PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE NO. : 23 (NORMAL MODES AND IRREDUCIBLE REPRESENTATIONS FOR POLYATOMIC MOLECULES)

Size: px
Start display at page:

Download "PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE NO. : 23 (NORMAL MODES AND IRREDUCIBLE REPRESENTATIONS FOR POLYATOMIC MOLECULES)"

Transcription

1 Subject Chemistry Paper No and Title Module No and Title Module Tag 8/ Physical Spectroscopy 23/ Normal modes and irreducible representations for polyatomic molecules CHE_P8_M23

2 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Vibrational Modes of Molecules 4. Summary

3 1. Learning Outcomes After going through this module, you should be able to: (a) Visualize the vibrations of linear and bent triatomic molecules. (b) Assign the normal modes to irreducible representations. 2. Introduction Diatomic molecules possess one mode of vibration, i.e. stretching. Polyatomic molecules have many more bonds, bond angles and torsions, so that there are many more modes of vibration. It is often difficult to visualize these normal modes. Group Theory not only helps in determining the modes of vibration, but it also helps in finding out which of these is infrared active. 3. Vibrational Modes of Molecules Vibrations in molecules comprise changes in bond lengths and/or bond angles and dihedral angles. An N-atomic molecule has 3N degrees of freedom since each atom needs three coordinates to define its position completely. Three of these are independent degrees of translational motion in the three directions. Three others comprise rotational motion, leaving a total of 3N - 6 vibrational degrees of freedom. However, linear molecules have only two rotational degrees of freedom since rotation about the internuclear axis has zero moment of inertia. This leaves 3N 5 vibrational degrees of freedom for linear molecules. Let us now have a look at the vibrations of two triatomic molecules. EXAMPLES 1. The H 2 O molecule This molecule has three atoms and is nonlinear, hence it has (3 3-6) = 3 modes of vibrational motion. There are two bonds, so there should be two stretching modes. Either the two bonds should be stretching at the same time, or one should compress while the other stretches. The first is called symmetric stretch (ν 1 ) and the other is the antisymmetric stretch (ν 3 ). There is also one bond angle and hence one bending mode (ν 2 ). These are depicted in Figure 1.

4 Note that the bending mode is at a lower frequency because it is easier to bend a molecule than to stretch a bond. O O O H H H H H H ν 1 ν 2 ν cm cm cm -1 Figure 1: Vibrational modes of water For diatomic molecules, the only mode of vibration has symmetry Σ g + (homonuclear) or Σ + (heteronuclear). Let us see if the normal modes of water also form bases for irreducible representations of the C 2v point group to which the molecule belongs. The symmetry elements of water are as follows: C 2v E C 2 (z) σ v (xz) σ v (yz) A Z x 2, y 2, z 2 A R z xy B x, R y xz B y, R x yz With this convention, we find that the first two vibrations transform as A 1 and the third as B 2. For example, the result of a C 2 operation on ν 2 and ν 3 is as under: C O 2 O H H H H ν 2 ν 2

5 H O H C 2 H O H ν 3 ν 3 ꞌ and the character of C 2 is +1 for ν 2 and -1 for ν 3, since the arrows change direction for ν 3, i.e. ν 3 ꞌ = -ν 3. The vibrations are labelled with the highest symmetry first, or in the order they appear in the character table. Here, the first two vibrations transform as A 1 (most symmetrical), where the one with the higher frequency (symmetric stretch) is labelled as ν 1 and the other one (bending mode) as ν 2. The asymmetric stretch is labelled as ν 3. The vibrational motion that occurs for the three vibrational modes of water is shown in Figure 2. Water, being a nonlinear triatomic molecule, has a nonzero equilibrium dipole moment. During the symmetric stretching mode, the dipole moment increases when the bond stretches, and decreases when the bond contracts. Thus, the dipole moment changes during the vibration and the symmetric stretching mode is infrared active. -Q Q = 0 +Q Symmetric stretching mode ν 1 Bending mode ν 2 Antisymmetric stretching mode ν 3 Figure 2: Vibrational modes of water

6 In the bending mode, the dipole moment reduces when the bond angle increases (left) and increases when the angle becomes smaller. Hence, this mode is also infrared active. In the antisymmetric stretch, the dipole moment vector changes direction from the two-fold axis to the left or right as the molecule vibrates, and thus this mode is also infrared active. Therefore, all three bands should be infrared active. The infrared spectrum of liquid water is shown in Figure 3. Figure 3: The infrared spectrum of liquid water (from webbook.nist.gov)

7 The small peak near 1600 cm -1 corresponds to the bending mode, whereas the broad peak corresponds to the two symmetric stretches, which are close in frequency. Figure 4: The gas phase infrared spectrum of water (from webbook.nist.gov) The gas phase spectrum has many more features (Fig. 4). This is because the rotational fine structure is lost in the liquid phase where the molecules are too close to each other for rotation to be possible. The rotational fine structure is clearly visible in the bending mode at 1595 cm The CO 2 molecule This one is also triatomic, but linear and has (3 3-5) = 4 modes of vibrational motion (Fig. 5).

8 Figure 5: Vibrational modes of CO 2 Carbon dioxide belongs to the D h point group. The character table is shown below: On examination of the symmetric stretch, we find that under the various operations of the point group it transforms as: and hence forms a basis for the Σ g + representation. Similarly, the asymmetric stretch transforms as Σ u + as shown below. The bending modes (Fig. 5) transform as the doubly degenerate Π u representation. Since carbon dioxide is a linear, symmetric molecule, it has no dipole moment. In the symmetric stretching mode, either the two C=O bonds stretch or contract simultaneously. This does not break the symmetry of the charge distribution and this vibration is infrared inactive. CO 2 has two IR active bending modes: the in-plane and the out-of-plane bending of the carbon-oxygen bonds.

9 When the molecule bends, the molecule starts resembling water and acquires a dipole moment. This dipole moment is in a direction perpendicular to the bond axis and this mode is thus infrared active. In the antisymmetric stretch, one bond stretches while the other is compressed and vice versa. There is thus a periodic alteration in the dipole moment and the vibrational mode is also IR active. ν 1 -Q Q = 0 +Q Symmetric stretching mode Bending mode ν 2 ν 3 Asymmetric stretching mode Figure 6: The vibrational modes of carbon dioxide The modes are numbered in the same way as bent molecules: ν 1 = symmetric stretch, ν 2 = bending mode, ν 3 = antisymmetric stretch. Carbon dioxide thus has three infrared active modes, the two bending modes and an antisymmetric stretch. However, since the two bending modes are degenerate, only two absorptions should be observed. Part of the infrared spectrum of carbon dioxide is shown in Figure 7.

10 Figure 7: The infrared spectrum of carbon dioxide (from webbook.nist.gov) The peak at 673 cm -1 is due to the degenerate bending modes. The one at 2350 cm -1 corresponds to the antisymmetric stretching mode. The small peaks at high wavenumber are due to combination bands (simultaneous excitation of two or more vibration modes). These peaks have a distinctive shape, called PR contour, which is encountered in diatomic molecules. In fact, this is a characteristic of all linear molecules. The appearance of a PR contour in the IR spectrum of a molecule confirms that the molecule is linear. The contour of the bending mode is also distinctive and called a PQR contour. We have already stated that the dipole moment change for this mode is perpendicular to the bond axis. Such modes are called perpendicular ( ) modes as opposed to parallel ( ) modes where the dipole moment change is parallel to the bond axis, such as the antisymmetric stretching mode. The rotational selection rules also differ for the two modes. For the perpendicular mode, the selection rule is J = 0, ±1, i.e. we can observe a pure vibrational transition, whereas for parallel modes, the selection rule is J = ±1, i.e. a vibrational transition has to be accompanied by a rotational transition. For the fundamental υ = 0 1 transition, the transition wavenumber is given by ~ ν S ( υ') S( υ") = F( J') + G( υ') F( J") G( υ") = ω (1 2x ) = ω (1) spectral = e e 0 where we have substituted Jꞌ = J, υꞌ = 1 and υ = 0 in the expressions for the rotational and vibrational terms. This equation is valid for all J values. Thus, the Q branch consists of coincident

11 lines at the band centre, and we expect a very intense line at the band centre. However, as shown in Figure 8, the Q-branch appears as a somewhat broad absorption centered around ω 0. Figure 8: PQR band contour This is due to the difference in the rotational constants for the ground and excited vibrational ~ ~ levels. On writing B " and B ', respectively, for the two rotational constants, equation (1) gets modified to ~ ~ ~ ν = ω + ( B' B") J"( J" 1) (2) spectral 0 + ~ ~ The second term is slightly negative since B " > B ', and increases with increasing J. This explains the slight shift to the left with increasing J. In summary, the infrared spectrum of carbon dioxide shows two bands, one bending mode at 667 cm -1 with a PQR contour, and another at 2350 cm -1 showing a PR contour, corresponding to the asymmetric stretch motion. We may now define normal modes as independent, harmonic vibrations which: 1. leave the centre of mass unmoved; 2. involve all atoms moving in phase (coherent motion);

12 3. transform as an irreducible representation of the molecular point group. 4. Summary In summary, The number of modes of vibration is 3N-6 for bent molecules and 3N-5 for linear molecules. Bending modes occur at lower frequency and antisymmetric stretches at the highest frequency. The modes of vibration are bases for the irreducible representations of the point group of the molecule. For linear molecules, parallel modes display a PR contour in the rotation-vibration spectra, and perpendicular modes display a PQR contour.

Introduction to Molecular Vibrations and Infrared Spectroscopy

Introduction to Molecular Vibrations and Infrared Spectroscopy hemistry 362 Spring 2017 Dr. Jean M. Standard February 15, 2017 Introduction to Molecular Vibrations and Infrared Spectroscopy Vibrational Modes For a molecule with N atoms, the number of vibrational modes

More information

Types of Molecular Vibrations

Types of Molecular Vibrations Important concepts in IR spectroscopy Vibrations that result in change of dipole moment give rise to IR absorptions. The oscillating electric field of the radiation couples with the molecular vibration

More information

V( x) = V( 0) + dv. V( x) = 1 2

V( x) = V( 0) + dv. V( x) = 1 2 Spectroscopy 1: rotational and vibrational spectra The vibrations of diatomic molecules Molecular vibrations Consider a typical potential energy curve for a diatomic molecule. In regions close to R e (at

More information

THEORY OF MOLECULE. A molecule consists of two or more atoms with certain distances between them

THEORY OF MOLECULE. A molecule consists of two or more atoms with certain distances between them THEORY OF MOLECULE A molecule consists of two or more atoms with certain distances between them through interaction of outer electrons. Distances are determined by sum of all forces between the atoms.

More information

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 5 (TRANSITION PROBABILITIES AND TRANSITION DIPOLE MOMENT. OVERVIEW OF SELECTION RULES)

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 5 (TRANSITION PROBABILITIES AND TRANSITION DIPOLE MOMENT. OVERVIEW OF SELECTION RULES) Subject Chemistry Paper No and Title Module No and Title Module Tag 8 and Physical Spectroscopy 5 and Transition probabilities and transition dipole moment, Overview of selection rules CHE_P8_M5 TABLE

More information

Chapter 6 Vibrational Spectroscopy

Chapter 6 Vibrational Spectroscopy Chapter 6 Vibrational Spectroscopy As with other applications of symmetry and group theory, these techniques reach their greatest utility when applied to the analysis of relatively small molecules in either

More information

24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability ellipsoid. Selection rules.

24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability ellipsoid. Selection rules. Subject Chemistry Paper No and Title Module No and Title Module Tag 8/ Physical Spectroscopy 24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability

More information

where, c is the speed of light, ν is the frequency in wave numbers (cm -1 ) and µ is the reduced mass (in amu) of A and B given by the equation: ma

where, c is the speed of light, ν is the frequency in wave numbers (cm -1 ) and µ is the reduced mass (in amu) of A and B given by the equation: ma Vibrational Spectroscopy A rough definition of spectroscopy is the study of the interaction of matter with energy (radiation in the electromagnetic spectrum). A molecular vibration is a periodic distortion

More information

16.1 Molecular Vibrations

16.1 Molecular Vibrations 16.1 Molecular Vibrations molecular degrees of freedom are used to predict the number of vibrational modes vibrations occur as coordinated movement among many nuclei the harmonic oscillator approximation

More information

13, Applications of molecular symmetry and group theory

13, Applications of molecular symmetry and group theory Subject Paper No and Title Module No and Title Module Tag Chemistry 13, Applications of molecular symmetry and group theory 27, Group theory and vibrational spectroscopy: Part-IV(Selection rules for IR

More information

Spectroscopic Selection Rules

Spectroscopic Selection Rules E 0 v = 0 v = 1 v = 2 v = 4 v = 3 For a vibrational fundamental (Δv = ±1), the transition will have nonzero intensity in either the infrared or Raman spectrum if the appropriate transition moment is nonzero.

More information

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 16 (CLASSIFICATION OF MOLECULES)

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 16 (CLASSIFICATION OF MOLECULES) Subject Chemistry Paper No and Title Module No and Title Module Tag 8: Physical Spectroscopy 16: Classification of Molecules CHE_P8_M16 TABLE OF CONTENTS 1. Learning Outcomes. Introduction 3. Classification

More information

Symmetry: Translation and Rotation

Symmetry: Translation and Rotation Symmetry: Translation and Rotation The sixth column of the C 2v character table indicates the symmetry species for translation along (T) and rotation about (R) the Cartesian axes. y y y C 2 F v (x) T x

More information

Chemistry 2. Assumed knowledge

Chemistry 2. Assumed knowledge Chemistry 2 Lecture 8 IR Spectroscopy of Polyatomic Molecles Assumed knowledge There are 3N 6 vibrations in a non linear molecule and 3N 5 vibrations in a linear molecule. Only modes that lead to a change

More information

THE VIBRATIONAL SPECTRA OF A POLYATOMIC MOLECULE (Revised 3/27/2006)

THE VIBRATIONAL SPECTRA OF A POLYATOMIC MOLECULE (Revised 3/27/2006) THE VIBRATIONAL SPECTRA OF A POLYATOMIC MOLECULE (Revised 3/27/2006) 1) INTRODUCTION The vibrational motion of a molecule is quantized and the resulting energy level spacings give rise to transitions in

More information

THE VIBRATIONAL SPECTRUM OF A POLYATOMIC MOLECULE (Revised 4/7/2004)

THE VIBRATIONAL SPECTRUM OF A POLYATOMIC MOLECULE (Revised 4/7/2004) INTRODUCTION THE VIBRATIONAL SPECTRUM OF A POLYATOMIC MOLECULE (Revised 4/7/2004) The vibrational motion of a molecule is quantized and the resulting energy level spacings give rise to transitions in the

More information

CHM Physical Chemistry II Chapter 12 - Supplementary Material. 1. Einstein A and B coefficients

CHM Physical Chemistry II Chapter 12 - Supplementary Material. 1. Einstein A and B coefficients CHM 3411 - Physical Chemistry II Chapter 12 - Supplementary Material 1. Einstein A and B coefficients Consider two singly degenerate states in an atom, molecule, or ion, with wavefunctions 1 (for the lower

More information

Lecture 8. Assumed knowledge

Lecture 8. Assumed knowledge Chemistry 2 Lecture 8 IR Spectroscopy of Polyatomic Molecles Assumed knowledge There are 3N 6 vibrations in a non linear molecule and 3N 5 vibrations in a linear molecule. Only modes that lead to a change

More information

Molecular Symmetry. Symmetry is relevant to: spectroscopy, chirality, polarity, Group Theory, Molecular Orbitals

Molecular Symmetry. Symmetry is relevant to: spectroscopy, chirality, polarity, Group Theory, Molecular Orbitals Molecular Symmetry Symmetry is relevant to: spectroscopy, chirality, polarity, Group Theory, Molecular Orbitals - A molecule has a symmetry element if it is unchanged by a particular symmetry operation

More information

Vibrational Spectroscopy

Vibrational Spectroscopy Vibrational Spectroscopy In this part of the course we will look at the kind of spectroscopy which uses light to excite the motion of atoms. The forces required to move atoms are smaller than those required

More information

2. Infrared spectroscopy

2. Infrared spectroscopy 2. Infrared spectroscopy 2-1Theoretical principles An important tool of the organic chemist is Infrared Spectroscopy, or IR. IR spectra are acquired on a special instrument, called an IR spectrometer.

More information

Problem Set 5 Solutions

Problem Set 5 Solutions Chemistry 362 Dr Jean M Standard Problem Set 5 Solutions ow many vibrational modes do the following molecules or ions possess? [int: Drawing Lewis structures may be useful in some cases] In all of the

More information

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering Raman Spectroscopy What happens when light falls on a material? Transmission Reflection Absorption Luminescence Elastic Scattering Inelastic Scattering Raman, Fluorescence and IR Scattering Absorption

More information

( ) electron gives S = 1/2 and L = l 1

( ) electron gives S = 1/2 and L = l 1 Practice Modern Physics II, W018, Set 1 Question 1 Energy Level Diagram of Boron ion B + For neutral B, Z = 5 (A) Draw the fine-structure diagram of B + that includes all n = 3 states Label the states

More information

Symmetrical: implies the species possesses a number of indistinguishable configurations.

Symmetrical: implies the species possesses a number of indistinguishable configurations. Chapter 3 - Molecular Symmetry Symmetry helps us understand molecular structure, some chemical properties, and characteristics of physical properties (spectroscopy) used with group theory to predict vibrational

More information

Physical Chemistry - Problem Drill 15: Vibrational and Rotational Spectroscopy

Physical Chemistry - Problem Drill 15: Vibrational and Rotational Spectroscopy Physical Chemistry - Problem Drill 15: Vibrational and Rotational Spectroscopy No. 1 of 10 1. Internal vibration modes of a molecule containing N atoms is made up of the superposition of 3N-(5 or 6) simple

More information

B F N O. Chemistry 6330 Problem Set 4 Answers. (1) (a) BF 4. tetrahedral (T d )

B F N O. Chemistry 6330 Problem Set 4 Answers. (1) (a) BF 4. tetrahedral (T d ) hemistry 6330 Problem Set 4 Answers (1) (a) B 4 - tetrahedral (T d ) B T d E 8 3 3 2 6S 4 6s d G xyz 3 0-1 -1 1 G unmoved atoms 5 2 1 1 3 G total 15 0-1 -1 3 If we reduce G total we find that: G total

More information

Concept of a basis. Based on this treatment we can assign the basis to one of the irreducible representations of the point group.

Concept of a basis. Based on this treatment we can assign the basis to one of the irreducible representations of the point group. Concept of a basis A basis refers to a type of function that is transformed by the symmetry operations of a point group. Examples include the spherical harmonics, vectors, internal coordinates (e..g bonds,

More information

Chapter 3 Introduction to Molecular Symmetry

Chapter 3 Introduction to Molecular Symmetry CHEM 511 Chapter 3 page 1 of 12 Chapter 3 Introduction to Molecular Symmetry This chapter will deal with the symmetry characteristics of individual molecules, i.e., how molecules can be rotated or imaged

More information

Lecture 4: Polyatomic Spectra

Lecture 4: Polyatomic Spectra Lecture 4: Polyatomic Spectra 1. From diatomic to polyatomic Ammonia molecule A-axis. Classification of polyatomic molecules 3. Rotational spectra of polyatomic molecules N 4. Vibrational bands, vibrational

More information

Molecular Symmetry 10/25/2018

Molecular Symmetry 10/25/2018 Symmetry helps us understand molecular structure, some chemical properties, and characteristics of physical properties (spectroscopy). Predict IR spectra or Interpret UV-Vis spectra Predict optical activity

More information

6.2 Polyatomic Molecules

6.2 Polyatomic Molecules 6.2 Polyatomic Molecules 6.2.1 Group Vibrations An N-atom molecule has 3N - 5 normal modes of vibrations if it is linear and 3N 6 if it is non-linear. Lissajous motion A polyatomic molecule undergoes a

More information

Brief introduction to molecular symmetry

Brief introduction to molecular symmetry Chapter 1 Brief introduction to molecular symmetry It is possible to understand the electronic structure of diatomic molecules and their interaction with light without the theory of molecular symmetry.

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpenCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy and Dynamics Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Fall, 008

More information

Symmetry. Chemistry 481(01) Spring 2017 Instructor: Dr. Upali Siriwardane Office: CTH 311 Phone Office Hours:

Symmetry. Chemistry 481(01) Spring 2017 Instructor: Dr. Upali Siriwardane   Office: CTH 311 Phone Office Hours: Chemistry 481(01) Spring 2017 Instructor: Dr. Upali Siriwardane e-mail: upali@latech.edu Office: CT 311 Phone 257-4941 Office ours: M,W 8:00-9:00 & 11:00-12:00 am; Tu,Th, F 9:30-11:30 a.m. April 4, 2017:

More information

Chemistry 431. NC State University. Lecture 17. Vibrational Spectroscopy

Chemistry 431. NC State University. Lecture 17. Vibrational Spectroscopy Chemistry 43 Lecture 7 Vibrational Spectroscopy NC State University The Dipole Moment Expansion The permanent dipole moment of a molecule oscillates about an equilibrium value as the molecule vibrates.

More information

PAPER :8, PHYSICAL SPECTROSCOPY MODULE: 29, MOLECULAR TERM SYMBOLS AND SELECTION RULES FOR DIATOMIC MOLECULES

PAPER :8, PHYSICAL SPECTROSCOPY MODULE: 29, MOLECULAR TERM SYMBOLS AND SELECTION RULES FOR DIATOMIC MOLECULES Subject Chemistry Paper No and Title Module No and Title Module Tag 8: Physical Spectroscopy 29: Molecular Term Symbols and Selection Rules for Diatomic Molecules. CHE_P8_M29 TLE OF CONTENTS 1. Learning

More information

ATMOS 5140 Lecture 11 Chapter 9

ATMOS 5140 Lecture 11 Chapter 9 ATMS 5140 Lecture 11 hapter 9 Absorption by Atmospheric Gases Rotational Vibrational Applications Basis for Molecular Absorption/Emission hanges in the translational kinetic energy of molecules (i.e. temperature)

More information

Molecular orbitals, potential energy surfaces and symmetry

Molecular orbitals, potential energy surfaces and symmetry Molecular orbitals, potential energy surfaces and symmetry mathematical presentation of molecular symmetry group theory spectroscopy valence theory molecular orbitals Wave functions Hamiltonian: electronic,

More information

IR Spectrography - Absorption. Raman Spectrography - Scattering. n 0 n M - Raman n 0 - Rayleigh

IR Spectrography - Absorption. Raman Spectrography - Scattering. n 0 n M - Raman n 0 - Rayleigh RAMAN SPECTROSCOPY Scattering Mid-IR and NIR require absorption of radiation from a ground level to an excited state, requires matching of radiation from source with difference in energy states. Raman

More information

PAPER No.12 :Organic Spectroscopy MODULE No.30: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass - Part II

PAPER No.12 :Organic Spectroscopy MODULE No.30: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass - Part II Subject Chemistry Paper No and Title Module No and Title Module Tag 12 : rganic Spectroscopy 30: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass Part-II CHE_P12_M30 TABLE F CNTENTS 1. Learning utcomes

More information

Degrees of Freedom and Vibrational Modes

Degrees of Freedom and Vibrational Modes Degrees of Freedom and Vibrational Modes 1. Every atom in a molecule can move in three possible directions relative to a Cartesian coordinate, so for a molecule of n atoms there are 3n degrees of freedom.

More information

Rotational Raman Spectroscopy

Rotational Raman Spectroscopy Rotational Raman Spectroscopy If EM radiation falls upon an atom or molecule, it may be absorbed if the energy of the radiation corresponds to the separation of two energy levels of the atoms or molecules.

More information

Infrared Spectroscopy An Instrumental Method for Detecting Functional Groups

Infrared Spectroscopy An Instrumental Method for Detecting Functional Groups Infrared Spectroscopy An Instrumental Method for Detecting Functional Groups 1 The Electromagnetic Spectrum Infrared Spectroscopy I. Physics Review Frequency, υ (nu), is the number of wave cycles that

More information

13 Applications of molecular symmetry and group theory

13 Applications of molecular symmetry and group theory Subject Chemistry Paper No and Title Module No and Title Module Tag 13 Applications of molecular symmetry and 26 and and vibrational spectroscopy part-iii CHE_P13_M26 TABLE OF CONTENTS 1. Learning Outcomes

More information

Advanced Physical Chemistry Chemistry 5350 ROTATIONAL AND VIBRATIONAL SPECTROSCOPY

Advanced Physical Chemistry Chemistry 5350 ROTATIONAL AND VIBRATIONAL SPECTROSCOPY Advanced Physical Chemistry Chemistry 5350 ROTATIONAL AND VIBRATIONAL SPECTROSCOPY Professor Angelo R. Rossi http://homepages.uconn.edu/rossi Department of Chemistry, Room CHMT215 The University of Connecuticut

More information

Molecular energy levels and spectroscopy

Molecular energy levels and spectroscopy Molecular energy levels and spectroscopy 1. Translational energy levels The translational energy levels of a molecule are usually taken to be those of a particle in a three-dimensional box: n x E(n x,n

More information

Homework Assignment #3

Homework Assignment #3 Chemistry 12600 Spring 2016 Homework Assignment #3 1. Determine whether each of the following statements is true or false. If the statement is false, modify and rewrite it so that it is a true statement.

More information

Infrared Spectra of Triatomics CH342L: Spectroscopy February 18, 2016

Infrared Spectra of Triatomics CH342L: Spectroscopy February 18, 2016 Infrared Spectra of Triatomics CH342L: Spectroscopy February 18, 2016 Infrared (IR) spectroscopy the measurement and analysis of spectral patterns observed as different vibrational modes of molecules absorb

More information

MOLECULAR ENERGY LEVELS DR IMRANA ASHRAF

MOLECULAR ENERGY LEVELS DR IMRANA ASHRAF MOLECULAR ENERGY LEVELS DR IMRANA ASHRAF OUTLINE q q q q MOLECULE MOLECULAR ORBITAL THEORY MOLECULAR TRANSITIONS INTERACTION OF RADIATION WITH MATTER q TYPES OF MOLECULAR ENERGY LEVELS q MOLECULE q In

More information

4. Molecular spectroscopy. Basel, 2008

4. Molecular spectroscopy. Basel, 2008 4. Molecular spectroscopy Basel, 008 4.4.5 Fluorescence radiation The excited molecule: - is subject to collisions with the surrounding molecules and gives up energy by decreasing the vibrational levels

More information

LECTURE 3 DIRECT PRODUCTS AND SPECTROSCOPIC SELECTION RULES

LECTURE 3 DIRECT PRODUCTS AND SPECTROSCOPIC SELECTION RULES SYMMETRY II. J. M. GOICOECHEA. LECTURE 3 1 LECTURE 3 DIRECT PRODUCTS AND SPECTROSCOPIC SELECTION RULES 3.1 Direct products and many electron states Consider the problem of deciding upon the symmetry of

More information

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy Spectroscopy in Inorganic Chemistry Vibrational energy levels in a diatomic molecule f = k r r V = ½kX 2 Force constant r Displacement from equilibrium point 2 X= r=r-r eq V = ½kX 2 Fundamental Vibrational

More information

INFRARED ABSORPTION SPECTROSCOPY. References: See relevant sections in undergraduate text. Learn from your instructor how to use the spectrometer.

INFRARED ABSORPTION SPECTROSCOPY. References: See relevant sections in undergraduate text. Learn from your instructor how to use the spectrometer. INFRARED ABSORPTION SPECTROSCOPY References: See relevant sections in undergraduate text Background: Learn from your instructor how to use the spectrometer. Know definitions of the following and their

More information

Quote from Eugene Paul Wigner

Quote from Eugene Paul Wigner Quote from Eugene Paul Wigner See also: Current Science, vol. 69, no. 4, 25 August 1995, p. 375 From the preface to his book on group theory: Wigner relates a conversation with von Laue on the use of group

More information

Lecture 9 Electronic Spectroscopy

Lecture 9 Electronic Spectroscopy Lecture 9 Electronic Spectroscopy Molecular Orbital Theory: A Review - LCAO approximaton & AO overlap - Variation Principle & Secular Determinant - Homonuclear Diatomic MOs - Energy Levels, Bond Order

More information

Infrared Spectroscopy

Infrared Spectroscopy Infrared Spectroscopy The Interaction of Light with Matter Electric fields apply forces to charges, according to F = qe In an electric field, a positive charge will experience a force, but a negative charge

More information

Lecture 10 Diatomic Vibration Spectra Harmonic Model

Lecture 10 Diatomic Vibration Spectra Harmonic Model Chemistry II: Introduction to Molecular Spectroscopy Prof. Mangala Sunder Department of Chemistry and Biochemistry Indian Institute of Technology, Madras Lecture 10 Diatomic Vibration Spectra Harmonic

More information

Molecular spectroscopy Multispectral imaging (FAFF 020, FYST29) fall 2017

Molecular spectroscopy Multispectral imaging (FAFF 020, FYST29) fall 2017 Molecular spectroscopy Multispectral imaging (FAFF 00, FYST9) fall 017 Lecture prepared by Joakim Bood joakim.bood@forbrf.lth.se Molecular structure Electronic structure Rotational structure Vibrational

More information

Physical Chemistry II Exam 2 Solutions

Physical Chemistry II Exam 2 Solutions Chemistry 362 Spring 2017 Dr Jean M Standard March 10, 2017 Name KEY Physical Chemistry II Exam 2 Solutions 1) (14 points) Use the potential energy and momentum operators for the harmonic oscillator to

More information

NPTEL/IITM. Molecular Spectroscopy Lecture 2. Prof.K. Mangala Sunder Page 1 of 14. Lecture 2 : Elementary Microwave Spectroscopy. Topics.

NPTEL/IITM. Molecular Spectroscopy Lecture 2. Prof.K. Mangala Sunder Page 1 of 14. Lecture 2 : Elementary Microwave Spectroscopy. Topics. Lecture 2 : Elementary Microwave Spectroscopy Topics Introduction Rotational energy levels of a diatomic molecule Spectra of a diatomic molecule Moments of inertia for polyatomic molecules Polyatomic molecular

More information

Chemistry 543--Final Exam--Keiderling May 5, pm SES

Chemistry 543--Final Exam--Keiderling May 5, pm SES Chemistry 543--Final Exam--Keiderling May 5,1992 -- 1-5pm -- 174 SES Please answer all questions in the answer book provided. Make sure your name is clearly indicated and that the answers are clearly numbered,

More information

Symmetric Stretch: allows molecule to move through space

Symmetric Stretch: allows molecule to move through space BACKGROUND INFORMATION Infrared Spectroscopy Before introducing the subject of IR spectroscopy, we must first review some aspects of the electromagnetic spectrum. The electromagnetic spectrum is composed

More information

Molecular Structure & Spectroscopy Friday, February 4, 2010

Molecular Structure & Spectroscopy Friday, February 4, 2010 Molecular Structure & Spectroscopy Friday, February 4, 2010 CONTENTS: 1. Introduction 2. Diatomic Molecules A. Electronic structure B. Rotation C. Vibration D. Nuclear spin 3. Radiation from Diatomic Molecules

More information

CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions

CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions I. General Features of Electronic spectroscopy. A. Visible and ultraviolet photons excite electronic state transitions. ε photon = 120 to 1200

More information

NPTEL/IITM. Molecular Spectroscopy Lectures 1 & 2. Prof.K. Mangala Sunder Page 1 of 15. Topics. Part I : Introductory concepts Topics

NPTEL/IITM. Molecular Spectroscopy Lectures 1 & 2. Prof.K. Mangala Sunder Page 1 of 15. Topics. Part I : Introductory concepts Topics Molecular Spectroscopy Lectures 1 & 2 Part I : Introductory concepts Topics Why spectroscopy? Introduction to electromagnetic radiation Interaction of radiation with matter What are spectra? Beer-Lambert

More information

5.3 Rotational Raman Spectroscopy General Introduction

5.3 Rotational Raman Spectroscopy General Introduction 5.3 Rotational Raman Spectroscopy 5.3.1 General Introduction When EM radiation falls on atoms or molecules, it may be absorbed or scattered. If λis unchanged, the process is referred as Rayleigh scattering.

More information

Infrared spectroscopy Basic theory

Infrared spectroscopy Basic theory Infrared spectroscopy Basic theory Dr. Davide Ferri Paul Scherrer Institut 056 310 27 81 davide.ferri@psi.ch Importance of IR spectroscopy in catalysis IR Raman NMR XAFS UV-Vis EPR 0 200 400 600 800 1000

More information

Group Theory and Vibrational Spectroscopy

Group Theory and Vibrational Spectroscopy Group Theory and Vibrational Spectroscopy Pamela Schleissner Physics 251 Spring 2017 Outline Molecular Symmetry Representations of Molecular Point Groups Group Theory and Quantum Mechanics Vibrational

More information

Lambert Beer s law. where, K=Molar Absorption Coefficient C=Concentration of the Solution & I=Intensity of light. di = dx

Lambert Beer s law. where, K=Molar Absorption Coefficient C=Concentration of the Solution & I=Intensity of light. di = dx Lambert Beer s law When the beam of monochromatic radiations is passed through a homogeneous absorbing solution, the rate of decrease of intensity,with thickness of absorbing medium is proportional to

More information

Chapter 6. Molecular Symmetry An introduction to symmetry analysis. M.C. Escherand Symmetry Drawings

Chapter 6. Molecular Symmetry An introduction to symmetry analysis. M.C. Escherand Symmetry Drawings CHEM481 Chapter 6 Page 1 of 71 Chapter 6. Molecular Symmetry An introduction to symmetry analysis. M.C. Escherand Symmetry Drawings M.C. Escher has uncommon visions and intuitions. Many of Escher's drawings

More information

WEBSITE DATA FOR CHAPTER 6

WEBSITE DATA FOR CHAPTER 6 66 WEBSITE DATA FOR CHAPTER 6 Spectroscopic Identification of Organic Compounds by Infared Spectroscopy I. INTRODUCTION NOTE. It should be pointed out that a reciprocal centimeter is not a unit of frequency.

More information

Chem 442 Review of Spectroscopy

Chem 442 Review of Spectroscopy Chem 44 Review of Spectroscopy General spectroscopy Wavelength (nm), frequency (s -1 ), wavenumber (cm -1 ) Frequency (s -1 ): n= c l Wavenumbers (cm -1 ): n =1 l Chart of photon energies and spectroscopies

More information

Determining the Normal Modes of Vibration

Determining the Normal Modes of Vibration Determining the ormal Modes of Vibration Introduction vibrational modes of ammonia are shown below! 1 A 1 ) symmetric stretch! A 1 ) symmetric bend! 3a E) degenerate stretch Figure 1 Vibrational modes!

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpenCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.80 Lecture

More information

VIBRATION-ROTATION SPECTRUM OF CO

VIBRATION-ROTATION SPECTRUM OF CO Rice University Physics 332 VIBRATION-ROTATION SPECTRUM OF CO I. INTRODUCTION...2 II. THEORETICAL CONSIDERATIONS...3 III. MEASUREMENTS...8 IV. ANALYSIS...9 April 2011 I. Introduction Optical spectroscopy

More information

William H. Brown & Christopher S. Foote

William H. Brown & Christopher S. Foote Requests for permission to make copies of any part of the work should be mailed to:permissions Department, Harcourt Brace & Company, 6277 Sea Harbor Drive, Orlando, Florida 32887-6777 William H. Brown

More information

Vibrational states of molecules. Diatomic molecules Polyatomic molecules

Vibrational states of molecules. Diatomic molecules Polyatomic molecules Vibrational states of molecules Diatomic molecules Polyatomic molecules Diatomic molecules V v 1 v 0 Re Q Birge-Sponer plot The solution of the Schrödinger equation can be solved analytically for the

More information

CHAPTER 13 LECTURE NOTES

CHAPTER 13 LECTURE NOTES CHAPTER 13 LECTURE NOTES Spectroscopy is concerned with the measurement of (a) the wavelengths (or frequencies) at which molecules absorb/emit energy, and (b) the amount of radiation absorbed at these

More information

PAPER No. 12: ORGANIC SPECTROSCOPY MODULE No. 4: Basic principles and Instrumentation for IR spectroscopy

PAPER No. 12: ORGANIC SPECTROSCOPY MODULE No. 4: Basic principles and Instrumentation for IR spectroscopy Subject Chemistry Paper No and Title Module No and Title Module Tag Paper 12: Organic Spectroscopy Module 4: Basic principles and Instrumentation for IR spectroscopy CHE_P12_M4_e-Text TABLE OF CONTENTS

More information

Exercises 16.3a, 16.5a, 16.13a, 16.14a, 16.21a, 16.25a.

Exercises 16.3a, 16.5a, 16.13a, 16.14a, 16.21a, 16.25a. SPECTROSCOPY Readings in Atkins: Justification 13.1, Figure 16.1, Chapter 16: Sections 16.4 (diatomics only), 16.5 (omit a, b, d, e), 16.6, 16.9, 16.10, 16.11 (omit b), 16.14 (omit c). Exercises 16.3a,

More information

Electronic transitions: Vibrational and rotational structure

Electronic transitions: Vibrational and rotational structure Electronic transitions: Vibrational and rotational structure An electronic transition is made up of vibrational bands, each of which is in turn made up of rotational lines Vibrational structure Vibrational

More information

Infrared Spectroscopy: Identification of Unknown Substances

Infrared Spectroscopy: Identification of Unknown Substances Infrared Spectroscopy: Identification of Unknown Substances Suppose a white powder is one of the four following molecules. How can they be differentiated? H N N H H H H Na H H H H H A technique that is

More information

Also interested only in internal energies Uel (R) only internal forces, has symmetry of molecule--that is source of potential.

Also interested only in internal energies Uel (R) only internal forces, has symmetry of molecule--that is source of potential. IV. Molecular Vibrations IV-1 As discussed solutions, ψ, of the amiltonian, (Schrödinger Equation) must be representations of the group of the molecule i.e. energy cannot change due to a symmetry operation,

More information

Chemistry 795T. NC State University. Lecture 4. Vibrational and Rotational Spectroscopy

Chemistry 795T. NC State University. Lecture 4. Vibrational and Rotational Spectroscopy Chemistry 795T Lecture 4 Vibrational and Rotational Spectroscopy NC State University The Dipole Moment Expansion The permanent dipole moment of a molecule oscillates about an equilibrium value as the molecule

More information

eigenvalues eigenfunctions

eigenvalues eigenfunctions Born-Oppenheimer Approximation Atoms and molecules consist of heavy nuclei and light electrons. Consider (for simplicity) a diatomic molecule (e.g. HCl). Clamp/freeze the nuclei in space, a distance r

More information

Raman and stimulated Raman spectroscopy of chlorinated hydrocarbons

Raman and stimulated Raman spectroscopy of chlorinated hydrocarbons Department of Chemistry Physical Chemistry Göteborg University KEN140 Spektroskopi Raman and stimulated Raman spectroscopy of chlorinated hydrocarbons WARNING! The laser gives a pulsed very energetic and

More information

Introduction to Vibrational Spectroscopy

Introduction to Vibrational Spectroscopy Introduction to Vibrational Spectroscopy Harmonic oscillators The classical harmonic oscillator The uantum mechanical harmonic oscillator Harmonic approximations in molecular vibrations Vibrational spectroscopy

More information

Vibrational-Rotational Spectroscopy. Spectroscopy

Vibrational-Rotational Spectroscopy. Spectroscopy Applied Spectroscopy Vibrational-Rotational Spectroscopy Recommended Reading: Banwell and McCash Section 3.2, 3.3 Atkins Section 6.2 Harmonic oscillator vibrations have the exact selection rule: and the

More information

A very brief history of the study of light

A very brief history of the study of light 1. Sir Isaac Newton 1672: A very brief history of the study of light Showed that the component colors of the visible portion of white light can be separated through a prism, which acts to bend the light

More information

Chemistry 5325/5326. Angelo R. Rossi Department of Chemistry The University of Connecticut. January 17-24, 2012

Chemistry 5325/5326. Angelo R. Rossi Department of Chemistry The University of Connecticut. January 17-24, 2012 Symmetry and Group Theory for Computational Chemistry Applications Chemistry 5325/5326 Angelo R. Rossi Department of Chemistry The University of Connecticut angelo.rossi@uconn.edu January 17-24, 2012 Infrared

More information

All measurement has a limit of precision and accuracy, and this must be taken into account when evaluating experimental results.

All measurement has a limit of precision and accuracy, and this must be taken into account when evaluating experimental results. Chapter 11: Measurement and data processing and analysis 11.1 Uncertainty and error in measurement and results All measurement has a limit of precision and accuracy, and this must be taken into account

More information

Content. 1. Overview of molecular spectra 2. Rotational spectra 3. Vibrational spectra 4. Electronic spectra

Content. 1. Overview of molecular spectra 2. Rotational spectra 3. Vibrational spectra 4. Electronic spectra Content 1. Overview of molecular spectra 2. Rotational spectra 3. Vibrational spectra 4. Electronic spectra Molecular orbital theory Electronic quantum numbers Vibrational structure of electronic transitions

More information

Lecture 6 - spectroscopy

Lecture 6 - spectroscopy Lecture 6 - spectroscopy 1 Light Electromagnetic radiation can be thought of as either a wave or as a particle (particle/wave duality). For scattering of light by particles, air, and surfaces, wave theory

More information

Chapter 6 Answers to Problems

Chapter 6 Answers to Problems Chapter 6 Answers to Problems 6.1 (a) NH 3 C3v E 2C3 3 v 4 1 2 3 0 1 12 0 2 3n = 3A 1 A 2 4E trans = A 1 E rot = A 2 E = 2A 2E = 4 frequencies 3n-6 1 Infrared 4 (2A 1 2E) Raman 4 (2A 1 2E) Polarized 2

More information

wbt Λ = 0, 1, 2, 3, Eq. (7.63)

wbt Λ = 0, 1, 2, 3, Eq. (7.63) 7.2.2 Classification of Electronic States For all diatomic molecules the coupling approximation which best describes electronic states is analogous to the Russell- Saunders approximation in atoms The orbital

More information

The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then

The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then 1 The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then filled with the available electrons according to

More information

Chem 673, Problem Set 5 Due Thursday, December 1, 2005

Chem 673, Problem Set 5 Due Thursday, December 1, 2005 otton, Problem 9.3 (assume D 4h symmetry) Additional Problems: hem 673, Problem Set 5 Due Thursday, December 1, 2005 (1) Infrared and Raman spectra of Benzene (a) Determine the symmetries (irreducible

More information

USING THE OCEAN OPTICS R-2000 RAMAN SPECTROMETER IN THE UNDERGRADUATE LABORATORY

USING THE OCEAN OPTICS R-2000 RAMAN SPECTROMETER IN THE UNDERGRADUATE LABORATORY Proceedings of the South Dakota Academy of Science, Vol. 79 (2000) 63 USING THE OCEAN OPTICS R-2000 RAMAN SPECTROMETER IN THE UNDERGRADUATE LABORATORY Deanna L. Donohoue, Gary W. Earl and Arlen Viste Department

More information

Infrared Spectroscopy (IR)

Infrared Spectroscopy (IR) IR Infrared Spectroscopy (IR) Introduction to Infrared Spectroscopy (IR) IR Infrared Spectroscopy (IR) One of the first scientists to observe infrared radiation was William Herschel in the early 19th

More information