Lecture 12: Particle in 1D boxes, Simple Harmonic Oscillators

Size: px
Start display at page:

Download "Lecture 12: Particle in 1D boxes, Simple Harmonic Oscillators"

Transcription

1 Lecture 1: Particle in 1D boes, Simple Harmonic Oscillators U U() ψ() U n= n=0 n=1 n=3 Lecture 1, p 1

2 This week and last week are critical for the course: Week 3, Lectures 7-9: Week 4, Lectures 10-1: Light as Particles Schrödinger quation Particles as waves Particles in infinite wells, finite wells Probability Uncertainty Principle Midterm am Monday, week 5 It will cover lectures 1-11 and some aspects of lecture 1 (not SHOs). Practice eams: Old eams are linked from the course web page. Review Sunday before Midterm Office hours: Sunday and Monday Net week: Homework 4 covers material in lecture 10 due on Thur. after midterm. We strongly encourage you to look at the homework before the midterm! Discussion: Covers material in lectures There will be a quiz. Lab: Go to 57 Loomis (a computer room). You can save a lot of time by reading the lab ahead of time It s a tutorial on how to draw wave functions. Lecture 1, p

3 Properties of Bound States Several trends ehibited by the particle-in-bo states are generic to bound state wave functions in any 1D potential (even complicated ones). 1: The overall curvature of the wave function increases with increasing kinetic energy. ħ d ψ ( ) p = for a sine wave m d m ψ() : The lowest energy bound state always has finite kinetic energy -- called zero-point energy. ven the lowest energy bound state requires some wave function curvature (kinetic energy) to satisfy boundary conditions. n= n=1 n=3 0 L 3: The n th wave function (eigenstate) has (n-1) zero-crossings. Larger n means larger (and p), which means more wiggles. 4: If the potential U() has a center of symmetry (such as the center of the well above), the eigenstates will be, alternately, even and odd functions about that center of symmetry. Lecture 1, p 3

4 Act 1 The wave function below describes a quantum particle in a range : 1. In what energy level is the particle? n = (a) 7 (b) 8 (c) 9 ψ(). What is the approimate shape of the potential U() in which this particle is confined? (a) U() (b) U() (c) U() Lecture 1, p 4

5 Solution The wave function below describes a quantum particle in a range : 1. In what energy level is the particle? n = (a) 7 (b) 8 (c) 9 ψ() ight nodes. Don t count the boundary conditions.. What is the approimate shape of the potential U() in which this particle is confined? (a) U() (b) U() (c) U() Lecture 1, p 5

6 Solution The wave function below describes a quantum particle in a range : 1. In what energy level is the particle? n = (a) 7 (b) 8 (c) 9 ψ() ight nodes. Don t count the boundary conditions.. What is the approimate shape of the potential U() in which this particle is confined? Wave function is symmetric. Wavelength is shorter in the middle. (a) U() Not symmetric (b) U() K smaller in middle (c) U() Lecture 1, p 6

7 Bound State Properties: ample Let s reinforce your intuition about the properties of bound state wave functions with this eample: Through nano-engineering, one can create a step in the potential seen by an electron trapped in a 1D structure, as shown below. You d like to estimate the wave function for an electron in the 5th energy level of this potential, without solving the SQ. Qualitatively sketch the 5th wave function: ψ 0 L 5 U o Consider these features of ψ: 1: 5th wave function has zero-crossings. : Wave function must go to zero at and. 3: Kinetic energy is on right side of well, so the curvature of ψ is there. Lecture 1, p 7

8 Bound State Properties: Solution Let s reinforce your intuition about the properties of bound state wave functions with this eample: Through nano-engineering, one can create a step in the potential seen by an electron trapped in a 1D structure, as shown below. You d like to estimate the wave function for an electron in the 5th energy level of this potential, without solving the SQ. Qualitatively sketch the 5th wave function: ψ 0 L 5 U o Consider these features of ψ: 1: 5th wave function has 4 zero-crossings. : Wave function must go to zero at = 0 and. = L 3: Kinetic energy is lower on right side of well, so the curvature of ψ is smaller there. The wavelength is longer. ψ and dψ/d must be continuous here. Lecture 1, p 8

9 ample of a microscopic potential well -- a semiconductor quantum well Deposit different layers of atoms on a substrate crystal: AlGaAs GaAs AlGaAs U() Quantum wells like these are used for light emitting diodes and laser diodes, such as the ones in your CD player. The quantum-well laser was invented by Charles Henry, PhD UIUC 65. This and the visible LD were developed at UIUC by Nick Holonyak. An electron has lower energy in GaAs than in AlGaAs. It may be trapped in the well but it leaks into the surrounding region to some etent Lecture 1, p 9

10 Act 1. An electron is in a quantum dot. If we decrease the size of the dot, the ground state energy of the electron will n n=3 a) decrease b) increase c) stay the same n= n=1 0 L. If we decrease the size of the dot, the difference between two energy levels (e.g., between n = 7 and ) will a) decrease b) increase c) stay the same Lecture 1, p 10

11 Solution 1. An electron is in a quantum dot. If we decrease the size of the dot, the ground state energy of the electron will n n=3 a) decrease b) increase c) stay the same = h 8mL 1 The uncertainty principle, once again! n= n=1 0 L. If we decrease the size of the dot, the difference between two energy levels (e.g., between n = 7 and ) will a) decrease b) increase c) stay the same Lecture 1, p 11

12 Solution 1. An electron is in a quantum dot. If we decrease the size of the dot, the ground state energy of the electron will n n=3 a) decrease b) increase c) stay the same = h 8mL 1 The uncertainty principle, once again! n= n=1 0 L. If we decrease the size of the dot, the difference between two energy levels (e.g., between n = 7 and ) will a) decrease b) increase c) stay the same n = n = (49 4) 1 = 45 1 Since 1 increases, so does. Lecture 1, p 1

13 Quantum Confinement size of material affects intrinsic properties M. Nayfeh (UIUC) : Discrete uniform Si nanoparticles Transition from bulk to molecule-like in Si A family of magic sizes of hydrogenated Si nanoparticles No magic sizes > 0 atoms for non-hydrogenated clusters Small clusters glow: color depends on size Used to create Si nanoparticle 1 nm Blue 1.67 nm Green.15 nm Yellow.9 nm Red microscopic laser:

14 Particle in Infinite Square Well Potential π nπ ψ n( ) sin ( kn) = sin = sin for 0 L λn L ψ() n= n=1 n=3 nλ = n L 0 L ħ d ψn( ) + U( ) ψ ( ) = ψ ( ) n n n m d The discrete n are known as energy eigenvalues : electron U = n U = n p h ev nm = = = m mλ λ h n = n where 8mL n 1 1 n n=3 n= n=1 0 L Lecture 11, p 14

15 Quantum Wire ample An electron is trapped in a quantum wire that is L = 4 nm long. Assume that the potential seen by the electron is approimately that of an infinite square well. 1: Calculate the ground (lowest) state energy of the electron. : What photon energy is required to ecite the trapped electron to the net available energy level (i.e., n = )? n n=3 n= n=1 The idea here is that the photon is absorbed by the electron, which gains all of the photon s energy (similar to the photoelectric effect). 0 L Lecture 1, p 15

16 Solution An electron is trapped in a quantum wire that is L = 4 nm long. Assume that the potential seen by the electron is approimately that of an infinite square well. 1: Calculate the ground (lowest) state energy of the electron. h ev nm n = n = = 8mL 4L 1 with ev nm = = ev 4(4 nm) 1 Using: h = = mλ where λ =L ev nm λ : What photon energy is required to ecite the trapped electron to the net available energy level (i.e., n = )? n n=3 n= n=1 0 L n = n 1 So, the energy difference between the n = and n = 1 levels is: = ( - 1 ) 1 = 3 1 = ev Lecture 1, p 16

17 Probabilities Often what we measure in an eperiment is the probability density, ψ(). ( ) sin nπ Wavefunction = ψn = N L ψ Probability amplitude ( ) sin nπ ψn = N L ψ n=1 Probability per unit length (in 1-dimension) 0 L 0 L ψ ψ Probability density = 0 node 0 L n= 0 L ψ ψ 0 L n=3 0 L Lecture 1, p 17

18 Probability ample Consider an electron trapped in a 1D well with L = 5 nm. Suppose the electron is in the following state: ψ 0 5 nm a) What is the energy of the electron in this state (in ev)? N ( ) sin nπ ψn = N L b) What is the value of the normalization factor squared N? c) stimate the probability of finding the electron within ±0.1 nm of the center of the well? (No integral required. Do it graphically.) Lecture 1, p 18

19 Solution Consider an electron trapped in a 1D well with L = 5 nm. Suppose the electron is in the following state: ψ N 0 5 nm a) What is the energy of the electron in this state (in ev)? ev nm n = 3, n = n 1 = 3 = ev 4(5 nm) b) What is the value of the normalization factor squared N? L P = 1= N N = = 0.4 nm tot -1 L ( ) sin nπ ψn = N L c) stimate the probability of finding the electron within ±0.1 nm of the center of the well? (No integral required. Do it graphically.) Probability = ( ) ψ (0. nm) N = 0.08 [(sin(3π/l)) 1 for L/] middle This works because the entire interval is very close to the middle peak. Lecture 1, p 19

20 Probability ample Consider a particle in the n = state of a bo. a) Where is it most likely to be found? b) Where is it least likely to be found? c) What is the ratio of probabilities for the particle to be near = L/3 and = L/4? ψ() n= 0 L/4 L/3 L Lecture 1, p 0

21 Solution Consider a particle in the n = state of a bo. a) Where is it most likely to be found? b) Where is it least likely to be found? c) What is the ratio of probabilities for the particle to be near = L/3 and = L/4? ψ() n= Solution: a) = L/4 and = 3L/4. Maimum probability is at ma ψ. 0 L/4 L/3 L b) = 0, = L/, and = L. Minimum probability is at the nodes. The sine wave must have nodes at = 0, = L, and, because n =, at = L/ as well. c) ψ() = Nsin(π/L) Prob(L/3) / Prob(L/4) Prob() = ψ(l/3) / ψ(l/4) = sin (π/3) / sin (π/) = = L Lecture 1, p 1

22 Harmonic Oscillator Potential Another very important potential is the harmonic oscillator: U U() U U() = ½ κ ω = (κ/m) 1/ Why is this potential so important? It accurately describes the potential for many systems..g., sound waves. It approimates the potential in almost every system for small departures from equilibrium..g., chemical bonds. To a good approimation, everything is a harmonic oscillator. U (ev) r o Chemical bonding potential r (nm) Taylor epansion of U near minimum. Lecture 1, p

23 Harmonic Oscillator () The differential equation that describes the HO is too difficult for us to solve here. Here are the important features of the solution. The most important feature is that the energy levels are equally spaced: n = (n+1/)ħω. The ground state (n = 0) does not have = 0. Another eample of the uncertainty principle. ω is the classical oscillation frequency nergy 7 n=3 ħω 5 n= ħω 3 n=1 ħω n=0 1 ħω Beware!! The numbering convention is not the same as for the square well. Spacing between vibrational levels of molecules in atmospheric CO and H O are in the infrared frequency range. = ħω = hf ~ 0.01 ev Molecular vibration... r This is why they are important greenhouse gases. Lecture 1, p 3

24 Harmonic Oscillator Wave Functions To obtain the eact eigenstates and associated allowed energies for a particle in the HO potential, we would need to solve this SQ: U U() U ħ d ψ ( ) 1 + κ ψ ( ) = ψ ( ) m d This is solvable, but not here, not now However, we can get a good idea of what ψ n () looks like by applying our general rules. The important features of the HO potential are: It s symmetrical about = 0. It does not have a hard wall (doesn t go to at finite ). Lecture 1, p 4

25 HO Wave Functions () Consider the state with energy. There are two forbidden regions and one allowed region. Applying our general rules, we can then say: ψ() curves toward zero in region II and away from zero in regions I and III. ψ() is either an even or odd function of. U U() U I II III Let s consider the ground state: ψ() has no nodes. ψ() is an even function of. U U() U This wave function resembles the square well ground state. The eact functional form is different a Gaussian but we won t need to know it in this course: / a ħ ψ n= 0( ) e a = mκ Lecture 1, p 5

26 HO Wave Functions (3) For the ecited states, use these rules: ach successive ecited state has one more node. The wave functions alternate symmetry. Unlike the square well, the allowed region gets wider as the energy increases, so the higher energy wave functions oscillate over a larger range. (but that s a detail ) U U() ψ() n= n=0 n=1 n=3 U Lecture 1, p 6

27 Harmonic Oscillator ercise A particular laser emits at a wavelength λ =.7 µm. It operates by eciting hydrogen fluoride (HF) molecules between their ground and 1 st ecited vibrational levels. stimate the ground state energy of the HF molecular vibrations. Lecture 1, p 7

28 Recall: Solution A particular laser emits at a wavelength λ =.7 µm. It operates by eciting hydrogen fluoride (HF) molecules between their ground and 1 st ecited vibrational levels. stimate the ground state energy of the HF molecular vibrations. photon = hc/λ = (140 ev-nm)/.7mm = 0.46 ev and: (by energy conservation) photon = = 1-0 = ħω = 0 ħω ½ħω n=1 n=0 Therefore, 0 = ½ħω = 0.3 ev Lecture 1, p 8

29 Leaky Particles Due to barrier penetration, the electron density of a metal actually etends outside the surface of the metal! Work function Φ Occupied levels V o F = 0 Assume that the work function (i.e., the energy difference between the most energetic conduction electrons and the potential barrier at the surface) of a certain metal is Φ = 5 ev. stimate the distance outside the surface of the metal at which the electron probability density drops to 1/1000 of that just inside the metal. Lecture 1, p 9

Lecture 12: Particle in 1D boxes & Simple Harmonic Oscillator

Lecture 12: Particle in 1D boxes & Simple Harmonic Oscillator Lecture 12: Particle in 1D boxes & Simple Harmonic Oscillator U(x) E Dx y(x) x Dx Lecture 12, p 1 Properties of Bound States Several trends exhibited by the particle-in-box states are generic to bound

More information

Lecture 10: The Schrödinger Equation. Lecture 10, p 2

Lecture 10: The Schrödinger Equation. Lecture 10, p 2 Quantum mechanics is the description of the behavior of matter and light in all its details and, in particular, of the happenings on an atomic scale. Things on a very small scale behave like nothing that

More information

Lecture 10: The Schrödinger Equation. Lecture 10, p 2

Lecture 10: The Schrödinger Equation. Lecture 10, p 2 Quantum mechanics is the description of the behavior of matter and light in all its details and, in particular, of the happenings on an atomic scale. Things on a very small scale behave like nothing that

More information

Lecture 10: The Schrödinger Equation Lecture 10, p 1

Lecture 10: The Schrödinger Equation Lecture 10, p 1 Lecture 10: The Schrödinger Equation Lecture 10, p 1 Overview Probability distributions Schrödinger s Equation Particle in a Bo Matter waves in an infinite square well Quantized energy levels y() U= n=1

More information

Physics 43 Chapter 41 Homework #11 Key

Physics 43 Chapter 41 Homework #11 Key Physics 43 Chapter 4 Homework # Key π sin. A particle in an infinitely deep square well has a wave function given by ( ) for and zero otherwise. Determine the epectation value of. Determine the probability

More information

Lecture 15: Time-Dependent QM & Tunneling Review and Examples, Ammonia Maser

Lecture 15: Time-Dependent QM & Tunneling Review and Examples, Ammonia Maser ecture 15: Time-Dependent QM & Tunneling Review and Examples, Ammonia Maser ψ(x,t=0) 2 U(x) 0 x ψ(x,t 0 ) 2 x U 0 0 E x 0 x ecture 15, p.1 Special (Optional) ecture Quantum Information One of the most

More information

When I hear of Schrödinger s cat, I reach for my gun. --Stephen W. Hawking. Lecture 21, p 1

When I hear of Schrödinger s cat, I reach for my gun. --Stephen W. Hawking. Lecture 21, p 1 When I hear of Schrödinger s cat, I reach for my gun. --Stephen W. Hawking Lecture 21, p 1 Lecture 21: Lasers, Schrödinger s Cat, Atoms, Molecules, Solids, etc. Review and Examples Lecture 21, p 2 Act

More information

Lecture 21: Lasers, Schrödinger s Cat, Atoms, Molecules, Solids, etc. Review and Examples. Lecture 21, p 1

Lecture 21: Lasers, Schrödinger s Cat, Atoms, Molecules, Solids, etc. Review and Examples. Lecture 21, p 1 Lecture 21: Lasers, Schrödinger s Cat, Atoms, Molecules, Solids, etc. Review and Examples Lecture 21, p 1 Act 1 The Pauli exclusion principle applies to all fermions in all situations (not just to electrons

More information

Chapter 4 (Lecture 6-7) Schrodinger equation for some simple systems Table: List of various one dimensional potentials System Physical correspondence

Chapter 4 (Lecture 6-7) Schrodinger equation for some simple systems Table: List of various one dimensional potentials System Physical correspondence V, E, Chapter (Lecture 6-7) Schrodinger equation for some simple systems Table: List of various one dimensional potentials System Physical correspondence Potential Total Energies and Probability density

More information

Appendix A. The Particle in a Box: A Demonstration of Quantum Mechanical Principles for a Simple, One-Dimensional, One-Electron Model System

Appendix A. The Particle in a Box: A Demonstration of Quantum Mechanical Principles for a Simple, One-Dimensional, One-Electron Model System Appendix A The Particle in a Box: A Demonstration of Quantum Mechanical Principles for a Simple, One-Dimensional, One-Electron Model System Real quantum mechanical systems have the tendency to become mathematically

More information

The Simple Harmonic Oscillator

The Simple Harmonic Oscillator The Simple Harmonic Oscillator Michael Fowler, University of Virginia Einstein s Solution of the Specific Heat Puzzle The simple harmonic oscillator, a nonrelativistic particle in a potential ½C, is a

More information

Lecture 8: Wave-Particle Duality. Lecture 8, p 2

Lecture 8: Wave-Particle Duality. Lecture 8, p 2 We choose to examine a phenomenon which is impossible, absolutely impossible, to explain in any classical way, and which has in it the heart of quantum mechanics. In reality, it contains the only mystery.

More information

David J. Starling Penn State Hazleton PHYS 214

David J. Starling Penn State Hazleton PHYS 214 Not all chemicals are bad. Without chemicals such as hydrogen and oxygen, for example, there would be no way to make water, a vital ingredient in beer. -Dave Barry David J. Starling Penn State Hazleton

More information

Chancellor Phyllis Wise invites you to a birthday party!

Chancellor Phyllis Wise invites you to a birthday party! Chancellor Phyllis Wise invites you to a birthday party! 50 years ago, Illinois alumnus Nick Holonyak Jr. demonstrated the first visible light-emitting diode (LED) while working at GE. Holonyak returned

More information

Electron in a Box. A wave packet in a square well (an electron in a box) changing with time.

Electron in a Box. A wave packet in a square well (an electron in a box) changing with time. Electron in a Box A wave packet in a square well (an electron in a box) changing with time. Last Time: Light Wave model: Interference pattern is in terms of wave intensity Photon model: Interference in

More information

Harmonic Oscillator Eigenvalues and Eigenfunctions

Harmonic Oscillator Eigenvalues and Eigenfunctions Chemistry 46 Fall 217 Dr. Jean M. Standard October 4, 217 Harmonic Oscillator Eigenvalues and Eigenfunctions The Quantum Mechanical Harmonic Oscillator The quantum mechanical harmonic oscillator in one

More information

:C O: σorbitals of CO. πorbitals of CO. Assumed knowledge. Chemistry 2. Learning outcomes. Lecture 2 Particle in a box approximation. C 2p.

:C O: σorbitals of CO. πorbitals of CO. Assumed knowledge. Chemistry 2. Learning outcomes. Lecture 2 Particle in a box approximation. C 2p. Chemistry 2 Lecture 2 Particle in a bo approimation Assumed knowledge Be able to predict the geometry of a hydrocarbon from its structure and account for each valence electron. Predict the hybridization

More information

The Schrödinger Equation in One Dimension

The Schrödinger Equation in One Dimension The Schrödinger Equation in One Dimension Introduction We have defined a comple wave function Ψ(, t) for a particle and interpreted it such that Ψ ( r, t d gives the probability that the particle is at

More information

ECE 487 Lecture 5 : Foundations of Quantum Mechanics IV Class Outline:

ECE 487 Lecture 5 : Foundations of Quantum Mechanics IV Class Outline: ECE 487 Lecture 5 : Foundations of Quantum Mechanics IV Class Outline: Linearly Varying Potential Triangular Potential Well Time-Dependent Schrödinger Equation Things you should know when you leave Key

More information

Problems and Multiple Choice Questions

Problems and Multiple Choice Questions Problems and Multiple Choice Questions 1. A momentum operator in one dimension is 2. A position operator in 3 dimensions is 3. A kinetic energy operator in 1 dimension is 4. If two operator commute, a)

More information

If electrons moved in simple orbits, p and x could be determined, but this violates the Heisenberg Uncertainty Principle.

If electrons moved in simple orbits, p and x could be determined, but this violates the Heisenberg Uncertainty Principle. CHEM 2060 Lecture 18: Particle in a Box L18-1 Atomic Orbitals If electrons moved in simple orbits, p and x could be determined, but this violates the Heisenberg Uncertainty Principle. We can only talk

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices EE321 Fall 2015 September 28, 2015 Semiconductor Physics and Devices Weiwen Zou ( 邹卫文 ) Ph.D., Associate Prof. State Key Lab of advanced optical communication systems and networks, Dept. of Electronic

More information

There is light at the end of the tunnel. -- proverb. The light at the end of the tunnel is just the light of an oncoming train. --R.

There is light at the end of the tunnel. -- proverb. The light at the end of the tunnel is just the light of an oncoming train. --R. A vast time bubble has been projected into the future to the precise moment of the end of the universe. This is, of course, impossible. --D. Adams, The Hitchhiker s Guide to the Galaxy There is light at

More information

CHEM 301: Homework assignment #5

CHEM 301: Homework assignment #5 CHEM 30: Homework assignment #5 Solutions. A point mass rotates in a circle with l =. Calculate the magnitude of its angular momentum and all possible projections of the angular momentum on the z-axis.

More information

Physics 312 Assignment 5

Physics 312 Assignment 5 Physics 31 Assignment 5 This assignment contains many short questions and a long one. Several questions are taken from Bloom eld Section 11., with some changes. 1. ( points) It is possible to combine the

More information

PHYS 3313 Section 001 Lecture # 22

PHYS 3313 Section 001 Lecture # 22 PHYS 3313 Section 001 Lecture # 22 Dr. Barry Spurlock Simple Harmonic Oscillator Barriers and Tunneling Alpha Particle Decay Schrodinger Equation on Hydrogen Atom Solutions for Schrodinger Equation for

More information

Lecture 21 Matter acts like waves!

Lecture 21 Matter acts like waves! Particles Act Like Waves! De Broglie s Matter Waves λ = h / p Schrodinger s Equation Announcements Schedule: Today: de Broglie and matter waves, Schrodinger s Equation March Ch. 16, Lightman Ch. 4 Net

More information

Name Solutions to Test 3 November 7, 2018

Name Solutions to Test 3 November 7, 2018 Name Solutions to Test November 7 8 This test consists of three parts. Please note that in parts II and III you can skip one question of those offered. Some possibly useful formulas can be found below.

More information

Simple Harmonic Oscillation (SHO)

Simple Harmonic Oscillation (SHO) Simple Harmonic Oscillation (SHO) Homework set 10 is due today. Still have some midterms to return. Some Material Covered today is not in the book Homework Set #11 will be available later today Classical

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Introduction to Quantum Mechanics In order to understand the current-voltage characteristics, we need some knowledge of electron behavior in semiconductor when the electron is subjected to various potential

More information

CHAPTER 6 Quantum Mechanics II

CHAPTER 6 Quantum Mechanics II CHAPTER 6 Quantum Mechanics II 6.1 6.2 6.3 6.4 6.5 6.6 6.7 The Schrödinger Wave Equation Expectation Values Infinite Square-Well Potential Finite Square-Well Potential Three-Dimensional Infinite-Potential

More information

ECE 487 Lecture 6 : Time-Dependent Quantum Mechanics I Class Outline:

ECE 487 Lecture 6 : Time-Dependent Quantum Mechanics I Class Outline: ECE 487 Lecture 6 : Time-Dependent Quantum Mechanics I Class Outline: Time-Dependent Schrödinger Equation Solutions to thetime-dependent Schrödinger Equation Expansion of Energy Eigenstates Things you

More information

Physics 342 Lecture 17. Midterm I Recap. Lecture 17. Physics 342 Quantum Mechanics I

Physics 342 Lecture 17. Midterm I Recap. Lecture 17. Physics 342 Quantum Mechanics I Physics 342 Lecture 17 Midterm I Recap Lecture 17 Physics 342 Quantum Mechanics I Monday, March 1th, 28 17.1 Introduction In the context of the first midterm, there are a few points I d like to make about

More information

6. Qualitative Solutions of the TISE

6. Qualitative Solutions of the TISE 6. Qualitative Solutions of the TISE Copyright c 2015 2016, Daniel V. Schroeder Our goal for the next few lessons is to solve the time-independent Schrödinger equation (TISE) for a variety of one-dimensional

More information

Lecture 13: Barrier Penetration and Tunneling

Lecture 13: Barrier Penetration and Tunneling Lecture 13: Barrier Penetration and Tunneling nucleus x U(x) U(x) U 0 E A B C B A 0 L x 0 x Lecture 13, p 1 Today Tunneling of quantum particles Scanning Tunneling Microscope (STM) Nuclear Decay Solar

More information

Lecture 16: 3D Potentials and the Hydrogen Atom. 1 = π. r = a 0. P(r) ( ) h E. E n. Lecture 16, p 2

Lecture 16: 3D Potentials and the Hydrogen Atom. 1 = π. r = a 0. P(r) ( ) h E. E n. Lecture 16, p 2 It was almost as incredible as if ou fired a 15-inch shell at a piece of tissue paper, and it came back to hit ou! --E. Rutherford (on the discover of the nucleus) ecture 16, p 1 ecture 16, p ecture 16:

More information

Lecture 19: Building Atoms and Molecules

Lecture 19: Building Atoms and Molecules Lecture 19: Building Atoms and Molecules +e r n = 3 n = 2 n = 1 +e +e r ψ even Lecture 19, p 1 Today Nuclear Magnetic Resonance Using RF photons to drive transitions between nuclear spin orientations in

More information

2m dx 2. The particle in a one dimensional box (of size L) energy levels are

2m dx 2. The particle in a one dimensional box (of size L) energy levels are Name: Chem 3322 test #1 solutions, out of 40 marks I want complete, detailed answers to the questions. Show all your work to get full credit. indefinite integral : sin 2 (ax)dx = x 2 sin(2ax) 4a (1) with

More information

CHAPTER 6 Quantum Mechanics II

CHAPTER 6 Quantum Mechanics II CHAPTER 6 Quantum Mechanics II 6.1 The Schrödinger Wave Equation 6.2 Expectation Values 6.3 Infinite Square-Well Potential 6.4 Finite Square-Well Potential 6.5 Three-Dimensional Infinite-Potential Well

More information

Lecture 2: simple QM problems

Lecture 2: simple QM problems Reminder: http://www.star.le.ac.uk/nrt3/qm/ Lecture : simple QM problems Quantum mechanics describes physical particles as waves of probability. We shall see how this works in some simple applications,

More information

ESS15 Lecture 7. The Greenhouse effect.

ESS15 Lecture 7. The Greenhouse effect. ESS15 Lecture 7 The Greenhouse effect. Housekeeping. First midterm is in one week. Open book, open notes. Covers material through end of Friday s lecture Including today s lecture (greenhouse effect) And

More information

Probability and Normalization

Probability and Normalization Probability and Normalization Although we don t know exactly where the particle might be inside the box, we know that it has to be in the box. This means that, ψ ( x) dx = 1 (normalization condition) L

More information

Notes for Special Relativity, Quantum Mechanics, and Nuclear Physics

Notes for Special Relativity, Quantum Mechanics, and Nuclear Physics Notes for Special Relativity, Quantum Mechanics, and Nuclear Physics 1. More on special relativity Normally, when two objects are moving with velocity v and u with respect to the stationary observer, the

More information

PHYS 172: Modern Mechanics Fall 2009

PHYS 172: Modern Mechanics Fall 2009 PHYS 172: Modern Mechanics Fall 2009 Lecture 14 Energy Quantization Read 7.1 7.9 Reading Question: Ch. 7, Secs 1-5 A simple model for the hydrogen atom treats the electron as a particle in circular orbit

More information

Spectroscopy at nanometer scale

Spectroscopy at nanometer scale Spectroscopy at nanometer scale 1. Physics of the spectroscopies 2. Spectroscopies for the bulk materials 3. Experimental setups for the spectroscopies 4. Physics and Chemistry of nanomaterials Various

More information

CHAPTER 6 Quantum Mechanics II

CHAPTER 6 Quantum Mechanics II CHAPTER 6 Quantum Mechanics II 6.1 The Schrödinger Wave Equation 6.2 Expectation Values 6.3 Infinite Square-Well Potential 6.4 Finite Square-Well Potential 6.5 Three-Dimensional Infinite-Potential Well

More information

Opinions on quantum mechanics. CHAPTER 6 Quantum Mechanics II. 6.1: The Schrödinger Wave Equation. Normalization and Probability

Opinions on quantum mechanics. CHAPTER 6 Quantum Mechanics II. 6.1: The Schrödinger Wave Equation. Normalization and Probability CHAPTER 6 Quantum Mechanics II 6.1 The Schrödinger Wave Equation 6. Expectation Values 6.3 Infinite Square-Well Potential 6.4 Finite Square-Well Potential 6.5 Three-Dimensional Infinite- 6.6 Simple Harmonic

More information

From Last time. Exam 3 results. Probability. The wavefunction. Example wavefunction. Discrete vs continuous. De Broglie wavelength

From Last time. Exam 3 results. Probability. The wavefunction. Example wavefunction. Discrete vs continuous. De Broglie wavelength From ast time Eam 3 results De Broglie wavelength Uncertainty principle Eam average ~ 70% Scores posted on learn@uw D C BC B AB A Wavefunction of a particle Course evaluations: Tuesday, Dec. 9 Tue. Dec.

More information

Diffraction Gratings, Atomic Spectra. Prof. Shawhan (substituting for Prof. Hall) November 14, 2016

Diffraction Gratings, Atomic Spectra. Prof. Shawhan (substituting for Prof. Hall) November 14, 2016 Diffraction Gratings, Atomic Spectra Prof. Shawhan (substituting for Prof. Hall) November 14, 2016 1 Increase number of slits: 2 Visual Comparisons 3 4 8 2 Diffraction Grating Note: despite the name, this

More information

ELEC 4700 Assignment #2

ELEC 4700 Assignment #2 ELEC 4700 Assignment #2 Question 1 (Kasop 4.2) Molecular Orbitals and Atomic Orbitals Consider a linear chain of four identical atoms representing a hypothetical molecule. Suppose that each atomic wavefunction

More information

Lecture 19: Building Atoms and Molecules

Lecture 19: Building Atoms and Molecules Lecture 19: Building Atoms and Molecules +e r n = 3 n = 2 n = 1 +e +e r y even Lecture 19, p 1 Today Nuclear Magnetic Resonance Using RF photons to drive transitions between nuclear spin orientations in

More information

Final Exam. Tuesday, May 8, Starting at 8:30 a.m., Hoyt Hall.

Final Exam. Tuesday, May 8, Starting at 8:30 a.m., Hoyt Hall. Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall. Summary of Chapter 38 In Quantum Mechanics particles are represented by wave functions Ψ. The absolute square of the wave function Ψ 2

More information

The Schrödinger Equation

The Schrödinger Equation Chapter 13 The Schrödinger Equation 13.1 Where we are so far We have focused primarily on electron spin so far because it s a simple quantum system (there are only two basis states!), and yet it still

More information

Phys 172 Modern Mechanics Summer 2010

Phys 172 Modern Mechanics Summer 2010 Phys 172 Modern Mechanics Summer 2010 r r Δ p = F Δt sys net Δ E = W + Q sys sys net surr r r Δ L = τ Δt Lecture 14 Energy Quantization Read:Ch 8 Reading Quiz 1 An electron volt (ev) is a measure of: A)

More information

Chap. 3. Elementary Quantum Physics

Chap. 3. Elementary Quantum Physics Chap. 3. Elementary Quantum Physics 3.1 Photons - Light: e.m "waves" - interference, diffraction, refraction, reflection with y E y Velocity = c Direction of Propagation z B z Fig. 3.1: The classical view

More information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005 Chemistry 3502/4502 Final Exam Part I May 14, 2005 1. For which of the below systems is = where H is the Hamiltonian operator and T is the kinetic-energy operator? (a) The free particle (e) The

More information

Practice question related to The wave nature of electrons Energy level diagrams for atoms, molecules and solids

Practice question related to The wave nature of electrons Energy level diagrams for atoms, molecules and solids Practice question related to The wave nature of electrons Energy level diagrams for atoms, molecules and solids 1. Spectroscopy Sketch a graph of spectral intensity, I λ(λ), for the atomic vapor lamp shown

More information

CHEM 2010 Symmetry, Electronic Structure and Bonding Winter Numbering of Chapters and Assigned Problems

CHEM 2010 Symmetry, Electronic Structure and Bonding Winter Numbering of Chapters and Assigned Problems CHEM 2010 Symmetry, Electronic Structure and Bonding Winter 2011 Numbering of Chapters and Assigned Problems The following table shows the correspondence between the chapter numbers in the full book (Physical

More information

Chemistry 2. Lecture 1 Quantum Mechanics in Chemistry

Chemistry 2. Lecture 1 Quantum Mechanics in Chemistry Chemistry 2 Lecture 1 Quantum Mechanics in Chemistry Your lecturers 8am Assoc. Prof Timothy Schmidt Room 315 timothy.schmidt@sydney.edu.au 93512781 12pm Assoc. Prof. Adam J Bridgeman Room 222 adam.bridgeman@sydney.edu.au

More information

Lecture 4 (19/10/2012)

Lecture 4 (19/10/2012) 4B5: Nanotechnology & Quantum Phenomena Michaelmas term 2012 Dr C Durkan cd229@eng.cam.ac.uk www.eng.cam.ac.uk/~cd229/ Lecture 4 (19/10/2012) Boundary-value problems in Quantum Mechanics - 2 Bound states

More information

Anyone who can contemplate quantum mechanics without getting dizzy hasn t understood it. --Niels Bohr. Lecture 17, p 1

Anyone who can contemplate quantum mechanics without getting dizzy hasn t understood it. --Niels Bohr. Lecture 17, p 1 Anone who can contemplate quantum mechanics without getting di hasn t understood it. --Niels Bohr Lecture 7, p Phsics Colloquium TODAY! Quantum Optomechanics Prof. Markus Aspelmeer, U. Vienna Massive mechanical

More information

Physics 1C. End of Chapter 30 Exam Preparationds

Physics 1C. End of Chapter 30 Exam Preparationds Physics 1C End of Chapter 30 Exam Preparationds Radioactive Decay Example The isotope 137 Cs is a standard laboratory source of gamma rays. The half-life of 137 Cs is 30 years. (a) How many 137 Cs atoms

More information

The Schrodinger Equation

The Schrodinger Equation The Schrodinger quation Dae Yong JONG Inha University nd week Review lectron device (electrical energy traducing) Understand the electron properties energy point of view To know the energy of electron

More information

Spectroscopy at nanometer scale

Spectroscopy at nanometer scale Spectroscopy at nanometer scale 1. Physics of the spectroscopies 2. Spectroscopies for the bulk materials 3. Experimental setups for the spectroscopies 4. Physics and Chemistry of nanomaterials Various

More information

Chapter 7. Bound Systems are perhaps the most interesting cases for us to consider. We see much of the interesting features of quantum mechanics.

Chapter 7. Bound Systems are perhaps the most interesting cases for us to consider. We see much of the interesting features of quantum mechanics. Chapter 7 In chapter 6 we learned about a set of rules for quantum mechanics. Now we want to apply them to various cases and see what they predict for the behavior of quanta under different conditions.

More information

Today: Particle-in-a-Box wavefunctions

Today: Particle-in-a-Box wavefunctions Today: Particle-in-a-Bo wavefunctions 1.Potential wells.solving the S.E. 3.Understanding the results. HWK11 due Wed. 5PM. Reading for Fri.: TZ&D Chap. 7.1 PE for electrons with most PE. On top work function

More information

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 10, February 10, / 4

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 10, February 10, / 4 Chem 350/450 Physical Chemistry II (Quantum Mechanics 3 Credits Spring Semester 006 Christopher J. Cramer Lecture 10, February 10, 006 Solved Homework We are asked to find and for the first two

More information

Lecture 9: Introduction to QM: Review and Examples

Lecture 9: Introduction to QM: Review and Examples Lecture 9: Introduction to QM: Review and Examples S 1 S 2 Lecture 9, p 1 Photoelectric Effect V stop (v) KE e V hf F max stop Binding energy F The work function: F is the minimum energy needed to strip

More information

Quantum Harmonic Oscillator

Quantum Harmonic Oscillator Quantum Harmonic Oscillator Chapter 13 P. J. Grandinetti Chem. 4300 Oct 20, 2017 P. J. Grandinetti (Chem. 4300) Quantum Harmonic Oscillator Oct 20, 2017 1 / 26 Kinetic and Potential Energy Operators Harmonic

More information

PHYS 3313 Section 001 Lecture #20

PHYS 3313 Section 001 Lecture #20 PHYS 3313 Section 001 ecture #0 Monday, April 10, 017 Dr. Amir Farbin Infinite Square-well Potential Finite Square Well Potential Penetration Depth Degeneracy Simple Harmonic Oscillator 1 Announcements

More information

Semiconductor Quantum Structures And Energy Conversion. Itaru Kamiya Toyota Technological Institute

Semiconductor Quantum Structures And Energy Conversion. Itaru Kamiya Toyota Technological Institute Semiconductor Quantum Structures And nergy Conversion April 011, TTI&NCHU Graduate, Special Lectures Itaru Kamiya kamiya@toyota-ti.ac.jp Toyota Technological Institute Outline 1. Introduction. Principle

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fundamentals ENS 345 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 Office 4N101b 1 Outline - Goals of the course. What is electronic device?

More information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005 Advocacy chit Chemistry 350/450 Final Exam Part I May 4, 005. For which of the below systems is = where H is the Hamiltonian operator and T is the kinetic-energy operator? (a) The free particle

More information

Nanoscience and Molecular Engineering (ChemE 498A) Semiconductor Nano Devices

Nanoscience and Molecular Engineering (ChemE 498A) Semiconductor Nano Devices Homework 7 Dec 9, 1 General Questions: 1 What is the main difference between a metal and a semiconductor or insulator, in terms of band structure? In a metal, the Fermi level (energy that separates full

More information

PHY4604 Introduction to Quantum Mechanics Fall 2004 Final Exam SOLUTIONS December 17, 2004, 7:30 a.m.- 9:30 a.m.

PHY4604 Introduction to Quantum Mechanics Fall 2004 Final Exam SOLUTIONS December 17, 2004, 7:30 a.m.- 9:30 a.m. PHY464 Introduction to Quantum Mechanics Fall 4 Final Eam SOLUTIONS December 7, 4, 7:3 a.m.- 9:3 a.m. No other materials allowed. If you can t do one part of a problem, solve subsequent parts in terms

More information

ECE606: Solid State Devices Lecture 3

ECE606: Solid State Devices Lecture 3 ECE66: Solid State Devices Lecture 3 Gerhard Klimeck gekco@purdue.edu Motivation Periodic Structure E Time-independent Schrodinger Equation ħ d Ψ dψ + U ( x) Ψ = iħ m dx dt Assume Ψ( x, t) = ψ( x) e iet/

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 1-1B: THE INTERACTION OF MATTER WITH RADIATION Introductory Video Quantum Mechanics Essential Idea: The microscopic quantum world offers

More information

Solar and Renewable Energies

Solar and Renewable Energies Physics 162: Solar and Renewable Energies February 16, 2010 Prof. Raghuveer Parthasarathy raghu@uoregon.edu Winter 2010 Lecture 12: Announcements Reading: Wolfson Chapter 4 Homework: Problem Set 6, due

More information

Chem 452 Mega Practice Exam 1

Chem 452 Mega Practice Exam 1 Last Name: First Name: PSU ID #: Chem 45 Mega Practice Exam 1 Cover Sheet Closed Book, Notes, and NO Calculator The exam will consist of approximately 5 similar questions worth 4 points each. This mega-exam

More information

Numerical Solution of the Time-Independent 1-D Schrodinger Equation

Numerical Solution of the Time-Independent 1-D Schrodinger Equation Numerical Solution of the Time-Independent -D Schrodinger Equation Gavin Cheung 932873 December 4, 2 Abstract The -D time independent Schrodinger Equation is solved numerically using the Numerov algorithm.

More information

Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world,

Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world, Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world, x p h π If you try to specify/measure the exact position of a particle you

More information

8 Wavefunctions - Schrödinger s Equation

8 Wavefunctions - Schrödinger s Equation 8 Wavefunctions - Schrödinger s Equation So far we have considered only free particles - i.e. particles whose energy consists entirely of its kinetic energy. In general, however, a particle moves under

More information

Chapters 28 and 29: Quantum Physics and Atoms Questions & Problems

Chapters 28 and 29: Quantum Physics and Atoms Questions & Problems Chapters 8 and 9: Quantum Physics and Atoms Questions & Problems hc = hf = K = = hf = ev P = /t = N h h h = = n = n, n = 1,, 3,... system = hf photon p mv 8 ml photon max elec 0 0 stop total photon 91.1nm

More information

Chem120a : Exam 3 (Chem Bio) Solutions

Chem120a : Exam 3 (Chem Bio) Solutions Chem10a : Exam 3 (Chem Bio) Solutions November 7, 006 Problem 1 This problem will basically involve us doing two Hückel calculations: one for the linear geometry, and one for the triangular geometry. We

More information

Example one-dimensional quantum systems Notes on Quantum Mechanics

Example one-dimensional quantum systems Notes on Quantum Mechanics Eample one-dimensional quantum sstems Notes on Quantum Mechanics http://quantum.bu.edu/notes/quantummechanics/eampledquantumsstems.pdf Last updated Wednesda, October 0, 004 6:03:47-05:00 Copright 004 Dan

More information

Hydrogen atom energies. Friday Honors lecture. Quantum Particle in a box. Classical vs Quantum. Quantum version

Hydrogen atom energies. Friday Honors lecture. Quantum Particle in a box. Classical vs Quantum. Quantum version Friday onors lecture Prof. Clint Sprott takes us on a tour of fractals. ydrogen atom energies Quantized energy levels: Each corresponds to different Orbit radius Velocity Particle wavefunction Energy Each

More information

SPARKS CH301. Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL. UNIT 2 Day 2. LM15, 16 & 17 due W 8:45AM

SPARKS CH301. Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL. UNIT 2 Day 2. LM15, 16 & 17 due W 8:45AM SPARKS CH301 Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL UNIT 2 Day 2 LM15, 16 & 17 due W 8:45AM QUIZ: CLICKER QUESTION Which of these types of light has the highest energy photons?

More information

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor It turns out that the boundary condition of the wavefunction going to zero at infinity is sufficient to quantize the value of energy that

More information

Waves and Particles. Photons. Summary. Photons. Photoeffect (cont d) Photoelectric Effect. Photon momentum: V stop

Waves and Particles. Photons. Summary. Photons. Photoeffect (cont d) Photoelectric Effect. Photon momentum: V stop Waves and Particles Today: 1. Photon: the elementary article of light.. Electron waves 3. Wave-article duality Photons Light is Quantized Einstein, 195 Energy and momentum is carried by hotons. Photon

More information

Lecture 20 - Semiconductor Structures

Lecture 20 - Semiconductor Structures Lecture 0: Structures Kittel Ch 17, p 494-503, 507-511 + extra material in the class notes MOS Structure metal Layer Structure Physics 460 F 006 Lect 0 1 Outline What is a semiconductor Structure? Created

More information

HW posted on web page HW10: Chap 14 Concept 8,20,24,26 Prob. 4,8. From Last Time

HW posted on web page HW10: Chap 14 Concept 8,20,24,26 Prob. 4,8. From Last Time HW posted on web page HW10: Chap 14 Concept 8,20,24,26 Prob. 4,8 From Last Time Philosophical effects in quantum mechanics Interpretation of the wave function: Calculation using the basic premises of quantum

More information

WEEK 2: 4 SEP THRU 10 SEP; LECTURES 4-6

WEEK 2: 4 SEP THRU 10 SEP; LECTURES 4-6 Learning Objectives Energy: Light as energy Describe the wave nature of light, wavelength, and frequency using the equation c = λν What is meant by the particle nature of light? Calculate the energy of

More information

Chem 1A, Fall 2015, Midterm Exam 1. Version A September 21, 2015 (Prof. Head-Gordon) 2

Chem 1A, Fall 2015, Midterm Exam 1. Version A September 21, 2015 (Prof. Head-Gordon) 2 Chem 1A, Fall 2015, Midterm Exam 1. Version A September 21, 2015 (Prof. Head-Gordon) 2 Name: Student ID: TA: Contents: 9 pages A. Multiple choice (7 points) B. Stoichiometry (10 points) C. Photoelectric

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fundamentals ENS 345 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 Office 4N101b 1 Outline - Goals of the course. What is electronic device?

More information

Electromagnetic Radiation. Chapter 12: Phenomena. Chapter 12: Quantum Mechanics and Atomic Theory. Quantum Theory. Electromagnetic Radiation

Electromagnetic Radiation. Chapter 12: Phenomena. Chapter 12: Quantum Mechanics and Atomic Theory. Quantum Theory. Electromagnetic Radiation Chapter 12: Phenomena Phenomena: Different wavelengths of electromagnetic radiation were directed onto two different metal sample (see picture). Scientists then recorded if any particles were ejected and

More information

Chapter 12: Phenomena

Chapter 12: Phenomena Chapter 12: Phenomena K Fe Phenomena: Different wavelengths of electromagnetic radiation were directed onto two different metal sample (see picture). Scientists then recorded if any particles were ejected

More information

The general solution of Schrödinger equation in three dimensions (if V does not depend on time) are solutions of time-independent Schrödinger equation

The general solution of Schrödinger equation in three dimensions (if V does not depend on time) are solutions of time-independent Schrödinger equation Lecture 27st Page 1 Lecture 27 L27.P1 Review Schrödinger equation The general solution of Schrödinger equation in three dimensions (if V does not depend on time) is where functions are solutions of time-independent

More information

PHYS 3220 Tutorials S. Goldhaber, S. Pollock, and the Physics Education Group University of Colorado, Boulder

PHYS 3220 Tutorials S. Goldhaber, S. Pollock, and the Physics Education Group University of Colorado, Boulder Energy and the Art of Sketching Wave Functions 1 I: Sketching wave functions A. Review: The figure to the right shows an infinite square well potential (V = 0 from L/2 to L/2 and is infinite everywhere

More information

Atoms, Molecules and Solids. From Last Time Superposition of quantum states Philosophy of quantum mechanics Interpretation of the wave function:

Atoms, Molecules and Solids. From Last Time Superposition of quantum states Philosophy of quantum mechanics Interpretation of the wave function: Essay outline and Ref to main article due next Wed. HW 9: M Chap 5: Exercise 4 M Chap 7: Question A M Chap 8: Question A From Last Time Superposition of quantum states Philosophy of quantum mechanics Interpretation

More information

PHYS 3313 Section 001 Lecture #16

PHYS 3313 Section 001 Lecture #16 PHYS 3313 Section 001 Lecture #16 Monday, Mar. 24, 2014 De Broglie Waves Bohr s Quantization Conditions Electron Scattering Wave Packets and Packet Envelops Superposition of Waves Electron Double Slit

More information