ECE Spring Prof. David R. Jackson ECE Dept. Notes 33

Size: px
Start display at page:

Download "ECE Spring Prof. David R. Jackson ECE Dept. Notes 33"

Transcription

1 C 6345 Spring 2015 Prof. David R. Jackson C Dept. Notes 33 1

2 Overview In this set of notes we eamine the FSS problem in more detail, using the periodic spectral-domain Green s function. 2

3 FSS Geometry Reflected plane wave Incident plane wave z ( 1, 0) ( 0, 1) ( 0,0) ( 0,1) y ( 1, 0) ( mn, ) h L W ε r b a Dielectric layer Metal patch Transmitted plane wave 3

4 FSS Geometry (cont.) ψ ( ) 0 y0 z 0 = A e ( θ, φ ) 0 0 jk + k y + jk z e = arrival angles k = k sinθ cosφ k = k sinθ sinφ y k = k cosθ z0 0 0 Reflected plane wave Incident plane wave z ( 1, 0) ( 0, 1) ( 0,0) ( 0,1) y ( 1, 0) ( mn, ) h L W ε r b a Dielectric layer Metal patch Transmitted plane wave 4

5 FSS Analysis Assume that the unknown current on the (0,0) patch is of the following form: The FI is then (, ) = (, ) J y A B y s π B ( y, ) = cos, < L/2, y< W/2 L imp A B + = 0, < L/ 2, y < W / 2 Note that the superscript stands for infinite periodic (i.e., the fields due to the infinite periodic array of patch currents). The superscript imp denotes the impressed field (seen by the patches) that eists in the absence of the metal patches. That is, the ident plane-wave field plus that which reflects from the dielectric layer. The FI is enforced on the (0,0) patch; it is then automatically enforced on all patches. 5

6 We have, using Galerkin s method, 0 0 ( ) A B (, y) B ds + B, y ds = 0 imp S S Define Z = B (, y) B ds S 0 S 0 (, ) imp R = B y ds We then have A Z = R 6

7 The (0,0) patch current amplitude is then A = R Z For the patch self reaction we have 1 Z = G ( k, k ) B ( k, k ) 2 dk dk ( 2π ) 2 y y y Single patch 1 Z = G k k B k k ab 2 (, ) (, ) p yq p yq p= q= Periodic patches 7

8 For the RHS term we have S 0 (, ) imp R = B y ds The impressed field as a function of (,y) can be written as imp jk ( 0+ ky0y) y,,0 = e 0,0,0 1+Γ ( ) ( )[ ] where Γ=Γ Γ=Γ T T idence idence This gives us jk ( 0+ ky0y) R = ( 0,0,0)[ 1 +Γ] B (, y) e ds S 0 8

9 Hence, we have ( 0,0,0)[ 1 ] (, ) R = +Γ B k k 0 y0 where L cos k π W B k k LW k 2 2 π L k 2 2 ( ) 2, y = s y 2 2 Γ=Γ Γ=Γ T T idence idence 9

10 For the ident field we have ( ) = θ ( ) θ ( 0,0,0) = ( 0,0,0)( sinφ ) 0,0,0 0,0,0 cos cos φ φ idence T idence In a typical scattering problem we would usually choose θ φ ( ) ( ) 0,0,0 = 1 0,0,0 = 1 idence T idence 10

11 We now calculate the FSS reflection coefficient. The field radiated by the patch currents for z > 0 is 1 ( + ) 0, y, z A G k, k ;0,0 B k, k e e ( ) ( ) ( ) jk k y jk z y z = 2 ( 2π ) Single patch y y 1 pq ( p + yq ) z 0 (, y, z) = A G ( kp, kyq;0,0 ) B ( kp, kyq ) e e ab p= q= jk k y jk z Periodic patches where ( ) 1/2 k = k k k pq z0 0 p yq 11

12 The field of the specular-reflected (0,0) wave radiated by the patches for z > 0 is ref, patch 1 ( 0 + y0 ) z 0 (, y, z) = A G ( k0, ky0;0,0 ) B ( k0, ky0) e e ab jk k y jk z The total specular reflected field is ref, tot ( ) yz = Γe e (,, ) ( 0,0,0) where jk + k y jk z 0 y0 z 0 1 ( ) + A G ( k0, ky0;0,0 ) B ( k0, ky0) e e ab jk + k y jk z 0 y0 z 0 Γ=reflection coefficient from the layer (without the patches) 12

13 The total FSS reflection coefficient is defined from the (0,0) fields as Γ FSS ref, tot ( 0,0,0) ( 0,0,0) Note: The total reflected wave will not in general be perfectly z or T z (unless we are in the pripal planes). The total FSS reflection coefficient is then Γ FSS =Γ+ 1 1 A G k k B k k ab ( 0,0,0) ( 0, 0;0,0 ) ( 0, 0) y y Γ=Γ Γ=Γ T T idence idence ( ) = θ ( ) θ ( 0,0,0) = ( 0,0,0)( sinφ ) 0,0,0 0,0,0 cos cos φ φ idence T idence 13

14 For the layer reflection coefficient we have Γ=Γ Γ=Γ T T idence idence Γ Γ= Z Z in in Z Z 0 0 ( z ) ( z ) Z L + jz1tan k 1h Zin = Z1 Z 1+ jz Ltan k 1 h h Z1 ZL = Z 0 Z 0 kz0 = ωε 0 Z ωµ = T 0 0 kz0 Z 1 k ωµ z1 T 0 = Z1 = ωε 0ε r kz k = k k k k = k k k k1 = k0 ε r z0 0 0 y z1 1 0 y0 14

15 We also have A = R Z ( 0,0,0)[ 1 ] (, ) R = +Γ B k k 0 y0 1 Z = G k k B k k ab 2 (, ) (, ) p yq p yq p= q= ( ) = θ ( ) θ ( 0,0,0) = ( 0,0,0)( sinφ ) 0,0,0 0,0,0 cos cos φ φ idence T idence 15

16 FSS quivalent Circuit Approimate equivalent circuit of patch FSS A periodic array of metal patches forms a capacitive FSS. L C The periodic patch array is modeled as a shunt susceptance in the TN, consisting of an L and a C. Note: There could also be a layer present. 16

17 FSS quivalent Circuit Approimate equivalent circuit of slot FSS A periodic array of slots forms an inductive FSS. L The periodic slot array is modeled as a shunt susceptance in the TN, consisting of an L and a C. C Note: There could also be a layer present. 17

18 At circuit resonance: FSS quivalent Circuit A patch (capacitive) FSS reflects all of the wave. A slot (inductive) FSS transmits all of the wave. Patch FSS L C Slot FSS L C 18

19 Results: FSS Patch Array in Free Space C. C. Chen, Scattering by a two-dimensional array of conducting patches, I Trans. Antennas and Propagation, pp , Sept Note the total reflection at the resonance frequency! 19

ECE Spring Prof. David R. Jackson ECE Dept. Notes 32

ECE Spring Prof. David R. Jackson ECE Dept. Notes 32 ECE 6345 Spring 215 Prof. David R. Jackson ECE Dept. Notes 32 1 Overview In this set of notes we extend the spectral-domain method to analyze infinite periodic structures. Two typical examples of infinite

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 26

ECE Spring Prof. David R. Jackson ECE Dept. Notes 26 ECE 6345 Spring 05 Prof. David R. Jackson ECE Dept. Notes 6 Overview In this set of notes we use the spectral-domain method to find the mutual impedance between two rectangular patch ennas. z Geometry

More information

ECE 6340 Intermediate EM Waves. Fall 2016 Prof. David R. Jackson Dept. of ECE. Notes 18

ECE 6340 Intermediate EM Waves. Fall 2016 Prof. David R. Jackson Dept. of ECE. Notes 18 C 6340 Intermediate M Waves Fall 206 Prof. David R. Jacson Dept. of C Notes 8 T - Plane Waves φˆ θˆ T φˆ θˆ A homogeneous plane wave is shown for simplicit (but the principle is general). 2 Arbitrar Polariation:

More information

ECE Spring Prof. David R. Jackson ECE Dept.

ECE Spring Prof. David R. Jackson ECE Dept. ECE 6341 Spring 016 Prof. Dvid R. Jckson ECE Dept. Notes Notes 4 46 1 Overview In this set of notes we exmine the Arry Scnning Method (ASM for clculting the field of single source ner n infinite periodic

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 16

ECE Spring Prof. David R. Jackson ECE Dept. Notes 16 ECE 6345 Spring 5 Prof. David R. Jackson ECE Dept. Notes 6 Overview In this set of notes we calculate the power radiated into space by the circular patch. This will lead to Q sp of the circular patch.

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 41

ECE Spring Prof. David R. Jackson ECE Dept. Notes 41 ECE 634 Sprng 6 Prof. Davd R. Jackson ECE Dept. Notes 4 Patch Antenna In ths set of notes we do the followng: Fnd the feld E produced by the patch current on the nterface Fnd the feld E z nsde the substrate

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 10

ECE Spring Prof. David R. Jackson ECE Dept. Notes 10 ECE 6345 Spring 215 Prof. David R. Jackson ECE Dept. Notes 1 1 Overview In this set of notes we derive the far-field pattern of a circular patch operating in the dominant TM 11 mode. We use the magnetic

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 6

ECE Spring Prof. David R. Jackson ECE Dept. Notes 6 ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 6 1 Leaky Modes v TM 1 Mode SW 1 v= utan u ε R 2 R kh 0 n1 r = ( ) 1 u Splitting point ISW f = f s f > f s We will examine the solutions as the

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 7

ECE Spring Prof. David R. Jackson ECE Dept. Notes 7 ECE 6341 Spring 216 Prof. David R. Jackson ECE Dept. Notes 7 1 Two-ayer Stripline Structure h 2 h 1 ε, µ r2 r2 ε, µ r1 r1 Goal: Derive a transcendental equation for the wavenumber k of the TM modes of

More information

ECE 6341 Spring 2016 HW 2

ECE 6341 Spring 2016 HW 2 ECE 6341 Spring 216 HW 2 Assigned problems: 1-6 9-11 13-15 1) Assume that a TEN models a layered structure where the direction (the direction perpendicular to the layers) is the direction that the transmission

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 13

ECE Spring Prof. David R. Jackson ECE Dept. Notes 13 ECE 635 Spring 15 Prof. David R. Jackson ECE Dept. Notes 13 1 Overview In this set of notes we perform the algebra necessary to evaluate the p factor in closed form (assuming a thin substrate) and to simplify

More information

General Properties of Planar Leaky-Wave Antennas

General Properties of Planar Leaky-Wave Antennas European School of Antennas High-frequency techniques and Travelling-wave antennas General Properties of Planar Leaky-Wave Antennas Giampiero Lovat La Sapienza University of Rome Roma, 24th February 2005

More information

Chapter 4 Reflection and Transmission of Waves

Chapter 4 Reflection and Transmission of Waves 4-1 Chapter 4 Reflection and Transmission of Waves ECE 3317 Dr. Stuart Long www.bridgat.com www.ranamok.com Boundary Conditions 4- -The convention is that is the outward pointing normal at the boundary

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 37

ECE Spring Prof. David R. Jackson ECE Dept. Notes 37 ECE 6341 Spring 16 Prof. David R. Jacson ECE Dept. Notes 37 1 Line Source on a Grounded Slab y ε r E jω A z µ I 1 A 1 e e d y ( ) + TE j y j z 4 j +Γ y 1/ 1/ ( ) ( ) y y1 1 There are branch points only

More information

FRACTIONAL DUAL SOLUTIONS AND CORRESPONDING SOURCES

FRACTIONAL DUAL SOLUTIONS AND CORRESPONDING SOURCES Progress In Electromagnetics Research, PIER 5, 3 38, 000 FRACTIONAL DUAL SOLUTIONS AND CORRESPONDING SOURCES Q. A. Naqvi and A. A. Rizvi Communications Lab. Department of Electronics Quaidi-i-Azam University

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 15

ECE Spring Prof. David R. Jackson ECE Dept. Notes 15 ECE 6341 Spring 216 Prof. David R. Jackson ECE Dept. Notes 15 1 Arbitrary Line Current TM : A (, ) Introduce Fourier Transform: I I + ( k ) jk = I e d x y 1 I = I ( k ) jk e dk 2π 2 Arbitrary Line Current

More information

Aperture Antennas 1 Introduction

Aperture Antennas 1 Introduction 1 Introduction Very often, we have antennas in aperture forms, for example, the antennas shown below: Pyramidal horn antenna Conical horn antenna 1 Paraboloidal antenna Slot antenna Analysis Method for.1

More information

Scattering Parameters

Scattering Parameters Berkeley Scattering Parameters Prof. Ali M. Niknejad U.C. Berkeley Copyright c 2016 by Ali M. Niknejad September 7, 2017 1 / 57 Scattering Parameters 2 / 57 Scattering Matrix Voltages and currents are

More information

PLANE WAVE PROPAGATION AND REFLECTION. David R. Jackson Department of Electrical and Computer Engineering University of Houston Houston, TX

PLANE WAVE PROPAGATION AND REFLECTION. David R. Jackson Department of Electrical and Computer Engineering University of Houston Houston, TX PLANE WAVE PROPAGATION AND REFLECTION David R. Jackson Department of Electrical and Computer Engineering University of Houston Houston, TX 7704-4793 Abstract The basic properties of plane waves propagating

More information

Closed-Form Evaluation of Mutual Coupling in a Planar Array of Circular Apertures

Closed-Form Evaluation of Mutual Coupling in a Planar Array of Circular Apertures NASA Technical Paper 3552 Closed-Form Evaluation of Mutual Coupling in a Planar Array of Circular Apertures M. C. Bailey Langley Research Center Hampton, Virginia National Aeronautics and Space Administration

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 25

ECE Spring Prof. David R. Jackson ECE Dept. Notes 25 ECE 6345 Sprng 2015 Prof. Davd R. Jackson ECE Dept. Notes 25 1 Overvew In ths set of notes we use the spectral-doman method to fnd the nput mpedance of a rectangular patch antenna. Ths method uses the

More information

Notes 19 Gradient and Laplacian

Notes 19 Gradient and Laplacian ECE 3318 Applied Electricity and Magnetism Spring 218 Prof. David R. Jackson Dept. of ECE Notes 19 Gradient and Laplacian 1 Gradient Φ ( x, y, z) =scalar function Φ Φ Φ grad Φ xˆ + yˆ + zˆ x y z We can

More information

( z) ( ) ( )( ) ω ω. Wave equation. Transmission line formulas. = v. Helmholtz equation. Exponential Equation. Trig Formulas = Γ. cos sin 1 1+Γ = VSWR

( z) ( ) ( )( ) ω ω. Wave equation. Transmission line formulas. = v. Helmholtz equation. Exponential Equation. Trig Formulas = Γ. cos sin 1 1+Γ = VSWR Wave equation 1 u tu v u(, t f ( vt + g( + vt Helmholt equation U + ku jk U Ae + Be + jk Eponential Equation γ e + e + γ + γ Trig Formulas sin( + y sin cos y+ sin y cos cos( + y cos cos y sin sin y + cos

More information

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 17

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 17 ECE 634 Intermediate EM Waves Fall 16 Prof. David R. Jacson Dept. of ECE Notes 17 1 General Plane Waves General form of plane wave: E( xz,, ) = Eψ ( xz,, ) where ψ ( xz,, ) = e j( xx+ + zz) The wavenumber

More information

DISSERTATION PROPOSAL: FREQUENCY SELECTIVE SURFACES WITH MULTIPLE PERIODIC ELEMENTS JEFFREY A. REED, B.A., M.B.A., M.S. Presented to the Faculty of

DISSERTATION PROPOSAL: FREQUENCY SELECTIVE SURFACES WITH MULTIPLE PERIODIC ELEMENTS JEFFREY A. REED, B.A., M.B.A., M.S. Presented to the Faculty of DISSERTATION PROPOSAL: FREQUENCY SELECTIVE SURFACES WITH MULTIPLE PERIODIC ELEMENTS by JEFFREY A. REED, B.A., M.B.A., M.S. Presented to the Faculty of The University of Texas at Dallas in Partial Fulfillment

More information

3 December Lesson 5.5

3 December Lesson 5.5 Preparation Assignments for Homework #8 Due at the start of class. Reading Assignments Please see the handouts for each lesson for the reading assignments. 3 December Lesson 5.5 A uniform plane wave is

More information

Plane Waves GATE Problems (Part I)

Plane Waves GATE Problems (Part I) Plane Waves GATE Problems (Part I). A plane electromagnetic wave traveling along the + z direction, has its electric field given by E x = cos(ωt) and E y = cos(ω + 90 0 ) the wave is (a) linearly polarized

More information

Contribution of Feed Waveguide on the Admittance Characteristics Of Coplanar Slot Coupled E-H Tee Junction

Contribution of Feed Waveguide on the Admittance Characteristics Of Coplanar Slot Coupled E-H Tee Junction ISSN(Online): 30-9801 Contribution of Feed Waveguide on the Admittance Characteristics Of Coplanar Slot Coupled E-H Tee Junction M.Murali, Prof. G.S.N Raju Research Scholar, Dept.of ECE, Andhra University,

More information

General review: - a) Dot Product

General review: - a) Dot Product General review: - a) Dot Product If θ is the angle between the vectors a and b, then a b = a b cos θ NOTE: Two vectors a and b are orthogonal, if and only if a b = 0. Properties of the Dot Product If a,

More information

ECE 107: Electromagnetism

ECE 107: Electromagnetism ECE 107: Electromagnetism Set 2: Transmission lines Instructor: Prof. Vitaliy Lomakin Department of Electrical and Computer Engineering University of California, San Diego, CA 92093 1 Outline Transmission

More information

Solutions: Homework 7

Solutions: Homework 7 Solutions: Homework 7 Ex. 7.1: Frustrated Total Internal Reflection a) Consider light propagating from a prism, with refraction index n, into air, with refraction index 1. We fix the angle of incidence

More information

Accurate Modeling of Spiral Inductors on Silicon From Within Cadence Virtuoso using Planar EM Simulation. Agilent EEsof RFIC Seminar Spring 2004

Accurate Modeling of Spiral Inductors on Silicon From Within Cadence Virtuoso using Planar EM Simulation. Agilent EEsof RFIC Seminar Spring 2004 Accurate Modeling of Spiral Inductors on Silicon From Within Cadence Virtuoso using Planar EM Simulation Agilent EEsof RFIC Seminar Spring Overview Spiral Inductor Models Availability & Limitations Momentum

More information

Electromagnetic Scattering from an Anisotropic Uniaxial-coated Conducting Sphere

Electromagnetic Scattering from an Anisotropic Uniaxial-coated Conducting Sphere Progress In Electromagnetics Research Symposium 25, Hangzhou, China, August 22-26 43 Electromagnetic Scattering from an Anisotropic Uniaxial-coated Conducting Sphere You-Lin Geng 1,2, Xin-Bao Wu 3, and

More information

MIDSUMMER EXAMINATIONS 2001

MIDSUMMER EXAMINATIONS 2001 No. of Pages: 7 No. of Questions: 10 MIDSUMMER EXAMINATIONS 2001 Subject PHYSICS, PHYSICS WITH ASTROPHYSICS, PHYSICS WITH SPACE SCIENCE & TECHNOLOGY, PHYSICS WITH MEDICAL PHYSICS Title of Paper MODULE

More information

F. Medina, and F. Mesa. Electromagnetic Materials in Microwaves and Optics London, United Kingdom

F. Medina, and F. Mesa. Electromagnetic Materials in Microwaves and Optics London, United Kingdom DNAIC AND CIRCUIT THEOR ODELS FOR THE ANALSIS OF SUB- WAVELENGTH TRANSISSION THROUGH PATRNED SCREENS A. B. akovev, C. S. R. Kaipa,. R. Padooru, F. edina, and F. esa Third Internationa Congress on Advanced

More information

Transmission Lines. Plane wave propagating in air Y unguided wave propagation. Transmission lines / waveguides Y. guided wave propagation

Transmission Lines. Plane wave propagating in air Y unguided wave propagation. Transmission lines / waveguides Y. guided wave propagation Transmission Lines Transmission lines and waveguides may be defined as devices used to guide energy from one point to another (from a source to a load). Transmission lines can consist of a set of conductors,

More information

Propagation of EM Waves in material media

Propagation of EM Waves in material media Propagation of EM Waves in material media S.M.Lea 09 Wave propagation As usual, we start with Maxwell s equations with no free charges: D =0 B =0 E = B t H = D t + j If we now assume that each field has

More information

III. Spherical Waves and Radiation

III. Spherical Waves and Radiation III. Spherical Waves and Radiation Antennas radiate spherical waves into free space Receiving antennas, reciprocity, path gain and path loss Noise as a limit to reception Ray model for antennas above a

More information

J.-C. Zhang, Y.-Z. Yin, and J.-P. Ma National Laboratory of Antennas and Microwave Technology Xidian University Xi an, Shaanxi , P. R.

J.-C. Zhang, Y.-Z. Yin, and J.-P. Ma National Laboratory of Antennas and Microwave Technology Xidian University Xi an, Shaanxi , P. R. Progress In Electromagnetics Research Letters, Vol. 6, 55 60, 2009 MULTIFUNCTIONAL MEANDER LINE POLARIZER J.-C. Zhang, Y.-Z. Yin, and J.-P. Ma National Laboratory of Antennas and Microwave Technology Xidian

More information

AN EXACT FORMULATION FOR THE REFLECTION COEFFICIENT FROM ANISOTROPIC MULTILAYER STRUCTURES WITH ARBITRARY BACKING

AN EXACT FORMULATION FOR THE REFLECTION COEFFICIENT FROM ANISOTROPIC MULTILAYER STRUCTURES WITH ARBITRARY BACKING Progress In Electromagnetics Research M, Vol. 30, 79 93, 2013 AN EXACT FORMULATION FOR THE REFLECTION COEFFICIENT FROM ANISOTROPIC MULTILAYER STRUCTURES WITH ARBITRARY BACKING Ali Abdolali *, Maryam Heidary,

More information

Plane Waves Part II. 1. For an electromagnetic wave incident from one medium to a second medium, total reflection takes place when

Plane Waves Part II. 1. For an electromagnetic wave incident from one medium to a second medium, total reflection takes place when Plane Waves Part II. For an electromagnetic wave incident from one medium to a second medium, total reflection takes place when (a) The angle of incidence is equal to the Brewster angle with E field perpendicular

More information

6-1 Chapter 6 Transmission Lines

6-1 Chapter 6 Transmission Lines 6-1 Chapter 6 Transmission ines ECE 3317 Dr. Stuart A. ong 6-2 General Definitions p.133 6-3 Voltage V( z) = α E ds ( C z) 1 C t t ( a) Current I( z) = α H ds ( C0 closed) 2 C 0 ( b) http://www.cartoonstock.com

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 9

ECE Spring Prof. David R. Jackson ECE Dept. Notes 9 ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 9 1 Circular Waveguide The waveguide is homogeneously filled, so we have independent TE and TM modes. a ε r A TM mode: ψ ρφ,, ( ) Jυ( kρρ) sin(

More information

Modal Interactions in Lossy Dielectric Metamaterial Slabs

Modal Interactions in Lossy Dielectric Metamaterial Slabs Modal Interactions in Lossy Dielectric Metamaterial Slabs A. B. Yakovlev (), G. Lovat (), P. Burghignoli (), and G. W. Hanson () () University of Mississippi () La Sapienza University of Rome () University

More information

UNIVERSITY OF BOLTON. SCHOOL OF ENGINEERING, SPORTS and SCIENCES BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING EXAMINATION SEMESTER /2018

UNIVERSITY OF BOLTON. SCHOOL OF ENGINEERING, SPORTS and SCIENCES BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING EXAMINATION SEMESTER /2018 ENG018 SCHOOL OF ENGINEERING, SPORTS and SCIENCES BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING MODULE NO: EEE6002 Date: 17 January 2018 Time: 2.00 4.00 INSTRUCTIONS TO CANDIDATES: There are six questions.

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 6345 Sping 05 Po. David R. Jackson ECE Dept. Notes Oveview This set o notes teats cicula polaization, obtained b using a single eed. L W 0 0 W ( 0, 0 ) L Oveview Goals: Find the optimum dimensions

More information

Phys 4322 Final Exam - Solution May 12, 2015

Phys 4322 Final Exam - Solution May 12, 2015 Phys 4322 Final Exam - Solution May 12, 2015 You may NOT use any book or notes other than that supplied with this test. You will have 3 hours to finish. DO YOUR OWN WORK. Express your answers clearly and

More information

and Ee = E ; 0 they are separated by a dielectric material having u = io-s S/m, µ, = µ, 0

and Ee = E ; 0 they are separated by a dielectric material having u = io-s S/m, µ, = µ, 0 602 CHAPTER 11 TRANSMISSION LINES 11.10 Two identical pulses each of magnitude 12 V and width 2 µs are incident at t = 0 on a lossless transmission line of length 400 m terminated with a load. If the two

More information

Linear Wire Antennas

Linear Wire Antennas Linear Wire Antennas Ranga Rodrigo August 4, 010 Lecture notes are fully based on Balanis?. Some diagrams and text are directly from the books. Contents 1 Infinitesimal Dipole 1 Small Dipole 7 3 Finite-Length

More information

ECE 222b Applied Electromagnetics Notes Set 4b

ECE 222b Applied Electromagnetics Notes Set 4b ECE b Applied Electromagnetics Notes Set 4b Instructor: Prof. Vitali Lomain Department of Electrical and Computer Engineering Universit of California, San Diego 1 Uniform Waveguide (1) Wave propagation

More information

A survey of various frequency domain integral equations for the analysis of scattering from threedimensional

A survey of various frequency domain integral equations for the analysis of scattering from threedimensional yracuse University URFACE Electrical Engineering and Computer cience College of Engineering and Computer cience 2002 A survey of various frequency domain integral equations for the analysis of scattering

More information

Angular-Stability Low-Profile Miniaturized Frequency Selective Surface Based on Complementary Structure

Angular-Stability Low-Profile Miniaturized Frequency Selective Surface Based on Complementary Structure Progress In Electromagnetics Research M, Vol. 57, 119 128, 2017 Angular-Stability Low-Profile Miniaturized Frequency Selective Surface Based on Complementary Structure Wenxing Li and Yuanyuan Li * Abstract

More information

Notes 24 Image Theory

Notes 24 Image Theory ECE 3318 Applied Electricity and Magnetism Spring 218 Prof. David R. Jackson Dept. of ECE Notes 24 Image Teory 1 Uniqueness Teorem S ρ v ( yz),, ( given) Given: Φ=ΦB 2 ρv Φ= ε Φ=Φ B on boundary Inside

More information

Energy conserving coupling through small apertures in an infinite perfect conducting screen

Energy conserving coupling through small apertures in an infinite perfect conducting screen doi:1.519/ars-13-7-15 Author(s) 15. CC Attribution 3. License. Energy conserving coupling through small apertures in an infinite perfect conducting screen J. Petzold,. Tkachenko, and R. Vick Chair of Electromagnetic

More information

ECE357H1F ELECTROMAGNETIC FIELDS FINAL EXAM. 28 April Examiner: Prof. Sean V. Hum. Duration: hours

ECE357H1F ELECTROMAGNETIC FIELDS FINAL EXAM. 28 April Examiner: Prof. Sean V. Hum. Duration: hours UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING The Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE357H1F ELECTROMAGNETIC FIELDS FINAL EXAM 28 April 15 Examiner:

More information

ECE 497 JS Lecture -03 Transmission Lines

ECE 497 JS Lecture -03 Transmission Lines ECE 497 JS Lecture -03 Transmission Lines Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 MAXWELL S EQUATIONS B E = t Faraday s Law of Induction

More information

Matrix description of wave propagation and polarization

Matrix description of wave propagation and polarization Chapter Matrix description of wave propagation and polarization Contents.1 Electromagnetic waves................................... 1. Matrix description of wave propagation in linear systems..............

More information

EQUIVALENT DIELECTRIC CONSTANT OF PERIODIC MEDIA

EQUIVALENT DIELECTRIC CONSTANT OF PERIODIC MEDIA EECS 730, Winter 2009 c K. Sarabandi EQUIVALENT DIELECTRIC CONSTANT OF PERIODIC MEDIA The behavior of electromagnetic waves can be controlled by controlling the constitutive parameters of the medium in

More information

ECE145A/218A Course Notes

ECE145A/218A Course Notes ECE145A/218A Course Notes Last note set: Introduction to transmission lines 1. Transmission lines are a linear system - superposition can be used 2. Wave equation permits forward and reverse wave propagation

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 1

ECE Spring Prof. David R. Jackson ECE Dept. Notes 1 ECE 6341 Spring 16 Prof. David R. Jackson ECE Dept. Notes 1 1 Fields in a Source-Free Region Sources Source-free homogeneous region ( ε, µ ) ( EH, ) Note: For a lossy region, we replace ε ε c ( / ) εc

More information

ANALYTICAL MODEL OF A METASURFACE CONSIST- ING OF A REGULAR ARRAY OF SUB-WAVELENGTH CIRCULAR HOLES IN A METAL SHEET

ANALYTICAL MODEL OF A METASURFACE CONSIST- ING OF A REGULAR ARRAY OF SUB-WAVELENGTH CIRCULAR HOLES IN A METAL SHEET Progress In Electromagnetics Research M, Vol. 18, 209 219, 2011 ANALYTICAL MODEL OF A METASURFACE CONSIST- ING OF A REGULAR ARRAY OF SUB-WAVELENGTH CIRCULAR HOLES IN A METAL SHEET D. Ramaccia *, F. Bilotti,

More information

Transmission Line Theory

Transmission Line Theory S. R. Zinka zinka@vit.ac.in School of Electronics Engineering Vellore Institute of Technology April 26, 2013 Outline 1 Free Space as a TX Line 2 TX Line Connected to a Load 3 Some Special Cases 4 Smith

More information

Modelling Microwave Scattering from Rough Sea Ice Surfaces

Modelling Microwave Scattering from Rough Sea Ice Surfaces Modelling Microwave Scattering from Rough Sea Ice Surfaces Xu Xu 1, Anthony P. Doulgeris 1, Frank Melandsø 1, Camilla Brekke 1 1. Department of Physics and Technology, UiT The Arctic University of Norway,

More information

PHY 6347 Spring 2018 Homework #10, Due Friday, April 6

PHY 6347 Spring 2018 Homework #10, Due Friday, April 6 PHY 6347 Spring 28 Homework #, Due Friday, April 6. A plane wave ψ = ψ e ik x is incident from z < on an opaque screen that blocks the entire plane z = except for the opening 2 a < x < 2 a, 2 b < y < 2

More information

Notes 18 Faraday s Law

Notes 18 Faraday s Law EE 3318 Applied Electricity and Magnetism Spring 2018 Prof. David R. Jackson Dept. of EE Notes 18 Faraday s Law 1 Example (cont.) Find curl of E from a static point charge q y E q = rˆ 2 4πε0r x ( E sinθ

More information

Power and Energy Measurement

Power and Energy Measurement Power and Energy Measurement ENE 240 Electrical and Electronic Measurement Class 11, February 4, 2009 werapon.chi@kmutt.ac.th 1 Work, Energy and Power Work is an activity of force and movement in the direction

More information

EE243 Advanced Electromagnetic Theory Lec #3: Electrostatics (Apps., Form),

EE243 Advanced Electromagnetic Theory Lec #3: Electrostatics (Apps., Form), EE4 Advanced Electromagnetic Theory Lec #: Electrostatics Apps., Form, Electrostatic Boundary Conditions Energy, Force and Capacitance Electrostatic Boundary Conditions on Φ Image Solutions Eample Green

More information

Finite Element Method (FEM)

Finite Element Method (FEM) Finite Element Method (FEM) The finite element method (FEM) is the oldest numerical technique applied to engineering problems. FEM itself is not rigorous, but when combined with integral equation techniques

More information

Comparative Analysis of Techniques for Source Radiation in Cylindrical EBG with and without Periodic Discontinuities

Comparative Analysis of Techniques for Source Radiation in Cylindrical EBG with and without Periodic Discontinuities 1398 Progress In Electromagnetics Research Symposium Abstracts, St Petersburg, Russia, 22 25 May 2017 Comparative Analysis of Techniques for Source Radiation in Cylindrical EBG with and without Periodic

More information

1 Electromagnetic concepts useful for radar applications

1 Electromagnetic concepts useful for radar applications Electromagnetic concepts useful for radar applications The scattering of electromagnetic waves by precipitation particles and their propagation through precipitation media are of fundamental importance

More information

xy 2 e 2z dx dy dz = 8 3 (1 e 4 ) = 2.62 mc. 12 x2 y 3 e 2z 2 m 2 m 2 m Figure P4.1: Cube of Problem 4.1.

xy 2 e 2z dx dy dz = 8 3 (1 e 4 ) = 2.62 mc. 12 x2 y 3 e 2z 2 m 2 m 2 m Figure P4.1: Cube of Problem 4.1. Problem 4.1 A cube m on a side is located in the first octant in a Cartesian coordinate system, with one of its corners at the origin. Find the total charge contained in the cube if the charge density

More information

Midterm Exam 2. Nov. 17, Optics I: Theory CPHY72250

Midterm Exam 2. Nov. 17, Optics I: Theory CPHY72250 Midterm Exam. Nov. 17, 015 Optics I: Theory CPHY750 - time: 1hr 15 mins. - show all work clearly - indicate reasoning where appropriate name 1. (a) Show that two cascaded quarter-wave retarder plates with

More information

ELECTROMAGNETIC FIELDS AND WAVES

ELECTROMAGNETIC FIELDS AND WAVES ELECTROMAGNETIC FIELDS AND WAVES MAGDY F. ISKANDER Professor of Electrical Engineering University of Utah Englewood Cliffs, New Jersey 07632 CONTENTS PREFACE VECTOR ANALYSIS AND MAXWELL'S EQUATIONS IN

More information

ECE 6340 Intermediate EM Waves. Fall 2016 Prof. David R. Jackson Dept. of ECE. Notes 16

ECE 6340 Intermediate EM Waves. Fall 2016 Prof. David R. Jackson Dept. of ECE. Notes 16 C 6340 Intermediate M Waves Fall 2016 Prof. David R. Jackson Dept. of C Notes 16 1 Polarization of Waves Consider a plane wave with both and components (,, z) = ( ˆ + ˆ ) e jkz Assume j0 = ae = a = j be

More information

ANALYSIS OF PLANAR MULTILAYER STRUCTURES AT OBLIQUE INCIDENCE USING AN EQUIVALENT BCITL MODEL

ANALYSIS OF PLANAR MULTILAYER STRUCTURES AT OBLIQUE INCIDENCE USING AN EQUIVALENT BCITL MODEL Progress In Electromagnetics Research C, Vol. 4, 13 24, 2008 ANALYSIS OF PLANAR MULTILAYER STRUCTURES AT OBLIQUE INCIDENCE USING AN EQUIVALENT BCITL MODEL D. Torrungrueng and S. Lamultree Department of

More information

Winter 2017 Ma 1b Analytical Problem Set 2 Solutions

Winter 2017 Ma 1b Analytical Problem Set 2 Solutions 1. (5 pts) From Ch. 1.10 in Apostol: Problems 1,3,5,7,9. Also, when appropriate exhibit a basis for S. Solution. (1.10.1) Yes, S is a subspace of V 3 with basis {(0, 0, 1), (0, 1, 0)} and dimension 2.

More information

ANALYTICAL POLE RESIDUE CALCULATION IN SPECTRAL METHOD OF MOMENTS FORMULATIONS FOR PERIODIC STRUCTURES

ANALYTICAL POLE RESIDUE CALCULATION IN SPECTRAL METHOD OF MOMENTS FORMULATIONS FOR PERIODIC STRUCTURES Progress In Electromagnetics Research M, Vol. 13, 83 94, 2010 ANALYTICAL POLE RESIDUE CALCULATION IN SPECTRAL METHOD OF MOMENTS FORMULATIONS FOR PERIODIC STRUCTURES Y. Kaganovsky Department of Physical

More information

Characterization of Printed Transmission Lines at High Frequencies

Characterization of Printed Transmission Lines at High Frequencies Master thesis - Electrical Engineering Characterization of Printed Transmission Lines at High Frequencies Using quasi-analytical expressions Sven van Berkel 4020480 Delft University of Technology April

More information

ELE 3310 Tutorial 10. Maxwell s Equations & Plane Waves

ELE 3310 Tutorial 10. Maxwell s Equations & Plane Waves ELE 3310 Tutorial 10 Mawell s Equations & Plane Waves Mawell s Equations Differential Form Integral Form Faraday s law Ampere s law Gauss s law No isolated magnetic charge E H D B B D J + ρ 0 C C E r dl

More information

Waves in Linear Optical Media

Waves in Linear Optical Media 1/53 Waves in Linear Optical Media Sergey A. Ponomarenko Dalhousie University c 2009 S. A. Ponomarenko Outline Plane waves in free space. Polarization. Plane waves in linear lossy media. Dispersion relations

More information

Multilayer Reflectivity

Multilayer Reflectivity Multilayer Reflectivity John E. Davis jed@jedsoft.org January 5, 2014 1 Introduction The purpose of this document is to present an ab initio derivation of the reflectivity for a plane electromagnetic wave

More information

AN EXPRESSION FOR THE RADAR CROSS SECTION COMPUTATION OF AN ELECTRICALLY LARGE PERFECT CONDUCTING CYLINDER LOCATED OVER A DIELECTRIC HALF-SPACE

AN EXPRESSION FOR THE RADAR CROSS SECTION COMPUTATION OF AN ELECTRICALLY LARGE PERFECT CONDUCTING CYLINDER LOCATED OVER A DIELECTRIC HALF-SPACE Progress In Electromagnetics Research, PIER 77, 267 272, 27 AN EXPRESSION FOR THE RADAR CROSS SECTION COMPUTATION OF AN ELECTRICALLY LARGE PERFECT CONDUCTING CYLINDER LOCATED OVER A DIELECTRIC HALF-SPACE

More information

INPUT IMPEDANCE ANALYSIS OF A MICROSTRIP ANNULAR-RING ANTENNA WITH A THICK SUBSTRATE. H. Liu and X.-F. Hu

INPUT IMPEDANCE ANALYSIS OF A MICROSTRIP ANNULAR-RING ANTENNA WITH A THICK SUBSTRATE. H. Liu and X.-F. Hu Progress In Electromagnetics Research, PIER 12, 177 24, 1996 INPUT IMPEDANCE ANALYSIS OF A MICROSTRIP ANNULAR-RING ANTENNA WITH A THICK SUBSTRATE H. Liu and X.-F. Hu 1. Introduction 2. Formulation 3. Galerkin

More information

RECTANGULAR MICROSTRIP RESONATOR ILLUMI- NATED BY NORMAL-INCIDENT PLANE WAVE

RECTANGULAR MICROSTRIP RESONATOR ILLUMI- NATED BY NORMAL-INCIDENT PLANE WAVE Progress In Electromagnetics Research, Vol. 120, 83 97, 2011 RECTANGULAR MICROSTRIP RESONATOR ILLUMI- NATED BY NORMAL-INCIDENT PLANE WAVE M. Pergol * and W. Zieniutycz Gdansk University of Technology,

More information

DESIGN OF ARBITRARY SHAPED PLANAR RES- ONATORS WITH FINE DETAILS USING MODIFIED SPACE SPECTRAL DOMAIN APPROACH

DESIGN OF ARBITRARY SHAPED PLANAR RES- ONATORS WITH FINE DETAILS USING MODIFIED SPACE SPECTRAL DOMAIN APPROACH Progress In Electromagnetics Research B, Vol. 48, 249 269, 2013 DESIGN OF ARBITRARY SHAPED PLANAR RES- ONATORS WITH FINE DETAILS USING MODIFIED SPACE SPECTRAL DOMAIN APPROACH Essam A. Hashish 1 and Hossam

More information

1 Matrices and matrix algebra

1 Matrices and matrix algebra 1 Matrices and matrix algebra 1.1 Examples of matrices A matrix is a rectangular array of numbers and/or variables. For instance 4 2 0 3 1 A = 5 1.2 0.7 x 3 π 3 4 6 27 is a matrix with 3 rows and 5 columns

More information

FDTD for 1D wave equation. Equation: 2 H Notations: o o. discretization. ( t) ( x) i i i i i

FDTD for 1D wave equation. Equation: 2 H Notations: o o. discretization. ( t) ( x) i i i i i FDTD for 1D wave equation Equation: 2 H = t 2 c2 2 H x 2 Notations: o t = nδδ, x = iδx o n H nδδ, iδx = H i o n E nδδ, iδx = E i discretization H 2H + H H 2H + H n+ 1 n n 1 n n n i i i 2 i+ 1 i i 1 = c

More information

PROPAGATION IN A FERRITE CIRCULAR WAVEGUIDE MAGNETIZED THROUGH A ROTARY FOUR-POLE MAGNETIC FIELD

PROPAGATION IN A FERRITE CIRCULAR WAVEGUIDE MAGNETIZED THROUGH A ROTARY FOUR-POLE MAGNETIC FIELD Progress In Electromagnetics Research, PIER 68, 1 13, 2007 PROPAGATION IN A FERRITE CIRCULAR WAVEGUIDE MAGNETIZED THROUGH A ROTARY FOUR-POLE MAGNETIC FIELD M. Mazur Analog Techniques Department Telecommunication

More information

THE FINITE-DIFFERENCE TIME-DOMAIN (FDTD) METHOD PART IV

THE FINITE-DIFFERENCE TIME-DOMAIN (FDTD) METHOD PART IV Numerical Techniques in Electromagnetics ECE 757 THE FINITE-DIFFERENCE TIME-DOMAIN (FDTD) METHOD PART IV The Perfectly Matched Layer (PML) Absorbing Boundary Condition Nikolova 2009 1 1. The need for good

More information

Left-Handed (LH) Structures and Retrodirective Meta-Surface

Left-Handed (LH) Structures and Retrodirective Meta-Surface Left-Handed (LH Structures and Retrodirective Meta-Surface Christophe Caloz, Lei Liu, Ryan Miyamoto and Tatsuo Itoh Electrical Engineering Department University of California, Los Angeles AGENDA I. LH

More information

Combined Electric and Magnetic Dipoles for Mesoband Radiation

Combined Electric and Magnetic Dipoles for Mesoband Radiation Sensor and Simulation Notes Note 53 0 August 007 Combined Electric and Magnetic Dipoles for Mesoband Radiation Carl E. Baum University of New Mexico Department of Electrical and Computer Engineering Albuquerque

More information

APPLICATION OF THE MAGNETIC FIELD INTEGRAL EQUATION TO DIFFRACTION AND REFLECTION BY A CONDUCTING SHEET

APPLICATION OF THE MAGNETIC FIELD INTEGRAL EQUATION TO DIFFRACTION AND REFLECTION BY A CONDUCTING SHEET In: International Journal of Theoretical Physics, Group Theory... ISSN: 1525-4674 Volume 14, Issue 3 pp. 1 12 2011 Nova Science Publishers, Inc. APPLICATION OF THE MAGNETIC FIELD INTEGRAL EQUATION TO DIFFRACTION

More information

Part E1. Transient Fields: Leapfrog Integration. Prof. Dr.-Ing. Rolf Schuhmann

Part E1. Transient Fields: Leapfrog Integration. Prof. Dr.-Ing. Rolf Schuhmann Part E1 Transient Fields: Leapfrog Integration Prof. Dr.-Ing. Rolf Schuhmann MAXWELL Grid Equations in time domain d 1 h() t MC e( t) dt d 1 e() t M Ch() t j( t) dt Transient Fields system of 1 st order

More information

1 The formation and analysis of optical waveguides

1 The formation and analysis of optical waveguides 1 The formation and analysis of optical waveguides 1.1 Introduction to optical waveguides Optical waveguides are made from material structures that have a core region which has a higher index of refraction

More information

REALIZATION OF A MATCHING REGION BETWEEN A RADOME AND A GROUND PLANE

REALIZATION OF A MATCHING REGION BETWEEN A RADOME AND A GROUND PLANE Progress In Electromagnetics Research Letters, Vol. 17, 1 1, 21 REALIZATION OF A MATCHING REGION BETWEEN A RADOME AND A GROUND PLANE D. Sjöberg and M. Gustafsson Department of Electrical and Information

More information

Polarization Correlation in the Gamma- Gamma Decay of Positronium

Polarization Correlation in the Gamma- Gamma Decay of Positronium Polarization Correlation in the Gamma- Gamma Decay of Positronium Bin LI Department of Physics & Astronomy, University of Pittsburgh, PA 56, U.S.A April 5, Introduction Positronium is an unstable bound

More information

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters Disclaimer: Chapter 29 Alternating-Current Circuits (1) This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters 29-33. LC circuit: Energy stored LC

More information

Accurate Computation of Vector Potentials in Lossy Media

Accurate Computation of Vector Potentials in Lossy Media Accurate Computation of Vector Potentials in Lossy Media Swagato Chakraborty and Vikram Jandhyala {swagato,jandhyala}@ee.washington.edu Dept of EE, University of Washington Seattle WA, 98195-500 UWEE Technical

More information

SCSI Connector and Cable Modeling from TDR Measurements

SCSI Connector and Cable Modeling from TDR Measurements SCSI Connector and Cable Modeling from TDR Measurements Dima Smolyansky TDA Systems, Inc. http://www.tdasystems.com Presented at SCSI Signal Modeling Study Group Rochester, MN, December 1, 1999 Outline

More information

NIU Ph.D. Candidacy Examination Fall 2018 (8/21/2018) Electricity and Magnetism

NIU Ph.D. Candidacy Examination Fall 2018 (8/21/2018) Electricity and Magnetism NIU Ph.D. Candidacy Examination Fall 2018 (8/21/2018) Electricity and Magnetism You may solve ALL FOUR problems if you choose. The points of the best three problems will be counted towards your final score

More information