MIT Ray Tracing Ray Tracing

Size: px
Start display at page:

Download "MIT Ray Tracing Ray Tracing"

Transcription

1 MIT Ray Tacng Ray Tacng MIT EECS Fédo Duand and Bab Cule Some sldes couesy of Leonad McMllan MIT EECS 6.837, Cule and Duand 1 MIT EECS 6.837, Cule and Duand 2 Admnsave Cool assgnmen 1 esuls Assgnmen 2 Due omoow a 11:59pm Assgnmen 3 Onlne hs evenng Due Wednesday Ocobe 1 emmav seanek dym ko MIT EECS 6.837, Cule and Duand 3 MIT EECS 6.837, Cule and Duand 4 Revew of las week? Revew of las week Lnea, affne and pojecve ansfoms Homogeneous coodnaes Max noaon Tansfomaon composon s no commuave Ohonomal bass change MIT EECS 6.837, Cule and Duand 5 MIT EECS 6.837, Cule and Duand 6

2 Revew of las week Tansfomaon fo ay acng Tansfomng he ay Fo he decon, lnea pa of he ansfom only Tansfomng o no omal ansfomaon n WST = n OS (M -1 ) Consucve Sold Geomey (CSG) n WS v WS MIT EECS 6.837, Cule and Duand 7 Fun wh ansfomaons: Relavy Specal elavy: Loenz ansfomaon 4 veco (, x, y, z) 4 h coodnae can be c o Loenz ansfomaon depends on objec speed v ' γ x' γv = y' 0 z' 0 hp://casa.coloado.edu/~ajsh/s/s.shml γv 0 0 x 0 y 1 z MIT EECS 6.837, Cule and Duand 8 γ Dgesson Relavy Tansfom ay by Loenz ansfomaon 0.65c 0.70c Dgesson Today: Ray Tacng Image by Tune Whed 0.90c 0.99c See also hp:// MIT EECS 6.837, Cule and Duand 9 MIT EECS 6.837, Cule and Duand 10 Ovevew of oday Shadows Reflecon Refacon Ray Casng (a.k.a. Ray Shoong) Fo evey pxel (x,y) Consuc a ay fom he eye colo[x,y]=casray(ay) Complexy? O(n * m) n: numbe of objecs, m: numbe of pxels Recusve Ray Tacng MIT EECS 6.837, Cule and Duand 11 MIT EECS 6.837, Cule and Duand 12

3 Ray Casng wh dffuse shadng Colo casray(ay) H h(); Fo evey objec ob ob->nesec(ay, h, mn); Colo col=amben*h->gecolo(); Fo evey lgh L col=col+h->gecolol()*l->gecolo* L->geD()->Do3( h->geomal() ); Reun col; Encapsulang shadng Colo casray(ay) H h(); Fo evey objec ob ob->nesec(ay, h, mn); Colo col=amben*h->gemaeal()->gedffuse(); Fo evey lgh L col=col+h->gemaeal()->shade (ay, h, L->geD(), L->geColo()); Reun col; MIT EECS 6.837, Cule and Duand 13 MIT EECS 6.837, Cule and Duand 14 Quesons? Image compued usng he RADIACE sysem by Geg Wad How can we add shadows? Colo casray(ay) H h(); Fo evey objec ob ob->nesec(ay, h, mn); Colo col=amben*h->gemaeal()->gedffuse(); Fo evey lgh L col=col+h->gemaeal()->shade (ay, h, L->geD(), L->geColo()); Reun col; MIT EECS 6.837, Cule and Duand 15 MIT EECS 6.837, Cule and Duand 16 Shadows Shadows poblem? Colo casray(ay) H h(); Fo evey objec ob ob->nesec(ay, h, mn); Colo col=amben*h->gemaeal()->gedffuse(); Fo evey lgh L Ray ay2(hpon, L->geD()); H h2(l->geds(),,) Fo evey objec ob ob->nesec(ay2, h2, 0); If (h->get> L->geDs()) col=col+h->gemaeal()->shade (ay, h, L->geD(), L->geColo()); Reun col; Colo casray(ay) H h(); Fo evey objec ob ob->nesec(ay, h, mn); Colo col=amben*h->gemaeal()->gedffuse(); Fo evey lgh L Ray ay2(hpon, L->geD()); H h2(l->geds(),,) Fo evey objec ob ob->nesec(ay2, h2, 0); If (h->get> L->geDs()) col=col+h->gemaeal()->shade (ay, h, L->geD(), L->geColo()); Reun col; MIT EECS 6.837, Cule and Duand 17 MIT EECS 6.837, Cule and Duand 18

4 Avodng self shadowng Colo casray(ay) H h(); Fo evey objec ob ob->nesec(ay, h, mn); Colo col=amben*h->gemaeal()->gedffuse(); Fo evey lgh L Ray ay2(hpon, L->geD()); H h2(l->geds(),,) Fo evey objec ob ob->nesec(ay2, h2, epslon); If (h->get> L->geDs()) col=col+h->gemaeal()->shade (ay, h, L->geD(), L->geColo()); Reun col; Shadow opmzaon Shadow ays ae specal How can we acceleae ou code? MIT EECS 6.837, Cule and Duand 19 MIT EECS 6.837, Cule and Duand 20 Shadow opmzaon We only wan o know whehe hee s an nesecon, no whch one s closes Specal oune Objec3D::nesecShadowRay() Sops a fs nesecon Shadow ay casng hsoy Due o Appel [1968] Fs shadow mehod n gaphcs o eally used unl he 80s MIT EECS 6.837, Cule and Duand 21 MIT EECS 6.837, Cule and Duand 22 Quesons? Image Henk Wann Jensen Ovevew of oday Shadows Reflecon Refacon Recusve Ray Tacng MIT EECS 6.837, Cule and Duand 23 MIT EECS 6.837, Cule and Duand 24

5 Mo Reflecon Compue mo conbuon Cas ay In decon symmec w nomal Mulply by eflecon coeffcen (colo) Mo Reflecon Cas ay In decon symmec w nomal Don foge o add epslon o he ay Whou epslon MIT EECS 6.837, Cule and Duand 25 Wh epslon MIT EECS 6.837, Cule and Duand 26 Reflecon Reflecon angle = vew angle Reflecon Reflecon angle = vew angle R = V 2( V ) V θ V θ R R V θ V θ R R V V V MIT EECS 6.837, Cule and Duand 27 MIT EECS 6.837, Cule and Duand 28 Amoun of Reflecon Tadonal (hacky) ay acng Consan coeffcen efleconcolo Componen pe componen mulplcaon Amoun of Reflecon Moe ealsc: Fesnel eflecon em Moe eflecon a gazng angle Schlck s appoxmaon: R(θ)=R 0 +(1-R 0 )(1-cos θ) 5 V θ V θ R R V θ V θ R R MIT EECS 6.837, Cule and Duand 29 meal Delecc (glass) MIT EECS 6.837, Cule and Duand 30

6 Fesnel eflecance demo Lafoune e al., Sggaph 1997 Quesons? Image by Henk Wann Jensen MIT EECS 6.837, Cule and Duand 31 MIT EECS 6.837, Cule and Duand 32 Ovevew of oday Shadows Reflecon Tanspaency Compue ansmed conbuon Cas ay In efaced decon Mulply by anspaency coeffcen (colo) Refacon Recusve Ray Tacng MIT EECS 6.837, Cule and Duand 33 MIT EECS 6.837, Cule and Duand 34 Qualave efacon Refacon Fom Colo and Lgh n aue by Lynch and Lvngson Snell-Descaes Law θ cos θ θ oe ha I s he negave of he ncomng ay MIT EECS 6.837, Cule and Duand 35 MIT EECS 6.837, Cule and Duand 36

7 Refacon Refacon Snell-Descaes Law sn θ = = sn θ θ cos θ sn θ Snell-Descaes Law = = sn θ = sn θ ( cos θ Iˆ) = sn θ θ cos θ θ oe ha I s he negave of he ncomng ay θ oe ha I s he negave of he ncomng ay MIT EECS 6.837, Cule and Duand 37 MIT EECS 6.837, Cule and Duand 38 Refacon sn θ Snell-Descaes Law = = sn θ = sn θ ( cos θ Iˆ) = sn θ sn θ = ( ˆ cos θ Iˆ) sn θ = ( cos θ ) Iˆ θ cos θ θ oe ha I s he negave of he ncomng ay Refacon sn θ Snell-Descaes Law = = sn θ = sn θ ( cos θ Iˆ) = sn θ sn θ = ( ˆ cos θ Iˆ) sn θ = ( cos θ ) Iˆ cos θ = Iˆ cos θ = 2 1 sn θ = sn θ = θ cos θ θ oe ha I s he negave of he ncomng ay 2 ˆ 2 1 (1 ( Iˆ) ) MIT EECS 6.837, Cule and Duand 39 MIT EECS 6.837, Cule and Duand 40 Refacon sn θ Snell-Descaes Law = = sn θ = sn θ ( cos θ Iˆ) = sn θ sn θ = ( cos θ Iˆ) sn θ = ( cos θ ) Iˆ cos θ = Iˆ cos θ = T = ( Iˆ) 2 1 sn θ = sn θ = ˆ 2 1 (1 ( Iˆ) 2 2 ˆ 2 1 (1 ( Iˆ) ) ) Iˆ Toal nenal eflecon when he squae oo s magnay MIT EECS 6.837, Cule and Duand 41 θ cos θ θ oe ha I s he negave of he ncomng ay Don foge o nomalze Toal nenal eflecon Fom Colo and Lgh n aue by Lynch and Lvngsone MIT EECS 6.837, Cule and Duand 42

8 Cool efacon demo Engh, D., Maschne, S. and Fedkw, R., Cool efacon demo Engh, D., Maschne, S. and Fedkw, R., MIT EECS 6.837, Cule and Duand 43 MIT EECS 6.837, Cule and Duand 44 Refacon and he lfeguad poblem Wavelengh Runnng s fase han swmmng Wae Beach Lfeguad Refacon s wavelengh-dependen ewon s expemen Usually gnoed n gaphcs Run Peson n ouble Swm Dgesson MIT EECS 6.837, Cule and Duand 45 Pnk Floyd, The Dak Sde of he Moon Pon,, 1725, Allegoy o ewon MIT EECS 6.837, Cule and Duand 46 Ranbow Ranbow Fom Colo and Lgh n aue by Lynch and Lvngsone Dgesson Refacon depends on wavelengh Ranbow s caused by efacon+nenal eflecon+efacon Maxmum fo angle aound 42 degees Dgesson Fom Colo and Lgh n aue by Lynch and Lvngsone MIT EECS 6.837, Cule and Duand 47 MIT EECS 6.837, Cule and Duand 48

9 Quesons? Ovevew of oday Shadows Reflecon Refacon Recusve Ray Tacng MIT EECS 6.837, Cule and Duand 49 MIT EECS 6.837, Cule and Duand 50 Recap: Ray Tacng aceray Inesec all objecs Amben shadng Fo evey lgh Shadow ay shadng If mo Tace efleced ay If anspaen Tace ansmed ay MIT EECS 6.837, Cule and Duand 51 Recap: Ray Tacng Colo aceray(ay) Fo evey objec ob ob->nesec(ay, h, mn); Colo col=amben*h->gemaeal()->gedffuse(); Fo evey lgh L If ( no casshadowray( h->gepon(), L->geD()) col=col+h->gemaeal()->shade (ay, h, L->geD(), L->geColo()); If (h->gemaeal()->smo()) Ray aymo (h->gepon(), gemod(ay->gedecon(), h->geomal()); Col=col+h->geMaeal->geMoColo() *aceray(aymo, h2); If (h->gemaeal()->stanspaen() Ray aytansmed(h->gepon(), gerefacd(ay, h->geomal(), cuenrefaconindex, h->maeal->gerefaconindex()); Col=col+h->geMaeal->geTansmedColo() *aceray(aytansmed, h3); Reun col; MIT EECS 6.837, Cule and Duand 52 Does end? Colo aceray(ay) Fo evey objec ob ob->nesec(ay, h, mn); Colo col=amben*h->gemaeal()->gedffuse(); Fo evey lgh L If ( no casshadowray( h->gepon(), L->geD()) col=col+h->gemaeal()->shade (ay, h, L->geD(), L->geColo()); If (h->gemaeal()->smo()) Ray aymo (h->gepon(), gemod(ay->gedecon(), h->geomal()); Col=col+h->geMaeal->geMoColo() *aceray(aymo, h2); If (h->gemaeal()->stanspaen() Ray aytansmed(h->gepon(), gerefacd(ay, h->geomal(), cuenrefaconindex, h->maeal->gerefaconindex()); Col=col+h->geMaeal->geTansmedColo() *aceray(aytansmed, h3); Reun col; MIT EECS 6.837, Cule and Duand 53 Avodng nfne ecuson Soppng cea: Recuson deph Sop afe a numbe of bounces Ray conbuon Sop f anspaency/ansmed aenuaon becomes oo small Usually do boh Colo aceray(ay) Fo evey objec ob ob->nesec(ay, h, mn); Colo col=amben*h->gemaeal()->gedffuse(); Fo evey lgh L If ( no casshadowray( h->gepon(), L->geD()) col=col+h->gemaeal()->shade (ay, h, L->geD(), L->geColo()); If (h->gemaeal()->smo()) Ray aymo (h->gepon(), gemod(ay->gedecon(), h->geomal()); Col=col+h->geMaeal->geMoColo() *aceray(aymo); If (h->gemaeal()->stanspaen() Ray aytansmed(h->gepon(), gerefacd(ay, h->geomal(), cuenrefaconindex, h->maeal- >gerefaconindex()); Col=col+h->geMaeal->geTansmedColo() *aceray(aytansmed); Reun col; MIT EECS 6.837, Cule and Duand 54

10 Recuson fo eflecon The Ray Tee R 2 T 3 Eye 2 T 1 R 3 R 1 3 L 1 L 2 1 L 3 L 1 R 1 T 1 0 ecuson 1 ecuson 2 ecusons L 2 L 3 suface nomal Eye R efleced ay R 2 R 3 T 3 L shadow ay T ansmed (efaced) ay MIT EECS 6.837, Cule and Duand 55 MIT EECS 6.837, Cule and Duand 56 Kewl vsualzaon Ben Galck s SGI demo flyay On an Ahena SGI O2: add cd /m/6.837/demos/flyay/daa../flyay Real-me ay acng Seve Pake e al. (U. of Uah) MIT EECS 6.837, Cule and Duand 57 MIT EECS 6.837, Cule and Duand 58 Ray Tacng Hsoy Ray Casng: Appel, 1968 CSG and quadcs: Goldsen & agel 1971 Recusve ay acng: Whed, 1980 Does Ray Tacng smulae physcs? Phoons go fom he lgh o he eye, no he ohe way Wha we do s backwad ay acng MIT EECS 6.837, Cule and Duand 59 MIT EECS 6.837, Cule and Duand 60

11 Fowad ay acng Sa fom he lgh souce Bu low pobably o each he eye Wha can we do abou? Fowad ay acng Sa fom he lgh souce Bu low pobably o each he eye Wha can we do abou? Always send a ay o he eye Sll no effcen MIT EECS 6.837, Cule and Duand 61 MIT EECS 6.837, Cule and Duand 62 Does Ray Tacng smulae physcs? Coec anspaen shadow Ray Tacng s full of dy cks e.g. shadows of anspaen objecs Des: opaque Sll dy: mulply by anspaency colo Bu hen no efacon Anmaon by Henk Wann Jensen Usng advanced efacon echnque (efacon fo llumnaon s usually no handled ha well) Dgesson MIT EECS 6.837, Cule and Duand 63 MIT EECS 6.837, Cule and Duand 64 The Rendeng equaon Clean mahemacal famewok fo lghanspo smulaon We ll see ha n ovembe A each pon, ougong lgh n one decon s he negal of ncomng lgh n all decons mulpled by eflecance popey Thusday Reflecance popees, shadng and BRDF Gues lecue by Wojcech Mausk MIT EECS 6.837, Cule and Duand 65 MIT EECS 6.837, Cule and Duand 66

Lecture 5. Plane Wave Reflection and Transmission

Lecture 5. Plane Wave Reflection and Transmission Lecue 5 Plane Wave Reflecon and Tansmsson Incden wave: 1z E ( z) xˆ E (0) e 1 H ( z) yˆ E (0) e 1 Nomal Incdence (Revew) z 1 (,, ) E H S y (,, ) 1 1 1 Refleced wave: 1z E ( z) xˆ E E (0) e S H 1 1z H (

More information

5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( )

5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( ) 5-1. We apply Newon s second law (specfcally, Eq. 5-). (a) We fnd he componen of he foce s ( ) ( ) F = ma = ma cos 0.0 = 1.00kg.00m/s cos 0.0 = 1.88N. (b) The y componen of he foce s ( ) ( ) F = ma = ma

More information

Chapter 3: Vectors and Two-Dimensional Motion

Chapter 3: Vectors and Two-Dimensional Motion Chape 3: Vecos and Two-Dmensonal Moon Vecos: magnude and decon Negae o a eco: eese s decon Mulplng o ddng a eco b a scala Vecos n he same decon (eaed lke numbes) Geneal Veco Addon: Tangle mehod o addon

More information

Name of the Student:

Name of the Student: Engneeng Mahemacs 05 SUBJEC NAME : Pobably & Random Pocess SUBJEC CODE : MA645 MAERIAL NAME : Fomula Maeal MAERIAL CODE : JM08AM007 REGULAION : R03 UPDAED ON : Febuay 05 (Scan he above QR code fo he dec

More information

Reflection and Refraction

Reflection and Refraction Chape 1 Reflecon and Refacon We ae now neesed n eplong wha happens when a plane wave avelng n one medum encounes an neface (bounday) wh anohe medum. Undesandng hs phenomenon allows us o undesand hngs lke:

More information

CHAPTER 10: LINEAR DISCRIMINATION

CHAPTER 10: LINEAR DISCRIMINATION HAPER : LINEAR DISRIMINAION Dscmnan-based lassfcaon 3 In classfcaon h K classes ( k ) We defned dsmnan funcon g () = K hen gven an es eample e chose (pedced) s class label as f g () as he mamum among g

More information

L4:4. motion from the accelerometer. to recover the simple flutter. Later, we will work out how. readings L4:3

L4:4. motion from the accelerometer. to recover the simple flutter. Later, we will work out how. readings L4:3 elave moon L4:1 To appl Newon's laws we need measuemens made fom a 'fed,' neal efeence fame (unacceleaed, non-oang) n man applcaons, measuemens ae made moe smpl fom movng efeence fames We hen need a wa

More information

s = rθ Chapter 10: Rotation 10.1: What is physics?

s = rθ Chapter 10: Rotation 10.1: What is physics? Chape : oaon Angula poson, velocy, acceleaon Consan angula acceleaon Angula and lnea quanes oaonal knec enegy oaonal nea Toque Newon s nd law o oaon Wok and oaonal knec enegy.: Wha s physcs? In pevous

More information

CptS 570 Machine Learning School of EECS Washington State University. CptS Machine Learning 1

CptS 570 Machine Learning School of EECS Washington State University. CptS Machine Learning 1 ps 57 Machne Leann School of EES Washnon Sae Unves ps 57 - Machne Leann Assume nsances of classes ae lneal sepaable Esmae paamees of lnea dscmnan If ( - -) > hen + Else - ps 57 - Machne Leann lassfcaon

More information

Representing Knowledge. CS 188: Artificial Intelligence Fall Properties of BNs. Independence? Reachability (the Bayes Ball) Example

Representing Knowledge. CS 188: Artificial Intelligence Fall Properties of BNs. Independence? Reachability (the Bayes Ball) Example C 188: Aificial Inelligence Fall 2007 epesening Knowledge ecue 17: ayes Nes III 10/25/2007 an Klein UC ekeley Popeies of Ns Independence? ayes nes: pecify complex join disibuions using simple local condiional

More information

The Production of Polarization

The Production of Polarization Physics 36: Waves Lecue 13 3/31/211 The Poducion of Polaizaion Today we will alk abou he poducion of polaized ligh. We aleady inoduced he concep of he polaizaion of ligh, a ansvese EM wave. To biefly eview

More information

Lecture 22 Electromagnetic Waves

Lecture 22 Electromagnetic Waves Lecue Elecomagneic Waves Pogam: 1. Enegy caied by he wave (Poyning veco).. Maxwell s equaions and Bounday condiions a inefaces. 3. Maeials boundaies: eflecion and efacion. Snell s Law. Quesions you should

More information

2 shear strain / L for small angle

2 shear strain / L for small angle Sac quaons F F M al Sess omal sess foce coss-seconal aea eage Shea Sess shea sess shea foce coss-seconal aea llowable Sess Faco of Safe F. S San falue Shea San falue san change n lengh ognal lengh Hooke

More information

Lect. 12: Oblique Incidence at Dielectric Interface

Lect. 12: Oblique Incidence at Dielectric Interface E r Lec. : Oblque Incdence a Delecrc Inerface (Cheng 8-0) Perpendcular Polaraon E E ep( j)ep( j) H r ε,μ ε,μ θ r θ E E H Er E ep( jr)ep( jr) E E ep( j)ep( j) E H ( cos sn ) ep( j)ep( j) E Hr ( cosr sn

More information

FIRMS IN THE TWO-PERIOD FRAMEWORK (CONTINUED)

FIRMS IN THE TWO-PERIOD FRAMEWORK (CONTINUED) FIRMS IN THE TWO-ERIO FRAMEWORK (CONTINUE) OCTOBER 26, 2 Model Sucue BASICS Tmelne of evens Sa of economc plannng hozon End of economc plannng hozon Noaon : capal used fo poducon n peod (decded upon n

More information

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 9 Solutions [Theorems of Gauss and Stokes]

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 9 Solutions [Theorems of Gauss and Stokes] ENGI 44 Avance alculus fo Engineeing Faculy of Engineeing an Applie cience Poblem e 9 oluions [Theoems of Gauss an okes]. A fla aea A is boune by he iangle whose veices ae he poins P(,, ), Q(,, ) an R(,,

More information

Field due to a collection of N discrete point charges: r is in the direction from

Field due to a collection of N discrete point charges: r is in the direction from Physcs 46 Fomula Shee Exam Coulomb s Law qq Felec = k ˆ (Fo example, f F s he elecc foce ha q exes on q, hen ˆ s a un veco n he decon fom q o q.) Elecc Feld elaed o he elecc foce by: Felec = qe (elecc

More information

CS348B Lecture 10 Pat Hanrahan, Spring 2004

CS348B Lecture 10 Pat Hanrahan, Spring 2004 Page 1 Reflecton Models I Today Types of eflecton models The BRDF and eflectance The eflecton equaton Ideal eflecton and efacton Fesnel effect Ideal dffuse Next lectue Glossy and specula eflecton models

More information

Control Volume Derivation

Control Volume Derivation School of eospace Engineeing Conol Volume -1 Copyigh 1 by Jey M. Seizman. ll ighs esee. Conol Volume Deiaion How o cone ou elaionships fo a close sysem (conol mass) o an open sysem (conol olume) Fo mass

More information

Physics 201 Lecture 15

Physics 201 Lecture 15 Phscs 0 Lecue 5 l Goals Lecue 5 v Elo consevaon of oenu n D & D v Inouce oenu an Iulse Coens on oenu Consevaon l oe geneal han consevaon of echancal eneg l oenu Consevaon occus n sses wh no ne eenal foces

More information

b g b g b g Chapter 2 Wave Motion 2.1 One Dimensional Waves A wave : A self-sustaining disturbance of the medium Hecht;8/30/2010; 2-1

b g b g b g Chapter 2 Wave Motion 2.1 One Dimensional Waves A wave : A self-sustaining disturbance of the medium Hecht;8/30/2010; 2-1 Chape Wave Moon Hech;8/30/010; -1.1 One Dmensonal Waves A wave : A self-susanng dsubance of he medum Waves n a spng A longudnal wave A ansvese wave : Medum dsplacemen // Decon of he wave : Medum dsplacemen

More information

Outline. GW approximation. Electrons in solids. The Green Function. Total energy---well solved Single particle excitation---under developing

Outline. GW approximation. Electrons in solids. The Green Function. Total energy---well solved Single particle excitation---under developing Peenaon fo Theoecal Condened Mae Phyc n TU Beln Geen-Funcon and GW appoxmaon Xnzheng L Theoy Depamen FHI May.8h 2005 Elecon n old Oulne Toal enegy---well olved Sngle pacle excaon---unde developng The Geen

More information

EMA5001 Lecture 3 Steady State & Nonsteady State Diffusion - Fick s 2 nd Law & Solutions

EMA5001 Lecture 3 Steady State & Nonsteady State Diffusion - Fick s 2 nd Law & Solutions EMA5 Lecue 3 Seady Sae & Noseady Sae ffuso - Fck s d Law & Soluos EMA 5 Physcal Popees of Maeals Zhe heg (6) 3 Noseady Sae ff Fck s d Law Seady-Sae ffuso Seady Sae Seady Sae = Equlbum? No! Smlay: Sae fuco

More information

Computer Propagation Analysis Tools

Computer Propagation Analysis Tools Compue Popagaion Analysis Tools. Compue Popagaion Analysis Tools Inoducion By now you ae pobably geing he idea ha pedicing eceived signal sengh is a eally impoan as in he design of a wieless communicaion

More information

1 Constant Real Rate C 1

1 Constant Real Rate C 1 Consan Real Rae. Real Rae of Inees Suppose you ae equally happy wh uns of he consumpon good oday o 5 uns of he consumpon good n peod s me. C 5 Tha means you ll be pepaed o gve up uns oday n eun fo 5 uns

More information

Lect. 13: Oblique Incidence at Dielectric Interface

Lect. 13: Oblique Incidence at Dielectric Interface E r Lec. 3: Oblque Incdence a Delecrc Inerface H r ε,μ ε,μ θ r θ E E H (Cheng 8-0) E E ep( j)ep( j) Er E ep( jr)ep( jr) E E ep( j)ep( j) E H ( cos sn ) ep( j)ep( j) E Hr ( cosr sn r) ep( jr)ep( jr) E H

More information

Path Tracing. Monte Carlo Path Tracing

Path Tracing. Monte Carlo Path Tracing Page 1 Monte Calo Path Tacing Today Path tacing Random wals and Maov chains Adjoint equations Light ay tacing Bidiectional ay tacing Next Heni Wann Jensen Iadiance caching Photon mapping Path Tacing Page

More information

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations Today - Lecue 13 Today s lecue coninue wih oaions, oque, Noe ha chapes 11, 1, 13 all inole oaions slide 1 eiew Roaions Chapes 11 & 1 Viewed fom aboe (+z) Roaional, o angula elociy, gies angenial elociy

More information

TRANSIENTS. Lecture 5 ELEC-E8409 High Voltage Engineering

TRANSIENTS. Lecture 5 ELEC-E8409 High Voltage Engineering TRANSIENTS Lece 5 ELECE8409 Hgh Volage Engneeng TRANSIENT VOLTAGES A ansen even s a sholved oscllaon (sgnfcanly fase han opeang feqency) n a sysem cased by a sdden change of volage, cen o load. Tansen

More information

I-POLYA PROCESS AND APPLICATIONS Leda D. Minkova

I-POLYA PROCESS AND APPLICATIONS Leda D. Minkova The XIII Inenaonal Confeence Appled Sochasc Models and Daa Analyss (ASMDA-009) Jne 30-Jly 3, 009, Vlns, LITHUANIA ISBN 978-9955-8-463-5 L Sakalaskas, C Skadas and E K Zavadskas (Eds): ASMDA-009 Seleced

More information

Relative and Circular Motion

Relative and Circular Motion Relaie and Cicula Moion a) Relaie moion b) Cenipeal acceleaion Mechanics Lecue 3 Slide 1 Mechanics Lecue 3 Slide 2 Time on Video Pelecue Looks like mosly eeyone hee has iewed enie pelecue GOOD! Thank you

More information

Chapter 7. Interference

Chapter 7. Interference Chape 7 Inefeence Pa I Geneal Consideaions Pinciple of Supeposiion Pinciple of Supeposiion When wo o moe opical waves mee in he same locaion, hey follow supeposiion pinciple Mos opical sensos deec opical

More information

PHYS 1443 Section 001 Lecture #4

PHYS 1443 Section 001 Lecture #4 PHYS 1443 Secon 001 Lecure #4 Monda, June 5, 006 Moon n Two Dmensons Moon under consan acceleraon Projecle Moon Mamum ranges and heghs Reerence Frames and relae moon Newon s Laws o Moon Force Newon s Law

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 9 Hamlonan Equaons of Moon (Chaper 8) Wha We Dd Las Tme Consruced Hamlonan formalsm H ( q, p, ) = q p L( q, q, ) H p = q H q = p H = L Equvalen o Lagrangan formalsm Smpler, bu

More information

WORK POWER AND ENERGY Consevaive foce a) A foce is said o be consevaive if he wok done by i is independen of pah followed by he body b) Wok done by a consevaive foce fo a closed pah is zeo c) Wok done

More information

CS 188: Artificial Intelligence Fall Probabilistic Models

CS 188: Artificial Intelligence Fall Probabilistic Models CS 188: Aificial Inelligence Fall 2007 Lecue 15: Bayes Nes 10/18/2007 Dan Klein UC Bekeley Pobabilisic Models A pobabilisic model is a join disibuion ove a se of vaiables Given a join disibuion, we can

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 9 Hamlonan Equaons of Moon (Chaper 8) Wha We Dd Las Tme Consruced Hamlonan formalsm Hqp (,,) = qp Lqq (,,) H p = q H q = p H L = Equvalen o Lagrangan formalsm Smpler, bu wce as

More information

Modern Energy Functional for Nuclei and Nuclear Matter. By: Alberto Hinojosa, Texas A&M University REU Cyclotron 2008 Mentor: Dr.

Modern Energy Functional for Nuclei and Nuclear Matter. By: Alberto Hinojosa, Texas A&M University REU Cyclotron 2008 Mentor: Dr. Moden Enegy Funconal fo Nucle and Nuclea Mae By: lbeo noosa Teas &M Unvesy REU Cycloon 008 Meno: D. Shalom Shlomo Oulne. Inoducon.. The many-body poblem and he aee-fock mehod. 3. Skyme neacon. 4. aee-fock

More information

Reinforcement learning

Reinforcement learning Lecue 3 Reinfocemen leaning Milos Hauskech milos@cs.pi.edu 539 Senno Squae Reinfocemen leaning We wan o lean he conol policy: : X A We see examples of x (bu oupus a ae no given) Insead of a we ge a feedback

More information

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems Swss Federal Insue of Page 1 The Fne Elemen Mehod for he Analyss of Non-Lnear and Dynamc Sysems Prof. Dr. Mchael Havbro Faber Dr. Nebojsa Mojslovc Swss Federal Insue of ETH Zurch, Swzerland Mehod of Fne

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 0 Canoncal Transformaons (Chaper 9) Wha We Dd Las Tme Hamlon s Prncple n he Hamlonan formalsm Dervaon was smple δi δ Addonal end-pon consrans pq H( q, p, ) d 0 δ q ( ) δq ( ) δ

More information

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation Lecue 8: Kineics of Phase Gowh in a Two-componen Sysem: geneal kineics analysis based on he dilue-soluion appoximaion Today s opics: In he las Lecues, we leaned hee diffeen ways o descibe he diffusion

More information

7 Wave Equation in Higher Dimensions

7 Wave Equation in Higher Dimensions 7 Wave Equaion in Highe Dimensions We now conside he iniial-value poblem fo he wave equaion in n dimensions, u c u x R n u(x, φ(x u (x, ψ(x whee u n i u x i x i. (7. 7. Mehod of Spheical Means Ref: Evans,

More information

Lecture 5. Chapter 3. Electromagnetic Theory, Photons, and Light

Lecture 5. Chapter 3. Electromagnetic Theory, Photons, and Light Lecue 5 Chape 3 lecomagneic Theo, Phoons, and Ligh Gauss s Gauss s Faada s Ampèe- Mawell s + Loen foce: S C ds ds S C F dl dl q Mawell equaions d d qv A q A J ds ds In mae fields ae defined hough ineacion

More information

Exponential and Logarithmic Equations and Properties of Logarithms. Properties. Properties. log. Exponential. Logarithmic.

Exponential and Logarithmic Equations and Properties of Logarithms. Properties. Properties. log. Exponential. Logarithmic. Eponenial and Logaihmic Equaions and Popeies of Logaihms Popeies Eponenial a a s = a +s a /a s = a -s (a ) s = a s a b = (ab) Logaihmic log s = log + logs log/s = log - logs log s = s log log a b = loga

More information

Natural Lighting System Combined With a Prismatic Canopy

Natural Lighting System Combined With a Prismatic Canopy Naual Lghng Ssem Combned Wh a Psmac Canop Shh-Chuan Yeh 1, Ju-Ln Lu 2 Absac Psmac elemens ae fequenl usng o edec dalgh n buldngs fo comfo and eneg savng. Ths pape analzed he llumnaon effcenc of an open

More information

Phong Model. Reflection Models

Phong Model. Reflection Models Page 1 Reflecton Models Last lectue Reflecton models The eflecton equaton and the BRDF Ideal eflecton, efacton and dffuse Today Phong and mcofacet models Gaussan heght suface Self-shadowng Toance-Spaow

More information

( ) ( )) ' j, k. These restrictions in turn imply a corresponding set of sample moment conditions:

( ) ( )) ' j, k. These restrictions in turn imply a corresponding set of sample moment conditions: esng he Random Walk Hypohess If changes n a sees P ae uncoelaed, hen he followng escons hold: va + va ( cov, 0 k 0 whee P P. k hese escons n un mply a coespondng se of sample momen condons: g µ + µ (,,

More information

Scattering at an Interface: Oblique Incidence

Scattering at an Interface: Oblique Incidence Course Insrucor Dr. Raymond C. Rumpf Offce: A 337 Phone: (915) 747 6958 E Mal: rcrumpf@uep.edu EE 4347 Appled Elecromagnecs Topc 3g Scaerng a an Inerface: Oblque Incdence Scaerng These Oblque noes may

More information

Rotations.

Rotations. oons j.lbb@phscs.o.c.uk To s summ Fmes of efeence Invnce une nsfomons oon of wve funcon: -funcons Eule s ngles Emple: e e - - Angul momenum s oon geneo Genec nslons n Noehe s heoem Fmes of efeence Conse

More information

ME 141. Engineering Mechanics

ME 141. Engineering Mechanics ME 141 Engineeing Mechnics Lecue 13: Kinemics of igid bodies hmd Shhedi Shkil Lecue, ep. of Mechnicl Engg, UET E-mil: sshkil@me.bue.c.bd, shkil6791@gmil.com Websie: eche.bue.c.bd/sshkil Couesy: Veco Mechnics

More information

Go over vector and vector algebra Displacement and position in 2-D Average and instantaneous velocity in 2-D Average and instantaneous acceleration

Go over vector and vector algebra Displacement and position in 2-D Average and instantaneous velocity in 2-D Average and instantaneous acceleration Mh Csquee Go oe eco nd eco lgeb Dsplcemen nd poson n -D Aege nd nsnneous eloc n -D Aege nd nsnneous cceleon n -D Poecle moon Unfom ccle moon Rele eloc* The componens e he legs of he gh ngle whose hpoenuse

More information

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay)

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay) Secions 3.1 and 3.4 Eponenial Funcions (Gowh and Decay) Chape 3. Secions 1 and 4 Page 1 of 5 Wha Would You Rahe Have... $1million, o double you money evey day fo 31 days saing wih 1cen? Day Cens Day Cens

More information

Course Outline. 1. MATLAB tutorial 2. Motion of systems that can be idealized as particles

Course Outline. 1. MATLAB tutorial 2. Motion of systems that can be idealized as particles Couse Oulne. MATLAB uoal. Moon of syses ha can be dealzed as pacles Descpon of oon, coodnae syses; Newon s laws; Calculang foces equed o nduce pescbed oon; Deng and solng equaons of oon 3. Conseaon laws

More information

Displacement, Velocity, and Acceleration. (WHERE and WHEN?)

Displacement, Velocity, and Acceleration. (WHERE and WHEN?) Dsplacemen, Velocy, and Acceleraon (WHERE and WHEN?) Mah resources Append A n your book! Symbols and meanng Algebra Geomery (olumes, ec.) Trgonomery Append A Logarhms Remnder You wll do well n hs class

More information

II. Light is a Ray (Geometrical Optics)

II. Light is a Ray (Geometrical Optics) II Lgh s a Ray (Geomercal Opcs) IIB Reflecon and Refracon Hero s Prncple of Leas Dsance Law of Reflecon Hero of Aleandra, who lved n he 2 nd cenury BC, posulaed he followng prncple: Prncple of Leas Dsance:

More information

, on the power of the transmitter P t fed to it, and on the distance R between the antenna and the observation point as. r r t

, on the power of the transmitter P t fed to it, and on the distance R between the antenna and the observation point as. r r t Lecue 6: Fiis Tansmission Equaion and Rada Range Equaion (Fiis equaion. Maximum ange of a wieless link. Rada coss secion. Rada equaion. Maximum ange of a ada. 1. Fiis ansmission equaion Fiis ansmission

More information

( ) () we define the interaction representation by the unitary transformation () = ()

( ) () we define the interaction representation by the unitary transformation () = () Hgher Order Perurbaon Theory Mchael Fowler 3/7/6 The neracon Represenaon Recall ha n he frs par of hs course sequence, we dscussed he chrödnger and Hesenberg represenaons of quanum mechancs here n he chrödnger

More information

Nanoparticles. Educts. Nucleus formation. Nucleus. Growth. Primary particle. Agglomeration Deagglomeration. Agglomerate

Nanoparticles. Educts. Nucleus formation. Nucleus. Growth. Primary particle. Agglomeration Deagglomeration. Agglomerate ucs Nucleus Nucleus omaon cal supesauaon Mng o eucs, empeaue, ec. Pmay pacle Gowh Inegaon o uson-lme pacle gowh Nanopacles Agglomeaon eagglomeaon Agglomeae Sablsaon o he nanopacles agans agglomeaon! anspo

More information

Chapter Fifiteen. Surfaces Revisited

Chapter Fifiteen. Surfaces Revisited Chapte Ffteen ufaces Revsted 15.1 Vecto Descpton of ufaces We look now at the vey specal case of functons : D R 3, whee D R s a nce subset of the plane. We suppose s a nce functon. As the pont ( s, t)

More information

Suppose we have observed values t 1, t 2, t n of a random variable T.

Suppose we have observed values t 1, t 2, t n of a random variable T. Sppose we have obseved vales, 2, of a adom vaable T. The dsbo of T s ow o belog o a cea ype (e.g., expoeal, omal, ec.) b he veco θ ( θ, θ2, θp ) of ow paamees assocaed wh s ow (whee p s he mbe of ow paamees).

More information

calculating electromagnetic

calculating electromagnetic Theoeal mehods fo alulang eleomagne felds fom lghnng dshage ajeev Thoapplll oyal Insue of Tehnology KTH Sweden ajeev.thoapplll@ee.kh.se Oulne Despon of he poblem Thee dffeen mehods fo feld alulaons - Dpole

More information

SCIENCE CHINA Technological Sciences

SCIENCE CHINA Technological Sciences SIENE HINA Technologcal Scences Acle Apl 4 Vol.57 No.4: 84 8 do:.7/s43-3-5448- The andom walkng mehod fo he seady lnea convecondffuson equaon wh axsymmec dsc bounday HEN Ka, SONG MengXuan & ZHANG Xng *

More information

ajanuary't I11 F or,'.

ajanuary't I11 F or,'. ',f,". ; q - c. ^. L.+T,..LJ.\ ; - ~,.,.,.,,,E k }."...,'s Y l.+ : '. " = /.. :4.,Y., _.,,. "-.. - '// ' 7< s k," ;< - " fn 07 265.-.-,... - ma/ \/ e 3 p~~f v-acecu ean d a e.eng nee ng sn ~yoo y namcs

More information

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( ) Clculu 4, econ Lm/Connuy & Devve/Inel noe y Tm Plchow, wh domn o el Wh we hve o : veco-vlued uncon, ( ) ( ) ( ) j ( ) nume nd ne o veco The uncon, nd A w done wh eul uncon ( x) nd connuy e he componen

More information

Lecture VI Regression

Lecture VI Regression Lecure VI Regresson (Lnear Mehods for Regresson) Conens: Lnear Mehods for Regresson Leas Squares, Gauss Markov heorem Recursve Leas Squares Lecure VI: MLSC - Dr. Sehu Vjayakumar Lnear Regresson Model M

More information

Lecture 6: Learning for Control (Generalised Linear Regression)

Lecture 6: Learning for Control (Generalised Linear Regression) Lecure 6: Learnng for Conrol (Generalsed Lnear Regresson) Conens: Lnear Mehods for Regresson Leas Squares, Gauss Markov heorem Recursve Leas Squares Lecure 6: RLSC - Prof. Sehu Vjayakumar Lnear Regresson

More information

Lecture 17: Kinetics of Phase Growth in a Two-component System:

Lecture 17: Kinetics of Phase Growth in a Two-component System: Lecue 17: Kineics of Phase Gowh in a Two-componen Sysem: descipion of diffusion flux acoss he α/ ineface Today s opics Majo asks of oday s Lecue: how o deive he diffusion flux of aoms. Once an incipien

More information

The Great Wave Hokusai. LO: Recognize physical principles associated with terms in sonar equation.

The Great Wave Hokusai. LO: Recognize physical principles associated with terms in sonar equation. Sona Equaion: The Wave Equaion The Gea Wave Hokusai LO: Recognize hysical inciles associaed wih ems in sona equaion. he Punchline If densiy oo high o esolve individual oganisms, hen: E[enegy fom volume]

More information

ScienceDirect. Behavior of Integral Curves of the Quasilinear Second Order Differential Equations. Alma Omerspahic *

ScienceDirect. Behavior of Integral Curves of the Quasilinear Second Order Differential Equations. Alma Omerspahic * Avalable onlne a wwwscencedeccom ScenceDec oceda Engneeng 69 4 85 86 4h DAAAM Inenaonal Smposum on Inellgen Manufacung and Auomaon Behavo of Inegal Cuves of he uaslnea Second Ode Dffeenal Equaons Alma

More information

Class #16 Monday, March 20, 2017

Class #16 Monday, March 20, 2017 D. Pogo Class #16 Monday, Mach 0, 017 D Non-Catesian Coodinate Systems A point in space can be specified by thee numbes:, y, and z. O, it can be specified by 3 diffeent numbes:,, and z, whee = cos, y =

More information

Suppose the medium is not homogeneous (gravity waves impinging on a beach,

Suppose the medium is not homogeneous (gravity waves impinging on a beach, Slowly vaying media: Ray theoy Suppose the medium is not homogeneous (gavity waves impinging on a beach, i.e. a vaying depth). Then a pue plane wave whose popeties ae constant in space and time is not

More information

Online Appendix for. Strategic safety stocks in supply chains with evolving forecasts

Online Appendix for. Strategic safety stocks in supply chains with evolving forecasts Onlne Appendx for Sraegc safey socs n supply chans wh evolvng forecass Tor Schoenmeyr Sephen C. Graves Opsolar, Inc. 332 Hunwood Avenue Hayward, CA 94544 A. P. Sloan School of Managemen Massachuses Insue

More information

ANSWERS TO ODD NUMBERED EXERCISES IN CHAPTER 2

ANSWERS TO ODD NUMBERED EXERCISES IN CHAPTER 2 Joh Rley Novembe ANSWERS O ODD NUMBERED EXERCISES IN CHAPER Seo Eese -: asvy (a) Se y ad y z follows fom asvy ha z Ehe z o z We suppose he lae ad seek a oado he z Se y follows by asvy ha z y Bu hs oads

More information

, the tangent line is an approximation of the curve (and easier to deal with than the curve).

, the tangent line is an approximation of the curve (and easier to deal with than the curve). 114 Tangent Planes and Linea Appoimations Back in-dimensions, what was the equation of the tangent line of f ( ) at point (, ) f ( )? (, ) ( )( ) = f Linea Appoimation (Tangent Line Appoimation) of f at

More information

Math Section 4.2 Radians, Arc Length, and Area of a Sector

Math Section 4.2 Radians, Arc Length, and Area of a Sector Math 1330 - Section 4. Radians, Ac Length, and Aea of a Secto The wod tigonomety comes fom two Geek oots, tigonon, meaning having thee sides, and mete, meaning measue. We have aleady defined the six basic

More information

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING MEEN 67 Handou # MODAL ANALYSIS OF MDOF Sysems wih VISCOS DAMPING ^ Symmeic Moion of a n-dof linea sysem is descibed by he second ode diffeenial equaions M+C+K=F whee () and F () ae n ows vecos of displacemens

More information

An Open cycle and Closed cycle Gas Turbine Engines. Methods to improve the performance of simple gas turbine plants

An Open cycle and Closed cycle Gas Turbine Engines. Methods to improve the performance of simple gas turbine plants An Open cycle and losed cycle Gas ubine Engines Mehods o impove he pefomance of simple gas ubine plans I egeneaive Gas ubine ycle: he empeaue of he exhaus gases in a simple gas ubine is highe han he empeaue

More information

Chapter Finite Difference Method for Ordinary Differential Equations

Chapter Finite Difference Method for Ordinary Differential Equations Chape 8.7 Fne Dffeence Mehod fo Odnay Dffeenal Eqaons Afe eadng hs chape, yo shold be able o. Undesand wha he fne dffeence mehod s and how o se o solve poblems. Wha s he fne dffeence mehod? The fne dffeence

More information

MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH

MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH Fundamenal Jounal of Mahemaical Phsics Vol 3 Issue 013 Pages 55-6 Published online a hp://wwwfdincom/ MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH Univesias

More information

Density Matrix Description of NMR BCMB/CHEM 8190

Density Matrix Description of NMR BCMB/CHEM 8190 Densy Marx Descrpon of NMR BCMBCHEM 89 Operaors n Marx Noaon Alernae approach o second order specra: ask abou x magnezaon nsead of energes and ranson probables. If we say wh one bass se, properes vary

More information

Solution in semi infinite diffusion couples (error function analysis)

Solution in semi infinite diffusion couples (error function analysis) Soluon n sem nfne dffuson couples (error funcon analyss) Le us consder now he sem nfne dffuson couple of wo blocks wh concenraon of and I means ha, n a A- bnary sysem, s bondng beween wo blocks made of

More information

Ferent equation of the Universe

Ferent equation of the Universe Feen equaion of he Univese I discoveed a new Gaviaion heoy which beaks he wall of Planck scale! Absac My Nobel Pize - Discoveies Feen equaion of he Univese: i + ia = = (... N... N M m i= i ) i a M m j=

More information

WebAssign HW Due 11:59PM Tuesday Clicker Information

WebAssign HW Due 11:59PM Tuesday Clicker Information WebAssgn HW Due 11:59PM Tuesday Clcker Inormaon Remnder: 90% aemp, 10% correc answer Clcker answers wll be a end o class sldes (onlne). Some days we wll do a lo o quesons, and ew ohers Each day o clcker

More information

The Feigel Process. The Momentum of Quantum Vacuum. Geert Rikken Vojislav Krstic. CNRS-France. Ariadne call A0/1-4532/03/NL/MV 04/1201

The Feigel Process. The Momentum of Quantum Vacuum. Geert Rikken Vojislav Krstic. CNRS-France. Ariadne call A0/1-4532/03/NL/MV 04/1201 The Fegel Pocess The Momenum of Quanum Vacuum a an Tggelen CNRS -Fance Laboaoe e Physque e Moélsaon es Mleux Complexes Unesé Joseph Foue/CNRS, Genoble, Fance Gee Ren Vosla Ksc CNRS Fance CNRS-Fance Laboaoe

More information

Density Matrix Description of NMR BCMB/CHEM 8190

Density Matrix Description of NMR BCMB/CHEM 8190 Densy Marx Descrpon of NMR BCMBCHEM 89 Operaors n Marx Noaon If we say wh one bass se, properes vary only because of changes n he coeffcens weghng each bass se funcon x = h< Ix > - hs s how we calculae

More information

The ray paths and travel times for multiple layers can be computed using ray-tracing, as demonstrated in Lab 3.

The ray paths and travel times for multiple layers can be computed using ray-tracing, as demonstrated in Lab 3. C. Trael me cures for mulple reflecors The ray pahs ad rael mes for mulple layers ca be compued usg ray-racg, as demosraed Lab. MATLAB scrp reflec_layers_.m performs smple ray racg. (m) ref(ms) ref(ms)

More information

Comprehensive Integrated Simulation and Optimization of LPP for EUV Lithography Devices

Comprehensive Integrated Simulation and Optimization of LPP for EUV Lithography Devices Comprehense Inegraed Smulaon and Opmaon of LPP for EUV Lhograph Deces A. Hassanen V. Su V. Moroo T. Su B. Rce (Inel) Fourh Inernaonal EUVL Smposum San Dego CA Noember 7-9 2005 Argonne Naonal Laboraor Offce

More information

Bethe-Salpeter Equation Green s Function and the Bethe-Salpeter Equation for Effective Interaction in the Ladder Approximation

Bethe-Salpeter Equation Green s Function and the Bethe-Salpeter Equation for Effective Interaction in the Ladder Approximation Bh-Salp Equaon n s Funcon and h Bh-Salp Equaon fo Effcv Inacon n h Ladd Appoxmaon Csa A. Z. Vasconcllos Insuo d Físca-UFRS - upo: Físca d Hadons Sngl-Pacl Popagao. Dagam xpanson of popagao. W consd as

More information

MCTDH Approach to Strong Field Dynamics

MCTDH Approach to Strong Field Dynamics MCTDH ppoach o Song Feld Dynamcs Suen Sukasyan Thomas Babec and Msha Ivanov Unvesy o Oawa Canada Impeal College ondon UK KITP Sana Babaa. May 8 009 Movaon Song eld dynamcs Role o elecon coelaon Tunnel

More information

CHAPTER 10: LINEAR DISCRIMINATION

CHAPTER 10: LINEAR DISCRIMINATION CHAPER : LINEAR DISCRIMINAION Dscrmnan-based Classfcaon 3 In classfcaon h K classes (C,C,, C k ) We defned dscrmnan funcon g j (), j=,,,k hen gven an es eample, e chose (predced) s class label as C f g

More information

A. Inventory model. Why are we interested in it? What do we really study in such cases.

A. Inventory model. Why are we interested in it? What do we really study in such cases. Some general yem model.. Inenory model. Why are we nereed n? Wha do we really udy n uch cae. General raegy of machng wo dmlar procee, ay, machng a fa proce wh a low one. We need an nenory or a buffer or

More information

2-d Motion: Constant Acceleration

2-d Motion: Constant Acceleration -d Moion: Consan Acceleaion Kinemaic Equaions o Moion (eco Fom Acceleaion eco (consan eloci eco (uncion o Posiion eco (uncion o The eloci eco and posiion eco ae a uncion o he ime. eloci eco a ime. Posiion

More information

PHYS 1410, 11 Nov 2015, 12:30pm.

PHYS 1410, 11 Nov 2015, 12:30pm. PHYS 40, Nov 205, 2:30pm. A B = AB cos φ x = x 0 + v x0 t + a 2 xt 2 a ad = v2 2 m(v2 2 v) 2 θ = θ 0 + ω 0 t + 2 αt2 L = p fs µ s n 0 + αt K = 2 Iω2 cm = m +m 2 2 +... m +m 2 +... p = m v and L = I ω ω

More information

Circular Motion. Radians. One revolution is equivalent to which is also equivalent to 2π radians. Therefore we can.

Circular Motion. Radians. One revolution is equivalent to which is also equivalent to 2π radians. Therefore we can. 1 Cicula Moion Radians One evoluion is equivalen o 360 0 which is also equivalen o 2π adians. Theefoe we can say ha 360 = 2π adians, 180 = π adians, 90 = π 2 adians. Hence 1 adian = 360 2π Convesions Rule

More information

Chap 5. Circular Motion: Gravitation

Chap 5. Circular Motion: Gravitation Chap 5. Cicula Motion: Gavitation Sec. 5.1 - Unifom Cicula Motion A body moves in unifom cicula motion, if the magnitude of the velocity vecto is constant and the diection changes at evey point and is

More information

Introduction to Vectors and Frames

Introduction to Vectors and Frames Intoduction to Vectos and Fames CIS - 600.445 Russell Taylo Saah Gaham Infomation Flow Diagam Model the Patient Plan the Pocedue Eecute the Plan Real Wold Coodinate Fame Tansfomation F = [ R, p] 0 F y

More information

CHAPTER 3 DETECTION TECHNIQUES FOR MIMO SYSTEMS

CHAPTER 3 DETECTION TECHNIQUES FOR MIMO SYSTEMS 4 CAPTER 3 DETECTION TECNIQUES FOR MIMO SYSTEMS 3. INTRODUCTION The man challenge n he paccal ealzaon of MIMO weless sysems les n he effcen mplemenaon of he deeco whch needs o sepaae he spaally mulplexed

More information

Physics 201, Lecture 5

Physics 201, Lecture 5 Phsics 1 Lecue 5 Tod s Topics n Moion in D (Chp 4.1-4.3): n D Kinemicl Quniies (sec. 4.1) n D Kinemics wih Consn Acceleion (sec. 4.) n D Pojecile (Sec 4.3) n Epeced fom Peiew: n Displcemen eloci cceleion

More information

Simple Harmonic Mo/on. Mandlebrot Set (image courtesy of Wikipedia)

Simple Harmonic Mo/on. Mandlebrot Set (image courtesy of Wikipedia) Simple Hamonic Mo/on Mandlebot Set (image coutesy of Wikipedia) Oscilla/ons Oscilla/on the mo/on of an object that egulaly epeats itself, back and foth, ove the same path. We say that mo/on is peiodic,

More information