Symmetry. Chemistry 481(01) Spring 2017 Instructor: Dr. Upali Siriwardane Office: CTH 311 Phone Office Hours:

Size: px
Start display at page:

Download "Symmetry. Chemistry 481(01) Spring 2017 Instructor: Dr. Upali Siriwardane Office: CTH 311 Phone Office Hours:"

Transcription

1 Chemistry 481(01) Spring 2017 Instructor: Dr. Upali Siriwardane Office: CT 311 Phone Office ours: M,W 8:00-9:00 & 11:00-12:00 am; Tu,Th, F 9:30-11:30 a.m. April 4, 2017: Test 1 (Chapters 1, 2, 3, 4) April 27, 2017: Test 2 (Chapters (6 & 7) May 16, 2016: Test 3 (Chapters. 19 & 20) May 17, Make Up: Comprehensive covering all Chapters Chapter 6. Molecular symmetry An introduction to symmetry analysis 6.1 Symmetry operations, elements and point groups Character tables 183 Applications of symmetry 6.3 Polar molecules Chiral molecules Molecular vibrations 188 The symmetries of molecular orbitals 6.6 Symmetry-adapted linear combinations The construction of molecular orbitals The vibrational analogy 194 Representations 6.9 The reduction of a representation Projection operators 196 Chapter 6-1 Chapter 6-2 Symmetry Symmetry Butterflies M.C. Escher Chapter 6-3 Chapter 6-4 Fish and Boats Symmetry Symmetry elements and operations A symmetry operation is the process of doing something to a shape or an object so that the result is indistinguishable from the initial state Identity (E) Proper rotation axis of order n (C n ) Plane of symmetry (s) Improper axis (rotation + reflection) of order n (S n ), an inversion center is S 2 Chapter 6-5 Chapter 6-6 1

2 2) What is a symmetry operation? E - the identity element The symmetry operation corresponds to doing nothing to the molecule. The E element is possessed by all molecules, regardless of their shape. C 1 is the most common element leading to E, but other combination of symmetry operation are also possible for E. Chapter 6-7 Chapter 6-8 C n - a proper rotation axis of order n The symmetry operation C n corresponds to rotation about an axis by (360/n) o. 2 O possesses a C 2 since rotation by 360/2 o = 180 o about an axis bisecting the two bonds sends the molecule into an indistinguishable form: s - a plane of reflection The symmetry operation corresponds to reflection in a plane. 2 O possesses two reflection planes. Labels: s h, s d and s v. Chapter 6-9 Chapter 6-10 i - an inversion center The symmetry operation corresponds to inversion through the center. The coordinates (x,y,z) of every atom are changed into (-x,-y,-z): S n - an improper axis of order n The symmetry operation is rotation by (360/n) o and then a reflection in a plane perpendicular to the rotation axis. operation is the same as an inversion is S 2 = i a reflection so S 1 = s. Chapter 6-11 Chapter

3 2) What are four basic symmetry elements and operations? 3) Draw and identify the symmetry elements in: a) N 3 : b) 2 O: c) CO 2 : d) C 4 : e) BF 3 : Chapter 6-13 Chapter 6-14 Point Group Assignment There is a systematic way of naming most point groups C, S or D for the principal symmetry axis 4) Draw, identify symmetry elements and assign the point group of following molecules: a) N 2 Cl: b) SF 4 : A number for the order of the principal axis (subscript) n. A subscript h, d, or v for symmetry planes c) PCl 5 : d) SF 6 : e) Chloroform f) 1,3,5-trichlorobenzene Chapter 6-15 Chapter 6-16 Special Point Groups Linear molecules have a C axis - there are an infinite number of rotations that will leave a linear molecule unchanged If there is also a plane of symmetry perpendicular to the C axis, the point group is D h If there is no plane of symmetry, the point group is C v Tetrahedral molecules have a point group T d Octahedral molecules have a point group O h Icosahedral molecules have a point group I h Point groups It is convenient to classify molecules with the same set of symmetry elements by a label. This label summarizes the symmetry properties. Molecules with the same label belong to the same point group. For example, all square molecules belong to the D 4h point group irrespective of their chemical formula. Chapter 6-17 Chapter

4 5) Determine the point group to which each of the following belongs: a) CCl 4 b) Benzene c) Pyridine d) Fe(CO) 5 e) Staggered and eclipsed ferrocene, (η 5 -C 5 5 ) 2 Fe Character tables Summarize a considerable amount of information and contain almost all the data that is needed to begin chemical applications of molecule. C 2v E C 2 s v s v ' A z x 2, y 2, z 2 A R z xy B x, R y xz B y, R x yz f) Octahedral W(CO) 6 g) fac- and mer-ru( 2 O) 3 Cl 3 Chapter 6-19 Chapter 6-20 Character Table T d Information on Character Table The order of the group is the total number of symmetry elements and is given the symbol h. For C 2v h = 4. First Column has labels for the irreducible representations. A 1 A 2 B 1 B 2 The rows of numbers are the characters (1,-1)of the irreducible representations. p x, p y and p z orbitals are given by the symbols x, y and z respectively d z2, d x2-y2, d xy, d xz and d yz orbitals are given by the symbols z 2, x 2 -y 2, xy, xz and yz respectively. Chapter 6-21 Chapter O molecule belongs to C 2v point group Symmetry Classes The symmetry classes for each point group and are labeled in the character table LabelSymmetry Class A B E T Singly-degenerate class, symmetric with respect to the principal axis Singly-degenerate class, asymmetric with respect to the principal axis Doubly-degenerate class Triply-degenerate class Chapter 6-23 Chapter

5 Molecular Polarity and Chirality Polarity: Only molecules belonging to the point groups C n, C nv and C s are polar. The dipole moment lies along the symmetry axis for molecules belonging to the point groups C n and C nv. Any of D groups, T, O and I groups will not be polar Chirality Only molecules lacking a S n axis can be chiral. This includes mirror planes and a center of inversion as S 2 =s, S 1 =i and D n groups. Not Chiral: D nh, D nd,t d and O h. Chapter 6-25 Chapter 6-26 Meso-Tartaric Acid Optical Activity Chapter 6-27 Chapter 6-28 Symmetry allowed combinations Find symmetry species spanned by a set of orbitals Next find combinations of the atomic orbitals on central atom which have these symmetries. Combining these are known as symmetry adapted linear combinations (or SALCs). The characters show their behavior of the combination under each of the symmetry operations. several methods for finding the combinations. Example: Valence MOs of Water 2 O has C 2v symmetry. The symmetry operators of the C 2v group all commute with each other (each is in its own class). Molecualr orbitals should have symmetry operators E, C 2, s v1, and s v2. Chapter 6-29 Chapter

6 Building a MO diagram for 2 O a 1 orbital of 2 O z y x Chapter 6-31 Chapter 6-32 b 1 orbital of 2 O b 1 orbital of 2 O, cont. Chapter 6-33 Chapter 6-34 b 2 orbital of 2 O b 2 orbital of 2 O, cont. Chapter 6-35 Chapter

7 [Fe(CN) 6 ] 4- Reducing the Representation Use reduction formula Chapter 6-37 Chapter 6-38 MO forml 6 diagram Molecules Group Theory and Vibrational Spectroscopy Chapter 6-39 When a molecule vibrates, the symmetry of the molecule is either preserved (symmetric vibrations) or broken (asymmetric vibrations). The manner in which the vibrations preserve or break symmetry can be matched to one of the symmetry classes of the point group of the molecule. Linear molecules: 3N - 5 vibrations Non-linear molecules: 3N - 6 vibrations (N is the number of atoms) Chapter 6-40 Reducible Representations(3N) for 2 O: Normal Coordinate Method If we carry out the symmetry operations of C 2v on this set, we will obtain a transformation matrix for each operation. E.g. C 2 effects the following transformations: x 1 -> -x 2, y 1 -> -y 2, z 1 -> z 2, x 2 -> -x 1, y 2 -> -y 1, z 2 -> z 1, x 3 -> -x 3, y 3 -> -y 3, z 3 -> z 3. Chapter 6-41 Chapter

8 Summary of Operations by a set of four 9 x 9 transformation matrices. Use Reduction Formula Chapter 6-43 Chapter 6-44 Example 2 O, C 2v Use Reduction Formula: 1 ap (R) p(r) g R to show that here we have: G 3N = 3A 1 + A 2 + 2B 1 + 3B 2 This was obtained using 3N cartesian coordinate vectors. Using 3N (translation + rotation + vibration) vectors would have given the same answer. But we are only interested in the 3N-6 vibrations. The irreducible representations for the rotation and translation vectors are listed in the character tables, e.g. for C 2 v, Chapter 6-45 Chapter 6-46 G T = A 1 + B 1 + B 2 G R = A 2 + B 1 + B 2 i.e. G T+R = A 1 + A 2 + 2B 1 + 2B 2 But G vib = G 3N - G T+R Therefore G vib = 2A 1 + B 2 i.e. of the 3 (= 3N-6) vibrations for a molecule like 2 O, two have A 1 and one has B 2 symmetry INTERNAL COORDINATE METOD We used one example of this earlier - when we used the "bond vectors" to obtain a representation corresponding to bond stretches. We will give more examples of these, and also the other main type of vibration - bending modes. For stretches we use as internal coordinates changes in bond length, for bends we use changes in bond angle. Chapter 6-47 Chapter

9 Deduce G 3N for our triatomic molecule, 2 O in three lines: Example 2 O, C 2v E C2 sxz syz unshifted atoms /unshifted atom s \ G3N For more complicated molecules this shortened method is essential!! aving obtained G 3N, we now must reduce it to find which irreducible representations are present. Chapter 6-49 Chapter 6-50 Use Reduction Formula: 1 ap (R) p(r) g to show that here we have: G 3N = 3A 1 + A 2 + 2B 1 + 3B 2 R G T = A 1 + B 1 + B 2 G R = A 2 + B 1 + B 2 i.e. G T+R = A 1 + A 2 + 2B 1 + 2B 2 But G vib = G 3N - G T+R This was obtained using 3N cartesian coordinate vectors. Using 3N (translation + rotation + vibration) vectors would have given the same answer. But we are only interested in the 3N-6 vibrations. Therefore G vib = 2A 1 + B 2 i.e. of the 3 (= 3N-6) vibrations for a molecule like 2 O, two have A 1 and one has B 2 symmetry The irreducible representations for the rotation and translation vectors are listed in the character tables, e.g. for C 2 v, Chapter 6-51 Chapter 6-52 Further examples of the determination of G vib, via G 3N : N3 (C3v) N C3v E 2C3 3sv C 4 (T d ) C Td E 8C3 3C2 6S4 6sd \ G 3N Reduction formula G 3N = 3A 1 + A 2 + 4E G T+R (from character table) = A 1 + A 2 + 2E, \ G vib = 2A 1 + 2E (each E "mode" is in fact two vibrations (doubly degenerate) \ G3N Reduction formula G3N = A1 + E + T1 + 3T2 GT+R (from character table) = T1 + T2, \ Gvib = A1 + E + 2T2 (each E "mode" is in fact two vibrations (doubly degenerate), and each T2 three vibrations (triply degenerate) Chapter 6-53 Chapter

10 XeF4 (D4h) F Xe F F F INTERNAL COORDINATE METOD D4h E 2C4 C2 2C2' 2C2" i 2S4 sh 2sv 2sd \G3N We used one example of this earlier - when we used the "bond vectors" to obtain a representation corresponding to bond stretches. Reduction formula G3N = A1g + A2g + B1g + B2g + Eg + 2A2u + B2u + 3Eu GT+R (from character table) = A2g + Eg + A2u + Eu, We will give more examples of these, and also the other main type of vibration - bending modes. \ Gvib = A1g + B1g + B2g + A2u + B2u + 2Eu For any molecule, we can always deduce the overall symmetry of all the vibrational modes, from the G3N representation. For stretches we use as internal coordinates changes in bond length, for bends we use changes in bond angle. To be more specific we need now to use the INTERNAL COORDINATE method. Chapter 6-55 Chapter 6-56 Let us return to the C2v molecule: r 1 O r 2 Use as bases for stretches: Dr1, Dr2. Gbend is clearly irreducible, i.e. A1. Use as basis for bend: D Gstretch reduces to A1 + B2 C2v E C2 sxz syz Gstretch Gbend We can therefore see that the three vibrational modes of 2O divide into two stretches (A1 + B2) and one bend (A1). N.B. Transformation matrices for Gstretch : E, syz: 1 0 C2, sxz : We will see later how this information helps in the vibrational assignment. i.e. only count UNSIFTED VECTORS (each of these +1 to ). Chapter 6-57 Chapter 6-58 Other examples: N3 r 1 N r 2 1 opposite to r 1 r 3 2 opposite to r 2 3 opposite to r 3 C4 r 1 6 angles 1,... 6, where 1 r C r 4 lies between r1 and r2 etc. 2 r 3 Bases for stretches: Dr1, Dr2, Dr3. Bases for stretches: Dr1, Dr2, Dr3, Dr4. Bases for bends: D 1, D 2, D 3. Bases for bends: D 1, D 2, D 3, D 4, D 5, D 6. C3v E 2C3 3s Gstretch Gbend Td E 8C3 3C2 6S4 6sd Gstretch Gbend Reduction formula Gstretch = A1 + E Gbend = A1 + E Reduction formula Gstretch = A1 + T2 Gbend = A1 + E + T2 (Remember Gvib (above) = 2A1 + 2E) But G3N (above) = A1 + E + 2T2 Chapter 6-59 Chapter

11 IR Absorptions Infra-red absorption spectra arise when a molecular vibration causes a change in the dipole moment of the molecule. If the molecule has no permanent dipole moment, the vibrational motion must create one; if there is a permanent dipole moment, the vibrational motion must change it. Raman Absorptions Deals with polarizability Chapter 6-61 Raman Spectroscopy Named after discoverer, Indian physicist C.V.Raman (1927). It is a light scattering process. Irradiate sample with visible light - nearly all is transmitted; of the rest, most scattered at unchanged energy (frequency) (Rayleigh scattering), but a little is scattered at changed frequency (Raman scattering). The light has induced vibrational transitions in molecules (ground excited state) - hence some energy taken from light, scattered at lower energy, i.e. at lower wavenumber. Raman scattering is weak - therefore need very powerful light source - always use lasers (monochromatic, plane polarised, very intense). Each Raman band has wavenumber: where n = Raman scattered wavenumber n 0 = wavenumber of incident radiation n vib = a vibrational wavenumber of the molecule (in general several of these) Chapter 6-62 Molecular Vibrations At room temperature almost all molecules are in their lowest vibrational energy levels with quantum number n = 0. For each normal mode, the most probable vibrational transition is from this level to the next highest level (n = 0 -> 1). The strong IR or Raman bands resulting from these transitiions are called fundamental bands. Other transitions to higher excited states (n = 0 -> 2, for instance) result in overtone bands. Overtone bands are much weaker than fundamental bands. If the symmetry label of a normal mode corresponds to x, y, or z, then the fundamental transition for this normal mode will be IR active. If the symmetry label of a normal mode corresponds to products of x, y, or z (such as x 2 or yz) then the fundamental transition for this normal mode will be Raman active. Chapter 6-63 Chapter 6-64 Chapter

Chapter 3 Introduction to Molecular Symmetry

Chapter 3 Introduction to Molecular Symmetry CHEM 511 Chapter 3 page 1 of 12 Chapter 3 Introduction to Molecular Symmetry This chapter will deal with the symmetry characteristics of individual molecules, i.e., how molecules can be rotated or imaged

More information

Molecular Symmetry. Symmetry is relevant to: spectroscopy, chirality, polarity, Group Theory, Molecular Orbitals

Molecular Symmetry. Symmetry is relevant to: spectroscopy, chirality, polarity, Group Theory, Molecular Orbitals Molecular Symmetry Symmetry is relevant to: spectroscopy, chirality, polarity, Group Theory, Molecular Orbitals - A molecule has a symmetry element if it is unchanged by a particular symmetry operation

More information

Symmetrical: implies the species possesses a number of indistinguishable configurations.

Symmetrical: implies the species possesses a number of indistinguishable configurations. Chapter 3 - Molecular Symmetry Symmetry helps us understand molecular structure, some chemical properties, and characteristics of physical properties (spectroscopy) used with group theory to predict vibrational

More information

Chapter 6. Molecular Symmetry An introduction to symmetry analysis. M.C. Escherand Symmetry Drawings

Chapter 6. Molecular Symmetry An introduction to symmetry analysis. M.C. Escherand Symmetry Drawings CHEM481 Chapter 6 Page 1 of 71 Chapter 6. Molecular Symmetry An introduction to symmetry analysis. M.C. Escherand Symmetry Drawings M.C. Escher has uncommon visions and intuitions. Many of Escher's drawings

More information

Molecular Symmetry 10/25/2018

Molecular Symmetry 10/25/2018 Symmetry helps us understand molecular structure, some chemical properties, and characteristics of physical properties (spectroscopy). Predict IR spectra or Interpret UV-Vis spectra Predict optical activity

More information

Symmetry: Translation and Rotation

Symmetry: Translation and Rotation Symmetry: Translation and Rotation The sixth column of the C 2v character table indicates the symmetry species for translation along (T) and rotation about (R) the Cartesian axes. y y y C 2 F v (x) T x

More information

Tables for Group Theory

Tables for Group Theory Tables for Group Theory By P. W. ATKINS, M. S. CHILD, and C. S. G. PHILLIPS This provides the essential tables (character tables, direct products, descent in symmetry and subgroups) required for those

More information

Chem Symmetry and Introduction to Group Theory. Symmetry is all around us and is a fundamental property of nature.

Chem Symmetry and Introduction to Group Theory. Symmetry is all around us and is a fundamental property of nature. Chem 59-65 Symmetry and Introduction to Group Theory Symmetry is all around us and is a fundamental property of nature. Chem 59-65 Symmetry and Introduction to Group Theory The term symmetry is derived

More information

Symmetry and Group Theory

Symmetry and Group Theory Symmetry and Group Theory Based on Inorganic Chemistry, Miessler and Tarr, 4 th edition, 2011, Pearson Prentice Hall Images from Miessler and Tarr Inorganic Chemistry 2011 obtained from Pearson Education,

More information

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE NO. : 23 (NORMAL MODES AND IRREDUCIBLE REPRESENTATIONS FOR POLYATOMIC MOLECULES)

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE NO. : 23 (NORMAL MODES AND IRREDUCIBLE REPRESENTATIONS FOR POLYATOMIC MOLECULES) Subject Chemistry Paper No and Title Module No and Title Module Tag 8/ Physical Spectroscopy 23/ Normal modes and irreducible representations for polyatomic molecules CHE_P8_M23 TABLE OF CONTENTS 1. Learning

More information

Tables for Group Theory

Tables for Group Theory Tables for Group Theory By P. W. ATKINS, M. S. CHILD, and C. S. G. PHILLIPS This provides the essential tables (character tables, direct products, descent in symmetry and subgroups) required for those

More information

LECTURE 3 DIRECT PRODUCTS AND SPECTROSCOPIC SELECTION RULES

LECTURE 3 DIRECT PRODUCTS AND SPECTROSCOPIC SELECTION RULES SYMMETRY II. J. M. GOICOECHEA. LECTURE 3 1 LECTURE 3 DIRECT PRODUCTS AND SPECTROSCOPIC SELECTION RULES 3.1 Direct products and many electron states Consider the problem of deciding upon the symmetry of

More information

Chapter 6 Vibrational Spectroscopy

Chapter 6 Vibrational Spectroscopy Chapter 6 Vibrational Spectroscopy As with other applications of symmetry and group theory, these techniques reach their greatest utility when applied to the analysis of relatively small molecules in either

More information

THEORY OF MOLECULE. A molecule consists of two or more atoms with certain distances between them

THEORY OF MOLECULE. A molecule consists of two or more atoms with certain distances between them THEORY OF MOLECULE A molecule consists of two or more atoms with certain distances between them through interaction of outer electrons. Distances are determined by sum of all forces between the atoms.

More information

CHM Physical Chemistry II Chapter 12 - Supplementary Material. 1. Einstein A and B coefficients

CHM Physical Chemistry II Chapter 12 - Supplementary Material. 1. Einstein A and B coefficients CHM 3411 - Physical Chemistry II Chapter 12 - Supplementary Material 1. Einstein A and B coefficients Consider two singly degenerate states in an atom, molecule, or ion, with wavefunctions 1 (for the lower

More information

Chemistry 543--Final Exam--Keiderling May 5, pm SES

Chemistry 543--Final Exam--Keiderling May 5, pm SES Chemistry 543--Final Exam--Keiderling May 5,1992 -- 1-5pm -- 174 SES Please answer all questions in the answer book provided. Make sure your name is clearly indicated and that the answers are clearly numbered,

More information

Spectroscopic Selection Rules

Spectroscopic Selection Rules E 0 v = 0 v = 1 v = 2 v = 4 v = 3 For a vibrational fundamental (Δv = ±1), the transition will have nonzero intensity in either the infrared or Raman spectrum if the appropriate transition moment is nonzero.

More information

24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability ellipsoid. Selection rules.

24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability ellipsoid. Selection rules. Subject Chemistry Paper No and Title Module No and Title Module Tag 8/ Physical Spectroscopy 24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability

More information

Chapter 3. Molecular symmetry and symmetry point group

Chapter 3. Molecular symmetry and symmetry point group hapter Molecular symmetry and symmetry point group Why do we study the symmetry concept? The molecular configuration can be expressed more simply and distinctly. The determination of molecular configuration

More information

Concept of a basis. Based on this treatment we can assign the basis to one of the irreducible representations of the point group.

Concept of a basis. Based on this treatment we can assign the basis to one of the irreducible representations of the point group. Concept of a basis A basis refers to a type of function that is transformed by the symmetry operations of a point group. Examples include the spherical harmonics, vectors, internal coordinates (e..g bonds,

More information

where, c is the speed of light, ν is the frequency in wave numbers (cm -1 ) and µ is the reduced mass (in amu) of A and B given by the equation: ma

where, c is the speed of light, ν is the frequency in wave numbers (cm -1 ) and µ is the reduced mass (in amu) of A and B given by the equation: ma Vibrational Spectroscopy A rough definition of spectroscopy is the study of the interaction of matter with energy (radiation in the electromagnetic spectrum). A molecular vibration is a periodic distortion

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpenCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy and Dynamics Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Fall, 008

More information

13 Applications of molecular symmetry and group theory

13 Applications of molecular symmetry and group theory Subject Chemistry Paper No and Title Module No and Title Module Tag 13 Applications of molecular symmetry and 26 and and vibrational spectroscopy part-iii CHE_P13_M26 TABLE OF CONTENTS 1. Learning Outcomes

More information

THE VIBRATIONAL SPECTRUM OF A POLYATOMIC MOLECULE (Revised 4/7/2004)

THE VIBRATIONAL SPECTRUM OF A POLYATOMIC MOLECULE (Revised 4/7/2004) INTRODUCTION THE VIBRATIONAL SPECTRUM OF A POLYATOMIC MOLECULE (Revised 4/7/2004) The vibrational motion of a molecule is quantized and the resulting energy level spacings give rise to transitions in the

More information

Chem 673, Problem Set 5 Due Tuesday, December 2, 2008

Chem 673, Problem Set 5 Due Tuesday, December 2, 2008 Chem 673, Problem Set 5 Due Tuesday, December 2, 2008 (1) (a) Trigonal bipyramidal (tbp) coordination is fairly common. Calculate the group overlaps of the appropriate SALCs for a tbp with the 5 d-orbitals

More information

Degrees of Freedom and Vibrational Modes

Degrees of Freedom and Vibrational Modes Degrees of Freedom and Vibrational Modes 1. Every atom in a molecule can move in three possible directions relative to a Cartesian coordinate, so for a molecule of n atoms there are 3n degrees of freedom.

More information

Chapter 6 Answers to Problems

Chapter 6 Answers to Problems Chapter 6 Answers to Problems 6.1 (a) NH 3 C3v E 2C3 3 v 4 1 2 3 0 1 12 0 2 3n = 3A 1 A 2 4E trans = A 1 E rot = A 2 E = 2A 2E = 4 frequencies 3n-6 1 Infrared 4 (2A 1 2E) Raman 4 (2A 1 2E) Polarized 2

More information

Chem 673, Problem Set 5 Due Thursday, November 29, 2007

Chem 673, Problem Set 5 Due Thursday, November 29, 2007 Chem 673, Problem Set 5 Due Thursday, November 29, 2007 (1) Trigonal prismatic coordination is fairly common in solid-state inorganic chemistry. In most cases the geometry of the trigonal prism is such

More information

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering Raman Spectroscopy What happens when light falls on a material? Transmission Reflection Absorption Luminescence Elastic Scattering Inelastic Scattering Raman, Fluorescence and IR Scattering Absorption

More information

SYMMETRY IN CHEMISTRY

SYMMETRY IN CHEMISTRY SYMMETRY IN CHEMISTRY Professor MANOJ K. MISHRA CHEMISTRY DEPARTMENT IIT BOMBAY ACKNOWLEGDEMENT: Professor David A. Micha Professor F. A. Cotton WHY SYMMETRY? An introduction to symmetry analysis For H

More information

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki Ashley Robison My Preferences Site Tools FAQ Sign Out If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. ChemWiki BioWiki GeoWiki StatWiki

More information

Chapter 1 Fundamental Concepts

Chapter 1 Fundamental Concepts Chapter 1 Fundamental Concepts 1-1 Symmetry Operations and Elements 1-2 Defining the Coordinate System 1-3 Combining Symmetry Operations 1-4 Symmetry Point Groups 1-5 Point Groups of Molecules 1-6 Systematic

More information

THE VIBRATIONAL SPECTRA OF A POLYATOMIC MOLECULE (Revised 3/27/2006)

THE VIBRATIONAL SPECTRA OF A POLYATOMIC MOLECULE (Revised 3/27/2006) THE VIBRATIONAL SPECTRA OF A POLYATOMIC MOLECULE (Revised 3/27/2006) 1) INTRODUCTION The vibrational motion of a molecule is quantized and the resulting energy level spacings give rise to transitions in

More information

V( x) = V( 0) + dv. V( x) = 1 2

V( x) = V( 0) + dv. V( x) = 1 2 Spectroscopy 1: rotational and vibrational spectra The vibrations of diatomic molecules Molecular vibrations Consider a typical potential energy curve for a diatomic molecule. In regions close to R e (at

More information

B7 Symmetry : Questions

B7 Symmetry : Questions B7 Symmetry 009-10: Questions 1. Using the definition of a group, prove the Rearrangement Theorem, that the set of h products RS obtained for a fixed element S, when R ranges over the h elements of the

More information

Chem 442 Review of Spectroscopy

Chem 442 Review of Spectroscopy Chem 44 Review of Spectroscopy General spectroscopy Wavelength (nm), frequency (s -1 ), wavenumber (cm -1 ) Frequency (s -1 ): n= c l Wavenumbers (cm -1 ): n =1 l Chart of photon energies and spectroscopies

More information

Symmetry and Group Theory

Symmetry and Group Theory 4 Smmetr and Group Theor 4 Smmetr and Group Theor 4 Smmetr and Group Theor 4 Smmetr and Group Theor Smmetr Operation and Smmetr Elements Smmetr Operation: A well-defined, non-translational moement of an

More information

6.2 Polyatomic Molecules

6.2 Polyatomic Molecules 6.2 Polyatomic Molecules 6.2.1 Group Vibrations An N-atom molecule has 3N - 5 normal modes of vibrations if it is linear and 3N 6 if it is non-linear. Lissajous motion A polyatomic molecule undergoes a

More information

Degrees of Freedom and Vibrational Modes

Degrees of Freedom and Vibrational Modes Degrees of Freedom and Vibrational Modes 1. Every atom in a molecule can move in three possible directions relative to a Cartesian coordinate, so for a molecule of n atoms there are 3n degrees of freedom.

More information

Also interested only in internal energies Uel (R) only internal forces, has symmetry of molecule--that is source of potential.

Also interested only in internal energies Uel (R) only internal forces, has symmetry of molecule--that is source of potential. IV. Molecular Vibrations IV-1 As discussed solutions, ψ, of the amiltonian, (Schrödinger Equation) must be representations of the group of the molecule i.e. energy cannot change due to a symmetry operation,

More information

Types of Molecular Vibrations

Types of Molecular Vibrations Important concepts in IR spectroscopy Vibrations that result in change of dipole moment give rise to IR absorptions. The oscillating electric field of the radiation couples with the molecular vibration

More information

B F N O. Chemistry 6330 Problem Set 4 Answers. (1) (a) BF 4. tetrahedral (T d )

B F N O. Chemistry 6330 Problem Set 4 Answers. (1) (a) BF 4. tetrahedral (T d ) hemistry 6330 Problem Set 4 Answers (1) (a) B 4 - tetrahedral (T d ) B T d E 8 3 3 2 6S 4 6s d G xyz 3 0-1 -1 1 G unmoved atoms 5 2 1 1 3 G total 15 0-1 -1 3 If we reduce G total we find that: G total

More information

Quote from Eugene Paul Wigner

Quote from Eugene Paul Wigner Quote from Eugene Paul Wigner See also: Current Science, vol. 69, no. 4, 25 August 1995, p. 375 From the preface to his book on group theory: Wigner relates a conversation with von Laue on the use of group

More information

Computer Algebraic Tools for Studying the Symmetry Properties of Molecules and Clusters. Katya Rykhlinskaya, University of Kassel

Computer Algebraic Tools for Studying the Symmetry Properties of Molecules and Clusters. Katya Rykhlinskaya, University of Kassel Computer Algebraic Tools for Studying the Symmetry Properties of Molecules and Clusters Katya Rykhlinskaya, University of Kassel 02. 06. 2005 Computational techniques in the theoretical investigations

More information

Raman and stimulated Raman spectroscopy of chlorinated hydrocarbons

Raman and stimulated Raman spectroscopy of chlorinated hydrocarbons Department of Chemistry Physical Chemistry Göteborg University KEN140 Spektroskopi Raman and stimulated Raman spectroscopy of chlorinated hydrocarbons WARNING! The laser gives a pulsed very energetic and

More information

Chemistry 5325/5326. Angelo R. Rossi Department of Chemistry The University of Connecticut. January 17-24, 2012

Chemistry 5325/5326. Angelo R. Rossi Department of Chemistry The University of Connecticut. January 17-24, 2012 Symmetry and Group Theory for Computational Chemistry Applications Chemistry 5325/5326 Angelo R. Rossi Department of Chemistry The University of Connecticut angelo.rossi@uconn.edu January 17-24, 2012 Infrared

More information

Using Symmetry to Generate Molecular Orbital Diagrams

Using Symmetry to Generate Molecular Orbital Diagrams Using Symmetry to Generate Molecular Orbital Diagrams review a few MO concepts generate MO for XH 2, H 2 O, SF 6 Formation of a bond occurs when electron density collects between the two bonded nuclei

More information

Brief introduction to molecular symmetry

Brief introduction to molecular symmetry Chapter 1 Brief introduction to molecular symmetry It is possible to understand the electronic structure of diatomic molecules and their interaction with light without the theory of molecular symmetry.

More information

CHAPTER 2 - APPLICATIONS OF GROUP THEORY

CHAPTER 2 - APPLICATIONS OF GROUP THEORY 36 HAPTER 2 APPLIATIONS OF GROUP THEORY 2 How Group Theory Applies to a Variety of hemical Problems The classification of molecules according to their symmetry point groups, provides a rigorous method

More information

A. General (10 points) 2 Points Each

A. General (10 points) 2 Points Each Chem 104A - Midterm II Total Exam Score closed text, closed notes, no calculators There are 100 total points. General advice - if you are stumped by one problem, move on to finish other problems and come

More information

Rotational Raman Spectroscopy

Rotational Raman Spectroscopy Rotational Raman Spectroscopy If EM radiation falls upon an atom or molecule, it may be absorbed if the energy of the radiation corresponds to the separation of two energy levels of the atoms or molecules.

More information

VIBRATIONAL SPECTROSCOPY NOTES

VIBRATIONAL SPECTROSCOPY NOTES - 1 - VIBRATIONAL SPECTROSCOPY NOTES (GROUP THEORY APPLICATIONS AT THE END) By the methods of vibrational spectroscopy we normally mean Infrared Absorption and Raman Scattering studies. These involve quite

More information

Chemistry 431. NC State University. Lecture 17. Vibrational Spectroscopy

Chemistry 431. NC State University. Lecture 17. Vibrational Spectroscopy Chemistry 43 Lecture 7 Vibrational Spectroscopy NC State University The Dipole Moment Expansion The permanent dipole moment of a molecule oscillates about an equilibrium value as the molecule vibrates.

More information

Group Theory: Matrix Representation & Consequences of Symmetry

Group Theory: Matrix Representation & Consequences of Symmetry Group Theory: Matrix Representation & Consequences of Symmetry Matrix Representation of Group Theory Reducible and Irreducible Representations The Great Orthogonality Theorem The ive Rules The Standard

More information

2018 Ch112 problem set 6 Due: Thursday, Dec. 6th. Problem 1 (2 points)

2018 Ch112 problem set 6 Due: Thursday, Dec. 6th. Problem 1 (2 points) Problem 1 (2 points) a. Consider the following V III complexes: V(H2O)6 3+, VF6 3-, and VCl6 3-. The table below contains the energies corresponding to the two lowest spin-allowed d-d transitions (υ1 and

More information

Inorganic Chemistry with Doc M. Fall Semester, 2012 Day 9. Molecular Orbitals, Part 4. Beyond Diatomics, continued

Inorganic Chemistry with Doc M. Fall Semester, 2012 Day 9. Molecular Orbitals, Part 4. Beyond Diatomics, continued Inorganic Chemistry with Doc M. Fall Semester, 2012 Day 9. Molecular Orbitals, Part 4. Beyond Diatomics, continued Topics: Name(s): Element: 1. Using p-orbitals for σ-bonding: molecular orbital diagram

More information

Normal Modes of Vibration

Normal Modes of Vibration 1 of 5 2/29/2012 7:31 PM 1. 2. 3. 4. 5. Character Tables Normal Modes of Vibration Vibrational Spectroscopy Polarized Raman Bands Example: The Geometry of the Sulfur Dioxide Molecule Normal Modes of Vibration

More information

In the fourth problem set, you derived the MO diagrams for two complexes containing Cr-Cr bonds:

In the fourth problem set, you derived the MO diagrams for two complexes containing Cr-Cr bonds: Problem 1 (2 points) Part 1 a. Consider the following V III complexes: V(H2O)6 3+, VF6 3-, and VCl6 3-. The table below contains the energies corresponding to the two lowest spin-allowed d-d transitions

More information

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 5 (TRANSITION PROBABILITIES AND TRANSITION DIPOLE MOMENT. OVERVIEW OF SELECTION RULES)

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 5 (TRANSITION PROBABILITIES AND TRANSITION DIPOLE MOMENT. OVERVIEW OF SELECTION RULES) Subject Chemistry Paper No and Title Module No and Title Module Tag 8 and Physical Spectroscopy 5 and Transition probabilities and transition dipole moment, Overview of selection rules CHE_P8_M5 TABLE

More information

IR Spectrography - Absorption. Raman Spectrography - Scattering. n 0 n M - Raman n 0 - Rayleigh

IR Spectrography - Absorption. Raman Spectrography - Scattering. n 0 n M - Raman n 0 - Rayleigh RAMAN SPECTROSCOPY Scattering Mid-IR and NIR require absorption of radiation from a ground level to an excited state, requires matching of radiation from source with difference in energy states. Raman

More information

Shapes of molecules, hybrid orbitals and symmetry descriptions

Shapes of molecules, hybrid orbitals and symmetry descriptions Shapes of molecules, hybrid orbitals and symmetry descriptions Lectures 10/11 2017 362 Spring term Some of these ppt slides from Dr. Oleg Ozerov s lecture in 2014 Lewis Structures A bond between two atoms

More information

Molecular structure and bonding

Molecular structure and bonding Chemistry 481(01) Spring 2017 Instructor: Dr. Upali Siriwardane e-mail: upali@latech.edu Office: CTH 311 Phone 257-4941 Office Hours: M,W 8:00-9:00 & 11:00-12:00 am; Tu,Th, F 9:30-11:30 a.m. April 4, 2017:

More information

Problem Set 2 Due Thursday, October 1, & & & & # % (b) Construct a representation using five d orbitals that sit on the origin as a basis:

Problem Set 2 Due Thursday, October 1, & & & & # % (b) Construct a representation using five d orbitals that sit on the origin as a basis: Problem Set 2 Due Thursday, October 1, 29 Problems from Cotton: Chapter 4: 4.6, 4.7; Chapter 6: 6.2, 6.4, 6.5 Additional problems: (1) Consider the D 3h point group and use a coordinate system wherein

More information

MOLECULAR SYMMETRY. Molecular Symmetry. Molecular Symmetry. Molecular Symmetry. Molecular Symmetry. Molecular Symmetry 11/5/2018

MOLECULAR SYMMETRY. Molecular Symmetry. Molecular Symmetry. Molecular Symmetry. Molecular Symmetry. Molecular Symmetry 11/5/2018 MLECULAR YMMETRY Bundet Boekfa Chem Div, Faculty Lib Arts & ci Kasetsart University Kamphaeng aen Campus 1 (b) The groups C n, C nv, and C nh bjects that in addition to the identity and an nfold principal

More information

LECTURE 2 DEGENERACY AND DESCENT IN SYMMETRY: LIGAND FIELD SPLITTINGS AND RELATED MATTERS

LECTURE 2 DEGENERACY AND DESCENT IN SYMMETRY: LIGAND FIELD SPLITTINGS AND RELATED MATTERS SYMMETRY II. J. M. GOICOECHEA. LECTURE 2. 1 LECTURE 2 DEGENERACY AND DESCENT IN SYMMETRY: LIGAND FIELD SPLITTINGS AND RELATED MATTERS 2.1 Degeneracy When dealing with non-degenerate symmetry adapted wavefunctions

More information

Chapter 4. Molecular Structure and Orbitals

Chapter 4. Molecular Structure and Orbitals Chapter 4 Molecular Structure and Orbitals Chapter 4 Table of Contents (4.1) (4.2) (4.3) (4.4) (4.5) (4.6) (4.7) Molecular structure: The VSEPR model Bond polarity and dipole moments Hybridization and

More information

Problem Set 2 Due Tuesday, September 27, ; p : 0. (b) Construct a representation using five d orbitals that sit on the origin as a basis: 1

Problem Set 2 Due Tuesday, September 27, ; p : 0. (b) Construct a representation using five d orbitals that sit on the origin as a basis: 1 Problem Set 2 Due Tuesday, September 27, 211 Problems from Carter: Chapter 2: 2a-d,g,h,j 2.6, 2.9; Chapter 3: 1a-d,f,g 3.3, 3.6, 3.7 Additional problems: (1) Consider the D 4 point group and use a coordinate

More information

Vibrational Spectroscopy

Vibrational Spectroscopy Vibrational Spectroscopy In this part of the course we will look at the kind of spectroscopy which uses light to excite the motion of atoms. The forces required to move atoms are smaller than those required

More information

Chapter 5 Equations for Wave Function

Chapter 5 Equations for Wave Function Chapter 5 Equations for Wave Function In very simple cases, the explicit expressions for the SALCs could be deduced by inspection, but not for complicated system. It would be useful for cases like these

More information

Physical Chemistry - Problem Drill 15: Vibrational and Rotational Spectroscopy

Physical Chemistry - Problem Drill 15: Vibrational and Rotational Spectroscopy Physical Chemistry - Problem Drill 15: Vibrational and Rotational Spectroscopy No. 1 of 10 1. Internal vibration modes of a molecule containing N atoms is made up of the superposition of 3N-(5 or 6) simple

More information

b) For this ground state, obtain all possible J values and order them from lowest to highest in energy.

b) For this ground state, obtain all possible J values and order them from lowest to highest in energy. Problem 1 (2 points) Part A Consider a free ion with a d 3 electronic configuration. a) By inspection, obtain the term symbol ( 2S+1 L) for the ground state. 4 F b) For this ground state, obtain all possible

More information

b) For this ground state, obtain all possible J values and order them from lowest to highest in energy.

b) For this ground state, obtain all possible J values and order them from lowest to highest in energy. Problem 1 (2 points) Part A Consider a free ion with a d 3 electronic configuration. a) By inspection, obtain the term symbol ( 2S+1 L) for the ground state. 4 F b) For this ground state, obtain all possible

More information

Chem 673, Problem Set 5 Due Thursday, December 1, 2005

Chem 673, Problem Set 5 Due Thursday, December 1, 2005 otton, Problem 9.3 (assume D 4h symmetry) Additional Problems: hem 673, Problem Set 5 Due Thursday, December 1, 2005 (1) Infrared and Raman spectra of Benzene (a) Determine the symmetries (irreducible

More information

13, Applications of molecular symmetry and group theory

13, Applications of molecular symmetry and group theory Subject Paper No and Title Module No and Title Module Tag Chemistry 13, Applications of molecular symmetry and group theory 27, Group theory and vibrational spectroscopy: Part-IV(Selection rules for IR

More information

Molecular Orbitals in Inorganic Chemistry. Dr. P. Hunt Rm 167 (Chemistry)

Molecular Orbitals in Inorganic Chemistry. Dr. P. Hunt Rm 167 (Chemistry) Molecular Orbitals in Inorganic Chemistry Dr. P. unt p.hunt@imperial.ac.uk Rm 167 (Chemistry) http://www.ch.ic.ac.uk/hunt/ Resources Web notes AND slides link to panopto when it becomes available model

More information

5.4. Electronic structure of water

5.4. Electronic structure of water 5.4. Electronic structure of water Water belongs to C 2v point group, we have discussed the corresponding character table. Here it is again: C 2v E C 2 σ v (yz) σ v (xz) A 1 1 1 1 1 A 2 1 1-1 -1 B 1 1-1

More information

Introduction to Molecular Vibrations and Infrared Spectroscopy

Introduction to Molecular Vibrations and Infrared Spectroscopy hemistry 362 Spring 2017 Dr. Jean M. Standard February 15, 2017 Introduction to Molecular Vibrations and Infrared Spectroscopy Vibrational Modes For a molecule with N atoms, the number of vibrational modes

More information

Mo 2+, Mo 2+, Cr electrons. Mo-Mo quadruple bond.

Mo 2+, Mo 2+, Cr electrons. Mo-Mo quadruple bond. Problem 1 (2 points) 1. Consider the MoMoCr heterotrimetallic complex shown below (Berry, et. al. Inorganica Chimica Acta 2015, p. 241). Metal-metal bonds are not drawn. The ligand framework distorts this

More information

Symmetry Operations and Elements

Symmetry Operations and Elements Symmetry Operations and Elements The goal for this section of the course is to understand how symmetry arguments can be applied to solve physical problems of chemical interest. To achieve this goal we

More information

130 points on 6 pages + a useful page 7

130 points on 6 pages + a useful page 7 Name KEY Chemistry 350 Spring 2012 Exam #2, March 30, 2012 50 minutes 130 points on 6 pages + a useful page 7 1. Circle the element/compound most likely to have the desired property. Briefly explain your

More information

Final Exam. Chemistry 639 Thursday, May 9, 2002

Final Exam. Chemistry 639 Thursday, May 9, 2002 inal Exam Your ame: Chemistry 639 Thursday, May 9, 00 SS This is your final exam. You can use your notes or a textbook but cannot discuss anything with other students. You have 3 hours to complete the

More information

Chem Symmetry and Introduction to Group Theory. Symmetry is all around us and is a fundamental property of nature.

Chem Symmetry and Introduction to Group Theory. Symmetry is all around us and is a fundamental property of nature. Symmetry and Introduction to Group Theory Symmetry is all around us and is a fundamental property of nature. Symmetry and Introduction to Group Theory The term symmetry is derived from the Greek word symmetria

More information

Molecular Spectroscopy. January 24, 2008 Introduction to Group Theory and Molecular Groups

Molecular Spectroscopy. January 24, 2008 Introduction to Group Theory and Molecular Groups Molecular Spectroscopy January 24, 2008 Introduction to Group Theory and Molecular Groups Properties that define a group A group is a collection of elements that are interrelated based on certain rules

More information

Molecular Geometry. Valence Shell Electron Pair. What Determines the Shape of a Molecule? Repulsion Theory (VSEPR) Localized Electron Model

Molecular Geometry. Valence Shell Electron Pair. What Determines the Shape of a Molecule? Repulsion Theory (VSEPR) Localized Electron Model Molecular Geometry Learn Shapes you will Because the physical and chemical properties of compounds are tied to their structures, the importance of molecular geometry can not be overstated. Localized Electron

More information

Chemistry 2. Assumed knowledge

Chemistry 2. Assumed knowledge Chemistry 2 Lecture 8 IR Spectroscopy of Polyatomic Molecles Assumed knowledge There are 3N 6 vibrations in a non linear molecule and 3N 5 vibrations in a linear molecule. Only modes that lead to a change

More information

Construction of the C 2v character table

Construction of the C 2v character table Construction of the C 2v character table The character table C 2v has the following form: C 2v E C 2 σ v (xz) σ v '(yz) Α 1 1 1 1 1 z x 2, y 2, z 2 Α 2 1 1-1 -1 R z xy Β 1 1-1 1-1 x, R y xz Β 2 1-1 -1

More information

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy Spectroscopy in Inorganic Chemistry Vibrational energy levels in a diatomic molecule f = k r r V = ½kX 2 Force constant r Displacement from equilibrium point 2 X= r=r-r eq V = ½kX 2 Fundamental Vibrational

More information

CHEM- 457: Inorganic Chemistry

CHEM- 457: Inorganic Chemistry CHEM- 457: Inorganic Chemistry Midterm I March 13 th, 2014 NAME This exam is comprised of six questions and is ten pages in length. Please be sure that you have a complete exam and place your name on each

More information

This content has been downloaded from IOPscience. Please scroll down to see the full text.

This content has been downloaded from IOPscience. Please scroll down to see the full text. This content has been downloaded from IOPscience. Please scroll down to see the full text. Download details: IP Address: 148.251.232.83 This content was downloaded on 09/05/2018 at 17:30 Please note that

More information

Chapter 4 Symmetry and Chemical Bonding

Chapter 4 Symmetry and Chemical Bonding Chapter 4 Symmetry and Chemical Bonding 4.1 Orbital Symmetries and Overlap 4.2 Valence Bond Theory and Hybrid Orbitals 4.3 Localized and Delocalized Molecular Orbitals 4.4 MX n Molecules with Pi-Bonding

More information

16.1 Molecular Vibrations

16.1 Molecular Vibrations 16.1 Molecular Vibrations molecular degrees of freedom are used to predict the number of vibrational modes vibrations occur as coordinated movement among many nuclei the harmonic oscillator approximation

More information

INTRODUCTION. Fig. 1.1

INTRODUCTION. Fig. 1.1 1 INTRODUCTION 1.1 SYMMETRY: AN INTRODUCTION In nature, when we see the fascinating world of plants, flowers, birds, architectural buildings (Lotus Temple of Delhi, Taj Mahal, Ashoka Pillar, Rastrapati

More information

Determining the Normal Modes of Vibration

Determining the Normal Modes of Vibration Determining the ormal Modes of Vibration Introduction vibrational modes of ammonia are shown below! 1 A 1 ) symmetric stretch! A 1 ) symmetric bend! 3a E) degenerate stretch Figure 1 Vibrational modes!

More information

Hints on Using the Orca Program

Hints on Using the Orca Program Computational Chemistry Workshops West Ridge Research Building-UAF Campus 9:00am-4:00pm, Room 009 Electronic Structure - July 19-21, 2016 Molecular Dynamics - July 26-28, 2016 Hints on Using the Orca Program

More information

PAPER No.13 :Applications of molecular symmetry and group theory Module No.35: Symmetry and chemical bonding part-6 MO

PAPER No.13 :Applications of molecular symmetry and group theory Module No.35: Symmetry and chemical bonding part-6 MO 1 Subject Chemistry Paper No and Title 13: Applications of molecular symmetry and group theory Module No and Title 35: Symmetry and chemical bonding part-v MO Module Tag CHE_P13_M35 2 TABLE O CONTENTS

More information

Molecular symmetry. An introduction to symmetry analysis

Molecular symmetry. An introduction to symmetry analysis Molecular symmetry 6 Symmetry governs te bonding and ence te pysical and spectroscopic properties of molecules In tis capter we explore some of te consequences of molecular symmetry and introduce te systematic

More information

The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then

The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then 1 The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then filled with the available electrons according to

More information

Molecular Symmetry. DAVID J. WILLOCK Cardiff University. A John Wiley and Sons, Ltd, Publication

Molecular Symmetry. DAVID J. WILLOCK Cardiff University. A John Wiley and Sons, Ltd, Publication Molecular Symmetry DAVID J. WILLOCK Cardiff University A John Wiley and Sons, Ltd, Publication Molecular Symmetry Molecular Symmetry DAVID J. WILLOCK Cardiff University A John Wiley and Sons, Ltd, Publication

More information

Lecture 8. Assumed knowledge

Lecture 8. Assumed knowledge Chemistry 2 Lecture 8 IR Spectroscopy of Polyatomic Molecles Assumed knowledge There are 3N 6 vibrations in a non linear molecule and 3N 5 vibrations in a linear molecule. Only modes that lead to a change

More information

Other Crystal Fields

Other Crystal Fields Other Crystal Fields! We can deduce the CFT splitting of d orbitals in virtually any ligand field by " Noting the direct product listings in the appropriate character table to determine the ways in which

More information