7.5 Performance of Convolutional Codes General Comments

Size: px
Start display at page:

Download "7.5 Performance of Convolutional Codes General Comments"

Transcription

1 7.5 Performance of Convolutional Coes General Comments Convolutional coes expan the banwith for a fixe information rate, or lower the information rate for a fixe banwith. We hope for some error rate improvement in return. The facts that o the SNR of coe bits γ c =γ b k n is poorer than that of uncoe information bits, o an some of the n coe bits may be the same on ifferent branches leaving a state, even for a binary ( k = 1) coe, suggest that performance may be worsene, compare to uncoe transmission. owever the trellis constraint length puts a lower limit on the length of error events, so that the coe can buil up istance over the whole error event, not just over one branch. This is the source of the error reuction properties of convolutional coes. We ll examine performance of both soft an har ecision inputs, an compare them to uncoe transmission

2 7.5. Soft ecision Input [P8..] 7.5- The shift register of a convolutional encoer etermines the length of error events. The (,1,) example coe o If two inputs iffer only at a single branch time, their corresponing state sequences will be ifferent until that input ifference is flushe out of the trellis. The shortest error event is therefore K branches, irrespective of the output connections. o Verify this with the trellis of the (,1,) encoer. Note that CCs have no parallel transitions (although TCM an CPM may have them): 7.5-

3 Following the metho of Section 7.., we base our error analysis on the pairwise error probability. Consier the two paths in some error event 7.5- o The ifference between the signals s c s is zero at coe bits where e they agree an ± at coe bits where they isagree. The square Ec Eucliean istance is therefore = 4E c where is the amming istance between the two signals. o The pairwise error probability is then (with R c for coe rate): (,) P ec Q Q = γ = γ = Q γ R n k ( c ) b ( b c ) o The minimum amming istance over all error events is enote. o For our sample (,1,) trellis, the shortest error event is branches an has = 6, an the next is 5 branches long, with = 8. Looks as though = 6 an its P (,) e c Q( 4 b ) = γ, B better than uncoe. 7.5-

4 7.5-4 Next, we account for the number of events of various lengths. A binary convolutional coe is uniform, so the istances an error probabilities are inepenent of the transmitte path. Might as well consier it to be the allzeros sequence. o Aapting the analysis of Section 7.., the probability of an error event starting at a given state is union boune by [ E] N P = a Q( γ br c ) Pr ( ) ( ) ( ) = = where Rc N ( ). = k n is the coe rate an a ( ) is Proakis notation for o We nee the istance spectrum of the coe to calculate the error event probability. etermine the istance spectrum by search, or by the transfer function (Section 7.5.). For our (,1,) example, we have a (6) = 1, a (8) =, a (10) = 4, etc. o At high SNR, the other terms are much smaller than the [ E] a Q( γ brc ) Pr ( ) term, so 7.5-4

5 7.5-5 Usually, we are more intereste in the BER than the error event probability. We have to weight each pairwise event probability with the number of information bit errors it causes, as in Section 7... Again, sort by amming istance, an assume that all error events with amming istance have the same number f ( ) of information bit errors. o Assume that all error events with amming istance have the same number f ( ) of information bit errors. Then the BER is boune by ( γ ) Pb a( ) f( ) Q brc = o Like the istance spectrum, f ( ) must be etermine by search or the transfer function. For our (,1,) trellis, a = 6 ( = ) event causes only one bit error, an the = 8 event causes two bit errors. Proakis gives tables like the one below (with no istance spectrum): 7.5-5

6 o Compare the ominant (i.e., ) pairwise probability with the error probability of uncoe binary transmission. For the rate ½, K = 6 coe, = 8. Then the pairwise probability is Q( γ b R c fre e) = Q( 8γ b ) a 6 B boost from uncoe transmission. On the other han, that s only one of the error events The Transfer Function [P8..1] For small coes, the transfer function is an effective way to enumerate the paths of various amming istances an numbers of information bit errors. Start with the uniformity of convolutional coes. We can assume that the transmitte path was all zeros. The amming istance between it an an error sequence is just the amming weight of the error sequence. For our sample (,1,) coe, that s how we interpret the branch weights: 7.5-6

7 Now use a polynomial representation of error paths from one state to another one path of weight path of weight 6, of weight 4 Rather like z-transforms or moment generating functions. If a path extens by another branch an as, say, another two 1 bits to the weight, it is equivalent to multiplication by. Reraw the trellis to represent error events starting at time 0: they epart from state a (since correct is all zeros); branches are weighte with their contribution to overall weight; a return to state a allows no further epartures (an absorbing state), so rename it as state e. Verify that this error trellis is a correct representation of the (,1,) coe: w for 7.5-7

8 Trace the evolution of weights: o At time 0, polynomial X (0) = 1 (no errors yet). a o At time 1, Xc (1) = o At time, Xb () 4, = X () = o an out to time 5 (polynomials shown in boxes): 5 o For error events of length 5 branches or fewer, we have at noe e: 1 event of weight 6 events of weight 8 1 event of weight

9 Represent the transitions among states b, c, by a matrix T: Xb( m+ 1) 0 Xb( m) Xc( m+ 1) = 0 0 Xc( m) Verify this. X ( 1) m+ 0 X( m) or x( m+ 1) = Tx( m), with X (1) 0 b x (1) = Xc (1) = X (1) o The contribution Xe( m ) at time m is Xb ( m 1 ), or X ( 1) 0 b m m Xe( m) = 0 0 Xc( m 1) 0 0 = T X ( m 1) 0 o To capture all error events, form 0 i Xe = Xe( m) = 0 0 T m= i= = 0 0 ( I T) 0 where the secon line assumes convergence o If inversion is unappealing, just calculate enough terms in the sum to capture error events of relatively small weight 7.5-9

10 o Matrix inversion (love that symbolic processor) gives Xe = = o Since this is X ( ) X ( ), call it the transfer function of the coe e 6 T( ) = 1 a o We can go backwars from this with a series expansion to enumerate the number of paths with specific weight between state a an state e: = T( ) = = a Connect it with union boun on probability of an error event: [ E] a Q( γbrc ) Pr ( ) = ( 4 b ) ( 16 b ) 4 ( 0 b ) = Q γ + Q γ + Q γ + since the coe rate is 1/

11 A shortcut to the transfer function: o Work with the error state iagram, the counterpart to the error trellis. Note that state a is split into a (a source only) an e (a sink only). For the (,1,) coe it is The outputs of the states are the complete path polynomials; for example, Xb = Xb ( m ). m= 1 o The relations among the complete path polynomials are therefore c = a + b b c X X X c X = X + X X = X + X X = X e b o Joint solution for the transfer function X e X a gives 6 T( ) = 1 Series expansion gives the multiplicities a in aq ( γ br c )

12 To get more value from the transfer function, go back to error event probability Pr E a ( ) Q γ R (use for amming istance) [ ] ( = b c ) an upper-boun the Q function with an exponential ( ) γbr c γbrc [ ] ( ) 1 Q x e x : = e = = Pr E a e = a e = T( ) γ brc Very nice! For our (,1,) example coe, [ E] 6 6γbRc 1 1 e T γ R = e b c γ 1 γbr = e c 1 Pr ( ) = = brc ( e ) This is a payoff for the work of getting the transfer function. We can tighten it up a bit with the exact expression for Q function π 1 x ( ) exp π 0 sin ( θ ) Qx = θ Since this is also exponential, π π 1 γbr c 1 γbr c Pr[ E] a exp exp θ= a = π 0 sin ( θ) π θ 0 sin ( ) = θ π 1 γbrc = T exp θ π 0 sin ( θ ) 7.5-1

13 7.5-1 Now that we know how the transfer function works, we can use it to count other properties of error events notably the probability of information bit error. o Reraw the error state iagram, tagging braches with another ineterminate N raise to a power equal to the number of info bit errors on the branch. For a binary k = 1 coe, the label will be either N (for an error) or 1 (for no error). Counts info bit errors. Also labele with J on every branch, so we can count the length in branches of error events (if we care). o Solve these equations for Xe X a: c X = JN X + JN X b Xb = JXc + JX a c X = JN X + JN X X = J X e b o Gives T(, N, J) 6 X e J N X a 1 JN (1 J ) = =

14 Now we can boun the probability of bit error o For BER, we on t care about length of an error event in branches, so set J = 1, to get (, ) T N 6 N N = = = a N 1 f ( ) where f ( ) is the number of info bit errors in a pattern of weight. o Next, ifferentiate wrt N an set N = 1 T(, N) = a f( ) = β N N = 1 = = where of weight. β =a f( ) is the number of information bit errors in patterns o Therefore the BER is obtaine by 1 ( ) P β Q γ R β e b b c = = γ b R c = 1 T(, N) N N= 1, = e γbrc o For our coe, T(, N) N = 6 ( 1 N ), so P b e γ γb ( e ) 1 b

15 o Compare this (,1,) coe with uncoe transmission BER, uncoe an emo convolutional coe 0.1 Prob of bit error SNR per bit gamma_b (B) uncoe BPSK boun 0.5 exp(-gamma_b) uncoe BPSK, Q function (,1,) CC by T() with exp boun (,1,) CC by T() with Q fn _ lower boun The improvement comes at a cost: three times the banwith! See emos on the website for automatic calculation of transfer function ar ecision Input [P8..4] Now we obtain the error probabilities if the receiver makes har ecisions on the coe bits before passing them to the MLSE algorithm:

16 As usual for a union boun, we start with the pairwise error probability. Assume the all-zero sequence is the correct one o Remember that we set up the VA to choose the path with minimum amming istance from the input ecisions c ˆ jm. o Consier an error path with amming istance from the correct path, so the correct an erroneous paths iffer in positions. Take the case where is o. c = e = If there are ( 1) or fewer coe bit errors in these positions, then ĉ is closer to the correct sequence. If there are ( + 1) or more coe bit errors in these positions, then an we have a pairwise error. Therefore k P ( ) = p (1 p) k= ( + 1) k ĉ k is closer to the erroneous sequence, o. where p= Q( γ c ) is the probability of coe bit error

17 o Now take the case where is even. c = e = If there are 1 or fewer coe bit errors in these positions, then ĉ is closer to the correct sequence. If there are + 1 or more coe bit errors in these positions, then we have a pairwise error. If there are ĉ is closer to the erroneous sequence an errors, it is equiistant from the two alternative sequences call it either way, ranomly. Therefore k k 1 P ( ) = p (1 p) p (1 ) k= + 1 k + p, even. o Our bouns are then straightforwar: [ ] Pr E a P ( ) an P β P ( ) = b = As in the soft input case, it woul be goo to have a boun on the pairwise probability that is exponential in, so we get even more mileage out of the transfer function. Proakis gives a Chernoff boun on P ( ): [ ] P ( ) 4 p (1 p ) o ence the error rates are boune by

18 [ E] T = 4 (1 ) Pr ( ) p p an P b T(, N) N N= 1, = 4 p(1 p) o For our emo coe, T( ) = an 1 6 T(, N) N = 6 ( 1 N ), so an Pr [ E] 6 64 p (1 p) 1 4 p(1 p) = 4 p(1 p) = 1 ( γ ) b c ( γb c ) Q( brc ) Q( brc ) 64Q R 1 Q R = 1 4 γ 1 γ P b 6 = = ( 1 ) = 4p( 1 p) ( p) ( p) ( 1 8p 1 ) ( ) ( ) ( γb c ) ( γb c ) ( b c ) ( b c ) ( 1 8Q γ R 1 Q γ R ) 64 p 1 64Q R 1 Q R

19 Comparison shows that har ecisions cost about.5 B, compare with soft ecisions, for this coe. That makes it only 0.5 B or so better than uncoe transmission! The performance loss will be ifferent for other coes, but to B is typical. (Caution the legen is reverse: shoul be otte lines for har ecision.) There is much more in this section of Proakis, an it is well worth reaing

An Analytical Expression of the Probability of Error for Relaying with Decode-and-forward

An Analytical Expression of the Probability of Error for Relaying with Decode-and-forward An Analytical Expression of the Probability of Error for Relaying with Decoe-an-forwar Alexanre Graell i Amat an Ingmar Lan Department of Electronics, Institut TELECOM-TELECOM Bretagne, Brest, France Email:

More information

Lagrangian and Hamiltonian Mechanics

Lagrangian and Hamiltonian Mechanics Lagrangian an Hamiltonian Mechanics.G. Simpson, Ph.. epartment of Physical Sciences an Engineering Prince George s Community College ecember 5, 007 Introuction In this course we have been stuying classical

More information

ERROR-detecting codes and error-correcting codes work

ERROR-detecting codes and error-correcting codes work 1 Convolutional-Coe-Specific CRC Coe Design Chung-Yu Lou, Stuent Member, IEEE, Babak Daneshra, Member, IEEE, an Richar D. Wesel, Senior Member, IEEE arxiv:1506.02990v1 [cs.it] 9 Jun 2015 Abstract Cyclic

More information

1 1 0, g Exercise 1. Generator polynomials of a convolutional code, given in binary form, are g

1 1 0, g Exercise 1. Generator polynomials of a convolutional code, given in binary form, are g Exercise Generator polynomials of a convolutional code, given in binary form, are g 0, g 2 0 ja g 3. a) Sketch the encoding circuit. b) Sketch the state diagram. c) Find the transfer function TD. d) What

More information

Linear and quadratic approximation

Linear and quadratic approximation Linear an quaratic approximation November 11, 2013 Definition: Suppose f is a function that is ifferentiable on an interval I containing the point a. The linear approximation to f at a is the linear function

More information

Final Exam Study Guide and Practice Problems Solutions

Final Exam Study Guide and Practice Problems Solutions Final Exam Stuy Guie an Practice Problems Solutions Note: These problems are just some of the types of problems that might appear on the exam. However, to fully prepare for the exam, in aition to making

More information

Differentiation ( , 9.5)

Differentiation ( , 9.5) Chapter 2 Differentiation (8.1 8.3, 9.5) 2.1 Rate of Change (8.2.1 5) Recall that the equation of a straight line can be written as y = mx + c, where m is the slope or graient of the line, an c is the

More information

Error Floors in LDPC Codes: Fast Simulation, Bounds and Hardware Emulation

Error Floors in LDPC Codes: Fast Simulation, Bounds and Hardware Emulation Error Floors in LDPC Coes: Fast Simulation, Bouns an Harware Emulation Pamela Lee, Lara Dolecek, Zhengya Zhang, Venkat Anantharam, Borivoje Nikolic, an Martin J. Wainwright EECS Department University of

More information

19 Eigenvalues, Eigenvectors, Ordinary Differential Equations, and Control

19 Eigenvalues, Eigenvectors, Ordinary Differential Equations, and Control 19 Eigenvalues, Eigenvectors, Orinary Differential Equations, an Control This section introuces eigenvalues an eigenvectors of a matrix, an iscusses the role of the eigenvalues in etermining the behavior

More information

Mathcad Lecture #5 In-class Worksheet Plotting and Calculus

Mathcad Lecture #5 In-class Worksheet Plotting and Calculus Mathca Lecture #5 In-class Worksheet Plotting an Calculus At the en of this lecture, you shoul be able to: graph expressions, functions, an matrices of ata format graphs with titles, legens, log scales,

More information

SYNCHRONOUS SEQUENTIAL CIRCUITS

SYNCHRONOUS SEQUENTIAL CIRCUITS CHAPTER SYNCHRONOUS SEUENTIAL CIRCUITS Registers an counters, two very common synchronous sequential circuits, are introuce in this chapter. Register is a igital circuit for storing information. Contents

More information

Spring 2016 Network Science

Spring 2016 Network Science Spring 206 Network Science Sample Problems for Quiz I Problem [The Application of An one-imensional Poisson Process] Suppose that the number of typographical errors in a new text is Poisson istribute with

More information

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x)

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x) Y. D. Chong (2016) MH2801: Complex Methos for the Sciences 1. Derivatives The erivative of a function f(x) is another function, efine in terms of a limiting expression: f (x) f (x) lim x δx 0 f(x + δx)

More information

Space-time Linear Dispersion Using Coordinate Interleaving

Space-time Linear Dispersion Using Coordinate Interleaving Space-time Linear Dispersion Using Coorinate Interleaving Jinsong Wu an Steven D Blostein Department of Electrical an Computer Engineering Queen s University, Kingston, Ontario, Canaa, K7L3N6 Email: wujs@ieeeorg

More information

Lower bounds on Locality Sensitive Hashing

Lower bounds on Locality Sensitive Hashing Lower bouns on Locality Sensitive Hashing Rajeev Motwani Assaf Naor Rina Panigrahy Abstract Given a metric space (X, X ), c 1, r > 0, an p, q [0, 1], a istribution over mappings H : X N is calle a (r,

More information

Euler equations for multiple integrals

Euler equations for multiple integrals Euler equations for multiple integrals January 22, 2013 Contents 1 Reminer of multivariable calculus 2 1.1 Vector ifferentiation......................... 2 1.2 Matrix ifferentiation........................

More information

Lecture 2 Lagrangian formulation of classical mechanics Mechanics

Lecture 2 Lagrangian formulation of classical mechanics Mechanics Lecture Lagrangian formulation of classical mechanics 70.00 Mechanics Principle of stationary action MATH-GA To specify a motion uniquely in classical mechanics, it suffices to give, at some time t 0,

More information

Linear First-Order Equations

Linear First-Order Equations 5 Linear First-Orer Equations Linear first-orer ifferential equations make up another important class of ifferential equations that commonly arise in applications an are relatively easy to solve (in theory)

More information

Lecture 6 : Dimensionality Reduction

Lecture 6 : Dimensionality Reduction CPS290: Algorithmic Founations of Data Science February 3, 207 Lecture 6 : Dimensionality Reuction Lecturer: Kamesh Munagala Scribe: Kamesh Munagala In this lecture, we will consier the roblem of maing

More information

A Course in Machine Learning

A Course in Machine Learning A Course in Machine Learning Hal Daumé III 12 EFFICIENT LEARNING So far, our focus has been on moels of learning an basic algorithms for those moels. We have not place much emphasis on how to learn quickly.

More information

Chapter 7: Channel coding:convolutional codes

Chapter 7: Channel coding:convolutional codes Chapter 7: : Convolutional codes University of Limoges meghdadi@ensil.unilim.fr Reference : Digital communications by John Proakis; Wireless communication by Andreas Goldsmith Encoder representation Communication

More information

Calculus I Practice Test Problems for Chapter 3 Page 1 of 9

Calculus I Practice Test Problems for Chapter 3 Page 1 of 9 Calculus I Practice Test Problems for Chapter 3 Page of 9 This is a set of practice test problems for Chapter 3. This is in no wa an inclusive set of problems there can be other tpes of problems on the

More information

Sturm-Liouville Theory

Sturm-Liouville Theory LECTURE 5 Sturm-Liouville Theory In the three preceing lectures I emonstrate the utility of Fourier series in solving PDE/BVPs. As we ll now see, Fourier series are just the tip of the iceberg of the theory

More information

Permanent vs. Determinant

Permanent vs. Determinant Permanent vs. Determinant Frank Ban Introuction A major problem in theoretical computer science is the Permanent vs. Determinant problem. It asks: given an n by n matrix of ineterminates A = (a i,j ) an

More information

Designing Information Devices and Systems II Fall 2017 Note Theorem: Existence and Uniqueness of Solutions to Differential Equations

Designing Information Devices and Systems II Fall 2017 Note Theorem: Existence and Uniqueness of Solutions to Differential Equations EECS 6B Designing Information Devices an Systems II Fall 07 Note 3 Secon Orer Differential Equations Secon orer ifferential equations appear everywhere in the real worl. In this note, we will walk through

More information

Math Chapter 2 Essentials of Calculus by James Stewart Prepared by Jason Gaddis

Math Chapter 2 Essentials of Calculus by James Stewart Prepared by Jason Gaddis Math 231 - Chapter 2 Essentials of Calculus by James Stewart Prepare by Jason Gais Chapter 2 - Derivatives 21 - Derivatives an Rates of Change Definition A tangent to a curve is a line that intersects

More information

5-4 Electrostatic Boundary Value Problems

5-4 Electrostatic Boundary Value Problems 11/8/4 Section 54 Electrostatic Bounary Value Problems blank 1/ 5-4 Electrostatic Bounary Value Problems Reaing Assignment: pp. 149-157 Q: A: We must solve ifferential equations, an apply bounary conitions

More information

A Sketch of Menshikov s Theorem

A Sketch of Menshikov s Theorem A Sketch of Menshikov s Theorem Thomas Bao March 14, 2010 Abstract Let Λ be an infinite, locally finite oriente multi-graph with C Λ finite an strongly connecte, an let p

More information

IMPLICIT DIFFERENTIATION

IMPLICIT DIFFERENTIATION IMPLICIT DIFFERENTIATION CALCULUS 3 INU0115/515 (MATHS 2) Dr Arian Jannetta MIMA CMath FRAS Implicit Differentiation 1/ 11 Arian Jannetta Explicit an implicit functions Explicit functions An explicit function

More information

The Exact Form and General Integrating Factors

The Exact Form and General Integrating Factors 7 The Exact Form an General Integrating Factors In the previous chapters, we ve seen how separable an linear ifferential equations can be solve using methos for converting them to forms that can be easily

More information

UNDERSTANDING INTEGRATION

UNDERSTANDING INTEGRATION UNDERSTANDING INTEGRATION Dear Reaer The concept of Integration, mathematically speaking, is the "Inverse" of the concept of result, the integration of, woul give us back the function f(). This, in a way,

More information

Rules of Differentiation

Rules of Differentiation LECTURE 2 Rules of Differentiation At te en of Capter 2, we finally arrive at te following efinition of te erivative of a function f f x + f x x := x 0 oing so only after an extene iscussion as wat te

More information

Lecture 12: November 6, 2013

Lecture 12: November 6, 2013 Information an Coing Theory Autumn 204 Lecturer: Mahur Tulsiani Lecture 2: November 6, 203 Scribe: Davi Kim Recall: We were looking at coes of the form C : F k q F n q, where q is prime, k is the message

More information

2Algebraic ONLINE PAGE PROOFS. foundations

2Algebraic ONLINE PAGE PROOFS. foundations Algebraic founations. Kick off with CAS. Algebraic skills.3 Pascal s triangle an binomial expansions.4 The binomial theorem.5 Sets of real numbers.6 Surs.7 Review . Kick off with CAS Playing lotto Using

More information

DERIVATIVES: LAWS OF DIFFERENTIATION MR. VELAZQUEZ AP CALCULUS

DERIVATIVES: LAWS OF DIFFERENTIATION MR. VELAZQUEZ AP CALCULUS DERIVATIVES: LAWS OF DIFFERENTIATION MR. VELAZQUEZ AP CALCULUS THE DERIVATIVE AS A FUNCTION f x = lim h 0 f x + h f(x) h Last class we examine the limit of the ifference quotient at a specific x as h 0,

More information

Calculus of Variations

Calculus of Variations 16.323 Lecture 5 Calculus of Variations Calculus of Variations Most books cover this material well, but Kirk Chapter 4 oes a particularly nice job. x(t) x* x*+ αδx (1) x*- αδx (1) αδx (1) αδx (1) t f t

More information

Math 1272 Solutions for Spring 2005 Final Exam. asked to find the limit of the sequence. This is equivalent to evaluating lim. lim.

Math 1272 Solutions for Spring 2005 Final Exam. asked to find the limit of the sequence. This is equivalent to evaluating lim. lim. Math 7 Solutions for Spring 5 Final Exam ) We are gien an infinite sequence for which the general term is a n 3 + 5n n + n an are 3 + 5n aske to fin the limit of the sequence. This is equialent to ealuating

More information

23 Implicit differentiation

23 Implicit differentiation 23 Implicit ifferentiation 23.1 Statement The equation y = x 2 + 3x + 1 expresses a relationship between the quantities x an y. If a value of x is given, then a corresponing value of y is etermine. For

More information

Bandwidth expansion in joint source- channel coding and twisted modulation

Bandwidth expansion in joint source- channel coding and twisted modulation Banwith expansion in joint source- channel coing an twiste moulation Pål Aners Floor Tor A Ramsta Outline. Introuction to nonlinear mappings. Banwith expansion an Twiste moulation. Some history. Optimum

More information

Lower Bounds for the Smoothed Number of Pareto optimal Solutions

Lower Bounds for the Smoothed Number of Pareto optimal Solutions Lower Bouns for the Smoothe Number of Pareto optimal Solutions Tobias Brunsch an Heiko Röglin Department of Computer Science, University of Bonn, Germany brunsch@cs.uni-bonn.e, heiko@roeglin.org Abstract.

More information

Expected Value of Partial Perfect Information

Expected Value of Partial Perfect Information Expecte Value of Partial Perfect Information Mike Giles 1, Takashi Goa 2, Howar Thom 3 Wei Fang 1, Zhenru Wang 1 1 Mathematical Institute, University of Oxfor 2 School of Engineering, University of Tokyo

More information

Robust Forward Algorithms via PAC-Bayes and Laplace Distributions. ω Q. Pr (y(ω x) < 0) = Pr A k

Robust Forward Algorithms via PAC-Bayes and Laplace Distributions. ω Q. Pr (y(ω x) < 0) = Pr A k A Proof of Lemma 2 B Proof of Lemma 3 Proof: Since the support of LL istributions is R, two such istributions are equivalent absolutely continuous with respect to each other an the ivergence is well-efine

More information

SIPCom8-1: Information Theory and Coding Linear Binary Codes Ingmar Land

SIPCom8-1: Information Theory and Coding Linear Binary Codes Ingmar Land SIPCom8-1: Information Theory and Coding Linear Binary Codes Ingmar Land Ingmar Land, SIPCom8-1: Information Theory and Coding (2005 Spring) p.1 Overview Basic Concepts of Channel Coding Block Codes I:

More information

Witten s Proof of Morse Inequalities

Witten s Proof of Morse Inequalities Witten s Proof of Morse Inequalities by Igor Prokhorenkov Let M be a smooth, compact, oriente manifol with imension n. A Morse function is a smooth function f : M R such that all of its critical points

More information

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs Lectures - Week 10 Introuction to Orinary Differential Equations (ODES) First Orer Linear ODEs When stuying ODEs we are consiering functions of one inepenent variable, e.g., f(x), where x is the inepenent

More information

Integration Review. May 11, 2013

Integration Review. May 11, 2013 Integration Review May 11, 2013 Goals: Review the funamental theorem of calculus. Review u-substitution. Review integration by parts. Do lots of integration eamples. 1 Funamental Theorem of Calculus In

More information

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule Unit # - Families of Functions, Taylor Polynomials, l Hopital s Rule Some problems an solutions selecte or aapte from Hughes-Hallett Calculus. Critical Points. Consier the function f) = 54 +. b) a) Fin

More information

Stopping-Set Enumerator Approximations for Finite-Length Protograph LDPC Codes

Stopping-Set Enumerator Approximations for Finite-Length Protograph LDPC Codes Stopping-Set Enumerator Approximations for Finite-Length Protograph LDPC Coes Kaiann Fu an Achilleas Anastasopoulos Electrical Engineering an Computer Science Dept. University of Michigan, Ann Arbor, MI

More information

IRC Safety vs. Calculability

IRC Safety vs. Calculability IRC Safety vs. Calculability Anrew Larkoski MIT AJL, J. Thaler 1307.1699; AJL, I. Moult, D. Neill 1401.4458; AJL, S. Marzani, G. Soyez, J. Thaler 1402.soon Rutgers, February 11, 2014 Reminer: How to compute

More information

Lecture XII. where Φ is called the potential function. Let us introduce spherical coordinates defined through the relations

Lecture XII. where Φ is called the potential function. Let us introduce spherical coordinates defined through the relations Lecture XII Abstract We introuce the Laplace equation in spherical coorinates an apply the metho of separation of variables to solve it. This will generate three linear orinary secon orer ifferential equations:

More information

Derivatives and the Product Rule

Derivatives and the Product Rule Derivatives an the Prouct Rule James K. Peterson Department of Biological Sciences an Department of Mathematical Sciences Clemson University January 28, 2014 Outline Differentiability Simple Derivatives

More information

Quantum Mechanics in Three Dimensions

Quantum Mechanics in Three Dimensions Physics 342 Lecture 20 Quantum Mechanics in Three Dimensions Lecture 20 Physics 342 Quantum Mechanics I Monay, March 24th, 2008 We begin our spherical solutions with the simplest possible case zero potential.

More information

Integration by Parts

Integration by Parts Integration by Parts 6-3-207 If u an v are functions of, the Prouct Rule says that (uv) = uv +vu Integrate both sies: (uv) = uv = uv + u v + uv = uv vu, vu v u, I ve written u an v as shorthan for u an

More information

Math 2163, Practice Exam II, Solution

Math 2163, Practice Exam II, Solution Math 63, Practice Exam II, Solution. (a) f =< f s, f t >=< s e t, s e t >, an v v = , so D v f(, ) =< ()e, e > =< 4, 4 > = 4. (b) f =< xy 3, 3x y 4y 3 > an v =< cos π, sin π >=, so

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 2 (Rates of change) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 2 (Rates of change) A.J.Hobson JUST THE MATHS UNIT NUMBER 10.2 DIFFERENTIATION 2 (Rates of change) by A.J.Hobson 10.2.1 Introuction 10.2.2 Average rates of change 10.2.3 Instantaneous rates of change 10.2.4 Derivatives 10.2.5 Exercises

More information

Balancing Data Security and Blocking Performance with Spectrum Randomization in Optical Networks

Balancing Data Security and Blocking Performance with Spectrum Randomization in Optical Networks Balancing Data Security an Blocking Performance with Spectrum Ranomization in Optical Networks Saneep Kumar Singh, Wolfgang Bziuk, an Amela Jukan Technische Universität Carolo-Wilhelmina zu Braunschweig,

More information

Chapter 6: Integration: partial fractions and improper integrals

Chapter 6: Integration: partial fractions and improper integrals Chapter 6: Integration: partial fractions an improper integrals Course S3, 006 07 April 5, 007 These are just summaries of the lecture notes, an few etails are inclue. Most of what we inclue here is to

More information

Make graph of g by adding c to the y-values. on the graph of f by c. multiplying the y-values. even-degree polynomial. graph goes up on both sides

Make graph of g by adding c to the y-values. on the graph of f by c. multiplying the y-values. even-degree polynomial. graph goes up on both sides Reference 1: Transformations of Graphs an En Behavior of Polynomial Graphs Transformations of graphs aitive constant constant on the outsie g(x) = + c Make graph of g by aing c to the y-values on the graph

More information

Design A Robust Power System Stabilizer on SMIB Using Lyapunov Theory

Design A Robust Power System Stabilizer on SMIB Using Lyapunov Theory Design A Robust Power System Stabilizer on SMIB Using Lyapunov Theory Yin Li, Stuent Member, IEEE, Lingling Fan, Senior Member, IEEE Abstract This paper proposes a robust power system stabilizer (PSS)

More information

Quantum Algorithms: Problem Set 1

Quantum Algorithms: Problem Set 1 Quantum Algorithms: Problem Set 1 1. The Bell basis is + = 1 p ( 00i + 11i) = 1 p ( 00i 11i) + = 1 p ( 01i + 10i) = 1 p ( 01i 10i). This is an orthonormal basis for the state space of two qubits. It is

More information

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes Fin these erivatives of these functions: y.7 Implicit Differentiation -- A Brief Introuction -- Stuent Notes tan y sin tan = sin y e = e = Write the inverses of these functions: y tan y sin How woul we

More information

5.4 Fundamental Theorem of Calculus Calculus. Do you remember the Fundamental Theorem of Algebra? Just thought I'd ask

5.4 Fundamental Theorem of Calculus Calculus. Do you remember the Fundamental Theorem of Algebra? Just thought I'd ask 5.4 FUNDAMENTAL THEOREM OF CALCULUS Do you remember the Funamental Theorem of Algebra? Just thought I' ask The Funamental Theorem of Calculus has two parts. These two parts tie together the concept of

More information

Construction of the Electronic Radial Wave Functions and Probability Distributions of Hydrogen-like Systems

Construction of the Electronic Radial Wave Functions and Probability Distributions of Hydrogen-like Systems Construction of the Electronic Raial Wave Functions an Probability Distributions of Hyrogen-like Systems Thomas S. Kuntzleman, Department of Chemistry Spring Arbor University, Spring Arbor MI 498 tkuntzle@arbor.eu

More information

Qubit channels that achieve capacity with two states

Qubit channels that achieve capacity with two states Qubit channels that achieve capacity with two states Dominic W. Berry Department of Physics, The University of Queenslan, Brisbane, Queenslan 4072, Australia Receive 22 December 2004; publishe 22 March

More information

Solutions to Practice Problems Tuesday, October 28, 2008

Solutions to Practice Problems Tuesday, October 28, 2008 Solutions to Practice Problems Tuesay, October 28, 2008 1. The graph of the function f is shown below. Figure 1: The graph of f(x) What is x 1 + f(x)? What is x 1 f(x)? An oes x 1 f(x) exist? If so, what

More information

Calculus in the AP Physics C Course The Derivative

Calculus in the AP Physics C Course The Derivative Limits an Derivatives Calculus in the AP Physics C Course The Derivative In physics, the ieas of the rate change of a quantity (along with the slope of a tangent line) an the area uner a curve are essential.

More information

ELEC3114 Control Systems 1

ELEC3114 Control Systems 1 ELEC34 Control Systems Linear Systems - Moelling - Some Issues Session 2, 2007 Introuction Linear systems may be represente in a number of ifferent ways. Figure shows the relationship between various representations.

More information

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors Math 18.02 Notes on ifferentials, the Chain Rule, graients, irectional erivative, an normal vectors Tangent plane an linear approximation We efine the partial erivatives of f( xy, ) as follows: f f( x+

More information

Math 1B, lecture 8: Integration by parts

Math 1B, lecture 8: Integration by parts Math B, lecture 8: Integration by parts Nathan Pflueger 23 September 2 Introuction Integration by parts, similarly to integration by substitution, reverses a well-known technique of ifferentiation an explores

More information

4.3 Equations in 3-space

4.3 Equations in 3-space 4.3 Equations in 3-space istance can be used to define functions from a 3-space R 3 to the line R. Let P be a fixed point in the 3-space R 3 (say, with coordinates P (2, 5, 7)). Consider a function f :

More information

Large Triangles in the d-dimensional Unit-Cube (Extended Abstract)

Large Triangles in the d-dimensional Unit-Cube (Extended Abstract) Large Triangles in the -Dimensional Unit-Cube Extene Abstract) Hanno Lefmann Fakultät für Informatik, TU Chemnitz, D-0907 Chemnitz, Germany lefmann@informatik.tu-chemnitz.e Abstract. We consier a variant

More information

The Viterbi Algorithm EECS 869: Error Control Coding Fall 2009

The Viterbi Algorithm EECS 869: Error Control Coding Fall 2009 1 Bacground Material 1.1 Organization of the Trellis The Viterbi Algorithm EECS 869: Error Control Coding Fall 2009 The Viterbi algorithm (VA) processes the (noisy) output sequence from a state machine

More information

Solutions to Math 41 Second Exam November 4, 2010

Solutions to Math 41 Second Exam November 4, 2010 Solutions to Math 41 Secon Exam November 4, 2010 1. (13 points) Differentiate, using the metho of your choice. (a) p(t) = ln(sec t + tan t) + log 2 (2 + t) (4 points) Using the rule for the erivative of

More information

1 Heisenberg Representation

1 Heisenberg Representation 1 Heisenberg Representation What we have been ealing with so far is calle the Schröinger representation. In this representation, operators are constants an all the time epenence is carrie by the states.

More information

Math 115 Section 018 Course Note

Math 115 Section 018 Course Note Course Note 1 General Functions Definition 1.1. A function is a rule that takes certain numbers as inputs an assigns to each a efinite output number. The set of all input numbers is calle the omain of

More information

Separation of Variables

Separation of Variables Physics 342 Lecture 1 Separation of Variables Lecture 1 Physics 342 Quantum Mechanics I Monay, January 25th, 2010 There are three basic mathematical tools we nee, an then we can begin working on the physical

More information

Physics 220. Exam #2. May 20, 2016

Physics 220. Exam #2. May 20, 2016 Physics 22 Exam #2 May 2, 26 Name Please rea an follow these instructions carefully: Rea all prolems carefully efore attempting to solve them. Your work must e legile, an the organization clear. You must

More information

there is no special reason why the value of y should be fixed at y = 0.3. Any y such that

there is no special reason why the value of y should be fixed at y = 0.3. Any y such that 25. More on bivariate functions: partial erivatives integrals Although we sai that the graph of photosynthesis versus temperature in Lecture 16 is like a hill, in the real worl hills are three-imensional

More information

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0.

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0. Engineering Mathematics 2 26 February 2014 Limits of functions Consier the function 1 f() = 1. The omain of this function is R + \ {1}. The function is not efine at 1. What happens when is close to 1?

More information

Exercise 1. Exercise 2.

Exercise 1. Exercise 2. Exercise. Magnitue Galaxy ID Ultraviolet Green Re Infrare A Infrare B 9707296462088.56 5.47 5.4 4.75 4.75 97086278435442.6.33 5.36 4.84 4.58 2255030735995063.64.8 5.88 5.48 5.4 56877420209795 9.52.6.54.08

More information

Chapter 31: RLC Circuits. PHY2049: Chapter 31 1

Chapter 31: RLC Circuits. PHY2049: Chapter 31 1 Chapter 31: RLC Circuits PHY049: Chapter 31 1 LC Oscillations Conservation of energy Topics Dampe oscillations in RLC circuits Energy loss AC current RMS quantities Force oscillations Resistance, reactance,

More information

Chapter 4. Electrostatics of Macroscopic Media

Chapter 4. Electrostatics of Macroscopic Media Chapter 4. Electrostatics of Macroscopic Meia 4.1 Multipole Expansion Approximate potentials at large istances 3 x' x' (x') x x' x x Fig 4.1 We consier the potential in the far-fiel region (see Fig. 4.1

More information

ECE 564/645 - Digital Communications, Spring 2018 Homework #2 Due: March 19 (In Lecture)

ECE 564/645 - Digital Communications, Spring 2018 Homework #2 Due: March 19 (In Lecture) ECE 564/645 - Digital Communications, Spring 018 Homework # Due: March 19 (In Lecture) 1. Consider a binary communication system over a 1-dimensional vector channel where message m 1 is sent by signaling

More information

Solving the Schrödinger Equation for the 1 Electron Atom (Hydrogen-Like)

Solving the Schrödinger Equation for the 1 Electron Atom (Hydrogen-Like) Stockton Univeristy Chemistry Program, School of Natural Sciences an Mathematics 101 Vera King Farris Dr, Galloway, NJ CHEM 340: Physical Chemistry II Solving the Schröinger Equation for the 1 Electron

More information

Many problems in physics, engineering, and chemistry fall in a general class of equations of the form. d dx. d dx

Many problems in physics, engineering, and chemistry fall in a general class of equations of the form. d dx. d dx Math 53 Notes on turm-liouville equations Many problems in physics, engineering, an chemistry fall in a general class of equations of the form w(x)p(x) u ] + (q(x) λ) u = w(x) on an interval a, b], plus

More information

Schrödinger s equation.

Schrödinger s equation. Physics 342 Lecture 5 Schröinger s Equation Lecture 5 Physics 342 Quantum Mechanics I Wenesay, February 3r, 2010 Toay we iscuss Schröinger s equation an show that it supports the basic interpretation of

More information

12.11 Laplace s Equation in Cylindrical and

12.11 Laplace s Equation in Cylindrical and SEC. 2. Laplace s Equation in Cylinrical an Spherical Coorinates. Potential 593 2. Laplace s Equation in Cylinrical an Spherical Coorinates. Potential One of the most important PDEs in physics an engineering

More information

6 Wave equation in spherical polar coordinates

6 Wave equation in spherical polar coordinates 6 Wave equation in spherical polar coorinates We now look at solving problems involving the Laplacian in spherical polar coorinates. The angular epenence of the solutions will be escribe by spherical harmonics.

More information

Lecture Introduction. 2 Examples of Measure Concentration. 3 The Johnson-Lindenstrauss Lemma. CS-621 Theory Gems November 28, 2012

Lecture Introduction. 2 Examples of Measure Concentration. 3 The Johnson-Lindenstrauss Lemma. CS-621 Theory Gems November 28, 2012 CS-6 Theory Gems November 8, 0 Lecture Lecturer: Alesaner Mąry Scribes: Alhussein Fawzi, Dorina Thanou Introuction Toay, we will briefly iscuss an important technique in probability theory measure concentration

More information

The Spearman s Rank Correlation Coefficient is a statistical test that examines the degree to which two data sets are correlated, if at all.

The Spearman s Rank Correlation Coefficient is a statistical test that examines the degree to which two data sets are correlated, if at all. 4e A Guie to Spearman s Rank The Spearman s Rank Correlation Coefficient is a statistical test that examines the egree to which two ata sets are correlate, if at all. Why woul we use Spearman s Rank? While

More information

FINAL EXAM 1 SOLUTIONS Below is the graph of a function f(x). From the graph, read off the value (if any) of the following limits: x 1 +

FINAL EXAM 1 SOLUTIONS Below is the graph of a function f(x). From the graph, read off the value (if any) of the following limits: x 1 + FINAL EXAM 1 SOLUTIONS 2011 1. Below is the graph of a function f(x). From the graph, rea off the value (if any) of the following its: x 1 = 0 f(x) x 1 + = 1 f(x) x 0 = x 0 + = 0 x 1 = 1 1 2 FINAL EXAM

More information

SYDE 112, LECTURE 1: Review & Antidifferentiation

SYDE 112, LECTURE 1: Review & Antidifferentiation SYDE 112, LECTURE 1: Review & Antiifferentiation 1 Course Information For a etaile breakown of the course content an available resources, see the Course Outline. Other relevant information for this section

More information

Including the Consumer Function. 1.0 Constant demand as consumer utility function

Including the Consumer Function. 1.0 Constant demand as consumer utility function Incluin the Consumer Function What we i in the previous notes was solve the cost minimization problem. In these notes, we want to (a) see what such a solution means in the context of solvin a social surplus

More information

Students need encouragement. So if a student gets an answer right, tell them it was a lucky guess. That way, they develop a good, lucky feeling.

Students need encouragement. So if a student gets an answer right, tell them it was a lucky guess. That way, they develop a good, lucky feeling. Chapter 8 Analytic Functions Stuents nee encouragement. So if a stuent gets an answer right, tell them it was a lucky guess. That way, they evelop a goo, lucky feeling. 1 8.1 Complex Derivatives -Jack

More information

The Principle of Least Action

The Principle of Least Action Chapter 7. The Principle of Least Action 7.1 Force Methos vs. Energy Methos We have so far stuie two istinct ways of analyzing physics problems: force methos, basically consisting of the application of

More information

Exam 2 Review Solutions

Exam 2 Review Solutions Exam Review Solutions 1. True or False, an explain: (a) There exists a function f with continuous secon partial erivatives such that f x (x, y) = x + y f y = x y False. If the function has continuous secon

More information

Physics 505 Electricity and Magnetism Fall 2003 Prof. G. Raithel. Problem Set 3. 2 (x x ) 2 + (y y ) 2 + (z + z ) 2

Physics 505 Electricity and Magnetism Fall 2003 Prof. G. Raithel. Problem Set 3. 2 (x x ) 2 + (y y ) 2 + (z + z ) 2 Physics 505 Electricity an Magnetism Fall 003 Prof. G. Raithel Problem Set 3 Problem.7 5 Points a): Green s function: Using cartesian coorinates x = (x, y, z), it is G(x, x ) = 1 (x x ) + (y y ) + (z z

More information

CMSC 313 Preview Slides

CMSC 313 Preview Slides CMSC 33 Preview Slies These are raft slies. The actual slies presente in lecture may be ifferent ue to last minute changes, scheule slippage,... UMBC, CMSC33, Richar Chang CMSC 33 Lecture

More information

Pure Further Mathematics 1. Revision Notes

Pure Further Mathematics 1. Revision Notes Pure Further Mathematics Revision Notes June 20 2 FP JUNE 20 SDB Further Pure Complex Numbers... 3 Definitions an arithmetical operations... 3 Complex conjugate... 3 Properties... 3 Complex number plane,

More information

Switching Time Optimization in Discretized Hybrid Dynamical Systems

Switching Time Optimization in Discretized Hybrid Dynamical Systems Switching Time Optimization in Discretize Hybri Dynamical Systems Kathrin Flaßkamp, To Murphey, an Sina Ober-Blöbaum Abstract Switching time optimization (STO) arises in systems that have a finite set

More information