts) A bowling ball that has an 11 cm radius and a 7.2 kg mass

More information

Winter Midterm Review Questions

Winter Midterm Review Questions Winter Midterm Review Questions PHYS106 February 24, 2008 PHYS106 () Winter Midterm Review Questions February 24, 2008 1 / 12 MassCenter003 Calculate the position of the mass center of the rigid system

More information

Phys101 Third Major-161 Zero Version Coordinator: Dr. Ayman S. El-Said Monday, December 19, 2016 Page: 1

Phys101 Third Major-161 Zero Version Coordinator: Dr. Ayman S. El-Said Monday, December 19, 2016 Page: 1 Coordinator: Dr. Ayman S. El-Said Monday, December 19, 2016 Page: 1 Q1. A water molecule (H 2O) consists of an oxygen (O) atom of mass 16m and two hydrogen (H) atoms, each of mass m, bound to it (see Figure

More information

Physics 131: Lecture 21. Today s Agenda

Physics 131: Lecture 21. Today s Agenda Physics 131: Lecture 1 Today s Agenda Rotational dynamics Torque = I Angular Momentum Physics 01: Lecture 10, Pg 1 Newton s second law in rotation land Sum of the torques will equal the moment of inertia

More information

PHY131H1S - Class 20. Pre-class reading quiz on Chapter 12

PHY131H1S - Class 20. Pre-class reading quiz on Chapter 12 PHY131H1S - Class 20 Today: Gravitational Torque Rotational Kinetic Energy Rolling without Slipping Equilibrium with Rotation Rotation Vectors Angular Momentum Pre-class reading quiz on Chapter 12 1 Last

More information

Physics 2A Chapter 10 - Rotational Motion Fall 2018

Physics 2A Chapter 10 - Rotational Motion Fall 2018 Physics A Chapter 10 - Rotational Motion Fall 018 These notes are five pages. A quick summary: The concepts of rotational motion are a direct mirror image of the same concepts in linear motion. Follow

More information

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10 Units of Chapter 10 Determining Moments of Inertia Rotational Kinetic Energy Rotational Plus Translational Motion; Rolling Why Does a Rolling Sphere Slow Down? General Definition of Torque, final Taking

More information

Work and kinetic Energy

Work and kinetic Energy Work and kinetic Energy Problem 66. M=4.5kg r = 0.05m I = 0.003kgm 2 Q: What is the velocity of mass m after it dropped a distance h? (No friction) h m=0.6kg mg Work and kinetic Energy Problem 66. M=4.5kg

More information

Chapter 9-10 Test Review

Chapter 9-10 Test Review Chapter 9-10 Test Review Chapter Summary 9.2. The Second Condition for Equilibrium Explain torque and the factors on which it depends. Describe the role of torque in rotational mechanics. 10.1. Angular

More information

Physics 201 Exam 3 (Monday, November 5) Fall 2012 (Saslow)

Physics 201 Exam 3 (Monday, November 5) Fall 2012 (Saslow) Physics 201 Exam 3 (Monday, November 5) Fall 2012 (Saslow) Name (printed) Lab Section(+2 pts) Name (signed as on ID) Multiple choice Section. Circle the correct answer. No work need be shown and no partial

More information

1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches

1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches AP Physics B Practice Questions: Rotational Motion Multiple-Choice Questions 1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches

More information

I 2 comω 2 + Rolling translational+rotational. a com. L sinθ = h. 1 tot. smooth rolling a com =αr & v com =ωr

I 2 comω 2 + Rolling translational+rotational. a com. L sinθ = h. 1 tot. smooth rolling a com =αr & v com =ωr Rolling translational+rotational smooth rolling a com =αr & v com =ωr Equations of motion from: - Force/torque -> a and α - Energy -> v and ω 1 I 2 comω 2 + 1 Mv 2 = KE 2 com tot a com KE tot = KE trans

More information

PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011

PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011 PHYSICS 1, FALL 011 EXAM SOLUTIONS WEDNESDAY, NOVEMBER, 011 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively. In this

More information

PY105 Assignment 10 ( )

PY105 Assignment 10 ( ) 1 of 5 2009/10/30 8:27 AM PY105 Assignment 10 (1031274) 0/20 Tue Nov 17 2009 10:15 PM EST Question Points 1 2 3 4 5 6 7 0/2 0/6 0/2 0/2 0/2 0/5 0/1 Total 0/20 Description This assignment is worth 20 points.

More information

Physics 207: Lecture 24. Announcements. No labs next week, May 2 5 Exam 3 review session: Wed, May 4 from 8:00 9:30 pm; here.

Physics 207: Lecture 24. Announcements. No labs next week, May 2 5 Exam 3 review session: Wed, May 4 from 8:00 9:30 pm; here. Physics 07: Lecture 4 Announcements No labs next week, May 5 Exam 3 review session: Wed, May 4 from 8:00 9:30 pm; here Today s Agenda ecap: otational dynamics and torque Work and energy with example Many

More information

Chap. 10: Rotational Motion

Chap. 10: Rotational Motion Chap. 10: Rotational Motion I. Rotational Kinematics II. Rotational Dynamics - Newton s Law for Rotation III. Angular Momentum Conservation (Chap. 10) 1 Newton s Laws for Rotation n e t I 3 rd part [N

More information

Rolling without slipping Angular Momentum Conservation of Angular Momentum. Physics 201: Lecture 19, Pg 1

Rolling without slipping Angular Momentum Conservation of Angular Momentum. Physics 201: Lecture 19, Pg 1 Physics 131: Lecture Today s Agenda Rolling without slipping Angular Momentum Conservation o Angular Momentum Physics 01: Lecture 19, Pg 1 Rolling Without Slipping Rolling is a combination o rotation and

More information

Exam II. Spring 2004 Serway & Jewett, Chapters Fill in the bubble for the correct answer on the answer sheet. next to the number.

Exam II. Spring 2004 Serway & Jewett, Chapters Fill in the bubble for the correct answer on the answer sheet. next to the number. Agin/Meyer PART I: QUALITATIVE Exam II Spring 2004 Serway & Jewett, Chapters 6-10 Assigned Seat Number Fill in the bubble for the correct answer on the answer sheet. next to the number. NO PARTIAL CREDIT:

More information

Jordan University of Science & Technology PHYS 101A Final exam First semester 2007

Jordan University of Science & Technology PHYS 101A Final exam First semester 2007 Student Name Student ID Jordan University of Science & Technology PHYS 101A Final exam First semester 2007 Approximate your answer to those given for each question. Use this table to fill in your answer

More information

Rotational Motion. Rotational Motion. Rotational Motion

Rotational Motion. Rotational Motion. Rotational Motion I. Rotational Kinematics II. Rotational Dynamics (Netwton s Law for Rotation) III. Angular Momentum Conservation 1. Remember how Newton s Laws for translational motion were studied: 1. Kinematics (x =

More information

PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2)

PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2) PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2) We will limit our study of planar kinetics to rigid bodies that are symmetric with respect to a fixed reference plane. As discussed in Chapter 16, when

More information

8.012 Physics I: Classical Mechanics Fall 2008

8.012 Physics I: Classical Mechanics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE

More information

Moment of Inertia & Newton s Laws for Translation & Rotation

Moment of Inertia & Newton s Laws for Translation & Rotation Moment of Inertia & Newton s Laws for Translation & Rotation In this training set, you will apply Newton s 2 nd Law for rotational motion: Στ = Σr i F i = Iα I is the moment of inertia of an object: I

More information

Physics 111. Lecture 23 (Walker: 10.6, 11.1) Conservation of Energy in Rotation Torque March 30, Kinetic Energy of Rolling Object

Physics 111. Lecture 23 (Walker: 10.6, 11.1) Conservation of Energy in Rotation Torque March 30, Kinetic Energy of Rolling Object Physics 111 Lecture 3 (Walker: 10.6, 11.1) Conservation of Energy in Rotation Torque March 30, 009 Lecture 3 1/4 Kinetic Energy of Rolling Object Total kinetic energy of a rolling object is the sum of

More information

Phys101 Third Major-161 Zero Version Coordinator: Dr. Ayman S. El-Said Monday, December 19, 2016 Page: 1

Phys101 Third Major-161 Zero Version Coordinator: Dr. Ayman S. El-Said Monday, December 19, 2016 Page: 1 Coordinator: Dr. Ayman S. El-Said Monday, December 19, 2016 Page: 1 Q1. A water molecule (H 2 O) consists of an oxygen (O) atom of mass 16m and two hydrogen (H) atoms, each of mass m, bound to it (see

More information

Forces of Rolling. 1) Ifobjectisrollingwith a com =0 (i.e.no netforces), then v com =ωr = constant (smooth roll)

Forces of Rolling. 1) Ifobjectisrollingwith a com =0 (i.e.no netforces), then v com =ωr = constant (smooth roll) Physics 2101 Section 3 March 12 rd : Ch. 10 Announcements: Mid-grades posted in PAW Quiz today I will be at the March APS meeting the week of 15-19 th. Prof. Rich Kurtz will help me. Class Website: http://www.phys.lsu.edu/classes/spring2010/phys2101-3/

More information

Physics 2210 Fall smartphysics Conservation of Angular Momentum 11/20/2015

Physics 2210 Fall smartphysics Conservation of Angular Momentum 11/20/2015 Physics 2210 Fall 2015 smartphysics 19-20 Conservation of Angular Momentum 11/20/2015 Poll 11-18-03 In the two cases shown above identical ladders are leaning against frictionless walls and are not sliding.

More information

Physics 23 Exam 3 April 2, 2009

Physics 23 Exam 3 April 2, 2009 1. A string is tied to a doorknob 0.79 m from the hinge as shown in the figure. At the instant shown, the force applied to the string is 5.0 N. What is the torque on the door? A) 3.3 N m B) 2.2 N m C)

More information

Rotational Kinematics and Dynamics. UCVTS AIT Physics

Rotational Kinematics and Dynamics. UCVTS AIT Physics Rotational Kinematics and Dynamics UCVTS AIT Physics Angular Position Axis of rotation is the center of the disc Choose a fixed reference line Point P is at a fixed distance r from the origin Angular Position,

More information

Chap10. Rotation of a Rigid Object about a Fixed Axis

Chap10. Rotation of a Rigid Object about a Fixed Axis Chap10. Rotation of a Rigid Object about a Fixed Axis Level : AP Physics Teacher : Kim 10.1 Angular Displacement, Velocity, and Acceleration - A rigid object rotating about a fixed axis through O perpendicular

More information

Solution Only gravity is doing work. Since gravity is a conservative force mechanical energy is conserved:

Solution Only gravity is doing work. Since gravity is a conservative force mechanical energy is conserved: 8) roller coaster starts with a speed of 8.0 m/s at a point 45 m above the bottom of a dip (see figure). Neglecting friction, what will be the speed of the roller coaster at the top of the next slope,

More information

Phys 106 Practice Problems Common Quiz 1 Spring 2003

Phys 106 Practice Problems Common Quiz 1 Spring 2003 Phys 106 Practice Problems Common Quiz 1 Spring 2003 1. For a wheel spinning with constant angular acceleration on an axis through its center, the ratio of the speed of a point on the rim to the speed

More information

PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION

PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION Today s Objectives: Students will be able to: 1. Apply the three equations of motion for a rigid body in planar motion. 2. Analyze problems involving translational

More information

Physics 218 Exam III

Physics 218 Exam III Physics 218 Exam III Spring 2017 (all sections) April 17 th, 2017 Rules of the exam: Please fill out the information and read the instructions below, but do not open the exam until told to do so. 1. You

More information

Review questions. Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right.

Review questions. Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right. Review questions Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right. 30 kg 70 kg v (a) Is this collision elastic? (b) Find the

More information

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion Torque and angular momentum In Figure, in order to turn a rod about a fixed hinge at one end, a force F is applied at a

More information

Physics for Scientist and Engineers third edition Rotational Motion About a Fixed Axis Problems

Physics for Scientist and Engineers third edition Rotational Motion About a Fixed Axis Problems A particular bird s eye can just distinguish objects that subtend an angle no smaller than about 3 E -4 rad, A) How many degrees is this B) How small an object can the bird just distinguish when flying

More information

Chapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc.

Chapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc. Chapter 10 Rotational Kinematics and Energy 10-1 Angular Position, Velocity, and Acceleration 10-1 Angular Position, Velocity, and Acceleration Degrees and revolutions: 10-1 Angular Position, Velocity,

More information

Video Lecture #2 Introductory Conservation of Momentum Problem using Unit Vectors

Video Lecture #2 Introductory Conservation of Momentum Problem using Unit Vectors AP Physics C Video Lecture Notes Chapter 09-10 Thank You, Emily Rencsok, for these notes. Video Lecture #1 Introduction to Momentum and Derivation of Conservation of Momentum Video Lecture #2 Introductory

More information

Midterm 3 Thursday April 13th

Midterm 3 Thursday April 13th Welcome back to Physics 215 Today s agenda: Angular momentum Rolling without slipping Midterm Review Physics 215 Spring 2017 Lecture 12-2 1 Midterm 3 Thursday April 13th Material covered: Ch 9 Ch 12 Lectures

More information

1 of 5 7/13/2015 9:03 AM HW8 due 6 pm Day 18 (Wed. July 15) (7426858) Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1. Question Details OSColPhys1 10.P.028.WA. [2611790] The specifications for

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #2 November 15, 2001 Time: 90 minutes NAME: STUDENT NO.: (Last) Please Print (Given) LECTURE SECTION

More information

Rotation Quiz II, review part A

Rotation Quiz II, review part A Rotation Quiz II, review part A 1. A solid disk with a radius R rotates at a constant rate ω. Which of the following points has the greater angular velocity? A. A B. B C. C D. D E. All points have the

More information

Exam 3 Practice Solutions

Exam 3 Practice Solutions Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at

More information

Suggested Problems. Chapter 1

Suggested Problems. Chapter 1 Suggested Problems Ch1: 49, 51, 86, 89, 93, 95, 96, 102. Ch2: 9, 18, 20, 44, 51, 74, 75, 93. Ch3: 4, 14, 46, 54, 56, 75, 91, 80, 82, 83. Ch4: 15, 59, 60, 62. Ch5: 14, 52, 54, 65, 67, 83, 87, 88, 91, 93,

More information

31 ROTATIONAL KINEMATICS

31 ROTATIONAL KINEMATICS 31 ROTATIONAL KINEMATICS 1. Compare and contrast circular motion and rotation? Address the following Which involves an object and which involves a system? Does an object/system in circular motion have

More information

PHYSICS 221 SPRING 2015

PHYSICS 221 SPRING 2015 PHYSICS 221 SPRING 2015 EXAM 2: April 2, 2015 8:15-10:15pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 25 multiple-choice questions plus 2 extra credit questions,

More information

Chapter 10 Practice Test

Chapter 10 Practice Test Chapter 10 Practice Test 1. At t = 0, a wheel rotating about a fixed axis at a constant angular acceleration of 0.40 rad/s 2 has an angular velocity of 1.5 rad/s and an angular position of 2.3 rad. What

More information

PHYSICS 220. Lecture 15. Textbook Sections Lecture 15 Purdue University, Physics 220 1

PHYSICS 220. Lecture 15. Textbook Sections Lecture 15 Purdue University, Physics 220 1 PHYSICS 220 Lecture 15 Angular Momentum Textbook Sections 9.3 9.6 Lecture 15 Purdue University, Physics 220 1 Last Lecture Overview Torque = Force that causes rotation τ = F r sin θ Work done by torque

More information

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque 7 1. Define Torque 2. State the conditions for equilibrium of rigid body (Hint: 2 conditions) 3. Define angular displacement 4. Define average angular velocity 5. Define instantaneous angular velocity

More information

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 20: Rotational Motion. Slide 20-1

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 20: Rotational Motion. Slide 20-1 Physics 1501 Fall 2008 Mechanics, Thermodynamics, Waves, Fluids Lecture 20: Rotational Motion Slide 20-1 Recap: center of mass, linear momentum A composite system behaves as though its mass is concentrated

More information

Practice Exam #3 A N B. 1.2 N C N D N E. 0 N

Practice Exam #3 A N B. 1.2 N C N D N E. 0 N Practice Exam #3 1. A barbell is mounted on a nearly frictionless axle through its center. The low-mass rod has a length d = 0.9 m, and each ball has a mass m = 0.5 kg. At this instant, there are two forces

More information

Broward County Schools AP Physics 1 Review

Broward County Schools AP Physics 1 Review Broward County Schools AP Physics 1 Review 1 AP Physics 1 Review 1. The Basics of the Exam Important info: No penalty for guessing. Eliminate one or two choices and then take a shot. Multi-select questions

More information

Physics 218 Exam 3 Spring 2010, Sections

Physics 218 Exam 3 Spring 2010, Sections Physics 8 Exam 3 Spring 00, Sections 5-55 Do not fill out the information below until instructed to do so! Name Signature Student ID E-mail Section # Rules of the exam:. You have the full class period

More information

FINAL EXAM CLOSED BOOK

FINAL EXAM CLOSED BOOK Physics 7A- Section 2, Fall 2008. Instructor Lanzara FINAL EXAM CLOSED BOOK GOOD LUCK! Print Name Discussion Section# or Time Signature Discussion Section GSI Student ID# Problem Points Score 1 20 2 20

More information

Chapter 8- Rotational Kinematics Angular Variables Kinematic Equations

Chapter 8- Rotational Kinematics Angular Variables Kinematic Equations Chapter 8- Rotational Kinematics Angular Variables Kinematic Equations Chapter 9- Rotational Dynamics Torque Center of Gravity Newton s 2 nd Law- Angular Rotational Work & Energy Angular Momentum Angular

More information

ME 230: Kinematics and Dynamics Spring 2014 Section AD. Final Exam Review: Rigid Body Dynamics Practice Problem

ME 230: Kinematics and Dynamics Spring 2014 Section AD. Final Exam Review: Rigid Body Dynamics Practice Problem ME 230: Kinematics and Dynamics Spring 2014 Section AD Final Exam Review: Rigid Body Dynamics Practice Problem 1. A rigid uniform flat disk of mass m, and radius R is moving in the plane towards a wall

More information

Chapter 12: Rotation of Rigid Bodies. Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics

Chapter 12: Rotation of Rigid Bodies. Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics Chapter 1: Rotation of Rigid Bodies Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics Translational vs Rotational / / 1/ m x v dx dt a dv dt F ma p mv KE mv Work Fd P Fv / / 1/ I

More information

( ) Physics 201, Final Exam, Fall 2006 PRACTICE EXAMINATION Answer Key. The next three problems refer to the following situation:

( ) Physics 201, Final Exam, Fall 2006 PRACTICE EXAMINATION Answer Key. The next three problems refer to the following situation: Physics 201, Final Exam, Fall 2006 PRACTICE EXAMINATION Answer Key The next three problems refer to the following situation: Two masses, m 1 and m 2, m 1 > m 2, are suspended by a massless rope over a

More information

Solution to Problem. Part A. x m. x o = 0, y o = 0, t = 0. Part B m m. range

Solution to Problem. Part A. x m. x o = 0, y o = 0, t = 0. Part B m m. range PRACTICE PROBLEMS: Final Exam, December 4 Monday, GYM, 6 to 9 PM Problem A Physics Professor did a daredevil stunt in his spare time. In the figure below he tries to cross a river from a 53 ramp at an

More information

INTI INTERNATIONAL UNIVERSITY FOUNDATION IN SCIENCE (CFSI) PHY1203: GENERAL PHYSICS 1 FINAL EXAMINATION: SEPTEMBER 2012 SESSION

INTI INTERNATIONAL UNIVERSITY FOUNDATION IN SCIENCE (CFSI) PHY1203: GENERAL PHYSICS 1 FINAL EXAMINATION: SEPTEMBER 2012 SESSION INTI INTERNATIONAL UNIVERSITY FOUNDATION IN SCIENCE (CFSI) PHY1203: GENERAL PHYSICS 1 FINAL EXAMINATION: SEPTEMBER 2012 SESSION PHY1203(F)/Page 1 of 5 Instructions: This paper consists of FIVE (5) questions.

More information

Name (Print): Signature: PUID:

Name (Print): Signature: PUID: Machine Graded Portion (70 points total) Name (Print): Signature: PUID: You will lose points if your explanations are incomplete, if we can t read your handwriting, or if your work is sloppy. 1. A playground

More information

Essential Physics I. Lecture 9:

Essential Physics I. Lecture 9: Essential Physics I E I Lecture 9: 15-06-15 Last lecture: review Conservation of momentum: p = m v p before = p after m 1 v 1,i + m 2 v 2,i = m 1 v 1,f + m 2 v 2,f m 1 m 1 m 2 m 2 Elastic collision: +

More information

Rotational Motion Test

Rotational Motion Test Rotational Motion Test Multiple Choice: Write the letter that best answers the question. Each question is worth 2pts. 1. Angular momentum is: A.) The sum of moment of inertia and angular velocity B.) The

More information