arxiv: v3 [math.nt] 27 Jul 2013

Size: px
Start display at page:

Download "arxiv: v3 [math.nt] 27 Jul 2013"

Transcription

1 THE GRAPHIC NATURE OF GAUSSIAN PERIODS WILLIAM DUKE, STEPHAN RAMON GARCIA, AND BOB LUTZ arxiv: v3 [math.nt] 27 Jul 2013 Abstract. Rct work has show that th study of surcharactrs o ablia grous rovids a atural framwork withi which to study crtai xotial sums of itrst i umbr thory. Our aim hr is to iitiat th study of Gaussia riods from this ovl rsctiv. Amog othr thigs, our aroach rvals that ths classical objcts dislay dazzlig visual attrs of grat comlxity ad rmarkabl subtlty. 1. Itroductio Th thory of surcharactrs, which gralizs classical charactr thory, was rctly itroducd i a axiomatic fashio by P. Diacois ad I.M. Isaacs [6], xtdig th smial work of C. Adré [1, 2]. Rct work has show that th study of surcharactrs o ablia grous rovids a atural framwork withi which to study th rortis of crtai xotial sums of itrst i umbr thory [4, 8] (s also [7] ad Tabl 1). Our aim hr is to iitiat th study of Gaussia riods from this ovl rsctiv. Amog othr thigs, this aroach rvals that ths classical objcts dislay a dazzlig array of visual attrs of grat comlxity ad rmarkabl subtlty (s Figur 1). Lt G b a fiit grou with idtity 0, K a artitio of G, ad X a artitio of th st IrrGq of irrducibl charactrs of G. Th ordrd air X, Kq is calld a surcharactr thory for G if t0u P K, X K, ad for ach X P X, th fuctio σ X χ0qχ χpx is costat o ach K P K. Th fuctios σ X ar calld surcharactrs of G ad th lmts of K ar calld surclasss. Lt G Z{Z ad rcall that th irrducibl charactrs of Z{Z ar th fuctios χ x yq xy q for x i Z{Z, whr θq x2πiθq. For a fixd subgrou A of Z{Zqˆ, lt K dot th artitio of Z{Z arisig from th actio a x ax of A. Th actio a χ x χ a 1 x of A o th irrducibl charactrs of Z{Z yilds a comatibl artitio X. Th radr ca vrify that X, Kq is a surcharactr thory o Z{Z ad that th corrsodig surcharactrs ar giv by σ X yq xy, (1) xpx whr X is a orbit i Z{Z udr th actio of A. Wh is a odd rim, (1) is a Gaussia riod, a ctral objct i th thory of cyclotomy. For kd ` 1, Gauss dfid th d-omial riods η j ř d 1 ζgkl`j l0, whr ζ 1 q ad g dots a rimitiv root modulo [3, 5]. Clarly η j rus ovr th sam valus as Partially suortd by Natioal Scic Foudatio Grats DMS , DMS , ad DMS

2 2 W. DUKE, S. R. GARCIA, AND BOB LUTZ σ X yq wh y 0, A d, ad X A1 is th A-orbit of 1. For comosit moduli, th fuctios σ X attai valus which ar gralizatios of Gaussia riods of th ty cosidrd by Kummr ad othrs (s [10]). (a) 52059, A x766y (b) 91205, A x2337y (c) 70091, A x3447y (d) 91205, A x39626y () 91205, A x1322y (f) 95095, A x626y (g) 82677, A x8147y (h) 70091, A x21792y (i) 51319, A x430y Figur 1. Each subfigur is th imag of σ X : Z{Z Ñ C, whr X is th orbit of 1 udr th actio of a cyclic subgrou A of Z{Zqˆ. If σ X yq ad σ X y 1 q diffr i color, th y ı y 1 mod mq, whr m is a fixd divisor of. Wh visualizd as substs of th comlx la, th imags of ths surcharactrs xhibit a surrisigly divrs rag of faturs (s Figur 1). Th mai uros of this ar is to iitiat th ivstigatio of ths lots, focusig our atttio o th cas whr A xay is a cyclic subgrou of Z{Zqˆ. W rfr to surcharacrs which aris i this mar as cyclic surcharactrs. Th shr divrsity of attrs dislayd by cyclic surcharactrs is ovrwhlmig. To som dgr, ths circumstacs forc us to focus our iitial fforts o documtig th otabl faturs that aar ad o xlaiig thir umbr-thortic origis. O such thorm is th followig.

3 THE GRAPHIC NATURE OF GAUSSIAN PERIODS 3 Nam Exrssio G A Gauss d 1 ˆ gkl`j η j l0 Z{Z ozro kth owrs mod Ramauja c xq j1 j,q1 1 Kloostrma K a, bq l0 ˆ jx al ` bl 1 ˆ al Hilbro H aq l0 2 Z{Z Z{Zqˆ " j * u 0 Z{Zq 2 0 u 1 : u P Z{Zqˆ Z{ 2 Z ozro th owrs mod 2 Tabl 1. Gaussia riods, Ramauja sums, Kloostrma sums, ad Hilbro sums aar as surcharactrs arisig from th actio of a subgrou A of Aut G for a suitabl ablia grou G. Hr dots a odd rim umbr. Thorm 1.1. Suos that q a is a odd rim owr ad that σ X is a cyclic surcharactr of Z{qZ. If X d is rim ad d, th th imag of σ X is boudd by th d-cusd hyocycloid aramtrizd by θ ÞÑ d 1q iθ ` id 1qθ. I fact, for a fixd rim m, as th modulus q 1 mod dq tds to ifiity th corrsodig surcharactr imags bcom ds i th filld hyocycloid i a ss that will b mad rcis i Sctio 6 (s Figurs 2 ad 9). (a) 2791, A x800y (b) 27011, A x9360y (c) , A x61576y Figur 2. Grahs of cyclic surcharactrs σ X : Z{Z Ñ C whr X A1. Th rcdig rsult is itslf a scial cas of a much mor gral thorm (Thorm 6.3) which rlats th asymtotic bhavior of cyclic surcharactr lots to th maig rortis of crtai multivariat Laurt olyomials, rgardd as comlx-valud fuctios o suitabl high-dimsioal tori. 2. Multilicativity ad stig lots Our first ordr of busiss is to dtrmi wh ad i what mar th imag of o cyclic surcharactr lot ca aar i aothr. Crtai cyclic surcharactrs

4 4 W. DUKE, S. R. GARCIA, AND BOB LUTZ hav a aturally multilicativ structur. Wh combid with Proositio 2.4 ad th discussio i Sctio 6, th followig rsult rovids a comlt ictur of ths surcharactrs. Followig th itroductio, w lt X Ar dot th orbit of r i Z{Z udr th actio of a cyclic subgrou A of Z{Zqˆ. Thorm 2.1. Lt σ X b a cyclic surcharactr of Z{Z, writig ś k j1 aj j i stadard form ad X xωy. For ach j, lt ψ j : Z{Z Ñ Z{ aj j Z b th atural homomorhism, lt x j b th multilicativ ivrs of { aj j mod aj j q, ad writ X j xψ j ωqyx j ψ j rq. If th orbit sizs X j ar airwis corim, th σ X yq kź σ Xj `ψj yq. j1 Proof. W rov th thorm for 1 2 a roduct of distict rims; th gral argumt is similar. Lt ψ ψ 1, ψ 2 q b th rig isomorhism giv by th Chis Rmaidr Thorm, ad lt d X, d 1 ψ 1 Xq ad d 2 ψ 2 Xq. W hav σ X1`ψ1 yq σ X2`ψ2 yq d 1 1 j0 d 1 1 j0 d 1 1 j0 d 1 1 j0 d 1 l0 ˆψ1 ω j ryqx 1 d 2 1 k0 d 2 1 k0 d 2 1 k0 1 d2 1 k0 ˆψ2 ω k ryqx 2 2 ˆψ1 ω j ryqx 1 ` ψ2ω k ryqx ψ 1`ψ 1 ω j ryq, ψ 2 ω ryq k ψ 1`ψ 1 ωq j, ψ 2 ωq k ry ˆωl ry σ X yq. Th followig asy rsult tlls us that w obsrv all ossibl grahical bhavior, u to scalig, by studyig cass whr r 1 (i.., whr X A as sts). Proositio 2.2. Lt r blog to Z{Z, ad suos that r, q d for som ositiv divisor d of, so that ξ rd is a uit modulo. Also lt ψ : Z{Z Ñ Z{dZ b th atural homomorhism. (i) Th imags of σ Ar, σ Ar,q, ad σ ψd Aq1 ar qual. (ii) Th imag i (i), wh scald by A ψ d Aq, is a subst of th imag of σ Aξ. Examl 2.3. Lt Each lot i Figur 3 dislays th imag of a diffrt cyclic surcharactr σ X, whr X x319yr. If d r{, rq, th Proositio 2.2(i) says that ach imag quals that of a cyclic surcharactr σ X 1 of Z{dZ, whr X 1 xψ d 319qy1. Proositio 2.2(ii) says that ach sts i th imag i Figur 3(f).

5 THE GRAPHIC NATURE OF GAUSSIAN PERIODS 5 (a) r 37 (b) r 7 (c) r 5 (d) r 3 () r 4 (f) r 1 Figur 3. Grahs of cyclic surcharactrs σ X of Z{62160Z, whr X x319yr. Each imag sts i Figur 3(f), as r Proositio 2.2(ii). S Figur 1 for a brif discussio of colorizatio. Bcaus of Thorm 2.1, w ar mostly itrstd i rim owr moduli. Th followig rsult imlis that th imag of ay cyclic surcharactr o Z{ a Z is a scald coy of o whos boudary is giv by Thorm 6.3. Proositio 2.4. Lt b a odd rim, a ą b ogativ itgrs, ad ψ th atural homomorhism from Z{ a Z to Z{ a b Z. If σ X is a cyclic surcharactr of Z{ a b Z, whr X A1 with bˇˇ X ad a b 1 mod ϕxq q, th σ X Z{ a Zq t0u Y b σ ϕxq Z{ a b Zq. Proof. Lt k 1q. If X k b, th A ψ 1 A 1 q, whr A 1 is th uiqu subgrou of Z{ a b Zqˆ of ordr k. Lt X 1 A 1 1 (i.., X 1 ϕxq), so that W hav X tx ` j a b : x P X 1, j 0, 1,..., b 1u. σ X yq b 1 xpx 1 j0 b 1 j0 ˆjy b ˆx ` j a b qy xpx 1 a ˆxy a # b σ X 1ψyqq, if b y 0, ls.

6 6 W. DUKE, S. R. GARCIA, AND BOB LUTZ 3. Symmtris W say that a cyclic surcharactr σ X : Z{Z Ñ C has k-fold dihdral symmtry if its imag is ivariat udr th atural actio of th dihdral grou of ordr 2k. I othr words, σ X has k-fold dihdral symmtry if its imag is ivariat udr comlx cojugatio ad rotatio by 2π{k about th origi. If X is th orbit of r, whr r, q d for som odd divisor d of, th σ X is grally asymmtric about th imagiary axis, as vidcd by Figur 4. (a) 68913, A x88y (b) 20485, A x4609y (c) 51319, A x138y (d) 51319, A x27y () 44161, A x608y (f) N 16383, A x2y Figur 4. Grahs of σ X : Z{Z Ñ C, whr X Ar, fixig r 1 (clos isctio rvals that (E) joys o rotatioal symmtry). Proositio 3.1. If σ X is a cyclic surcharactr of Z{Z, whr X xωyr, th σ X has ω 1, q-fold dihdral symmtry. r,q Proof. Lt d {r, q. If k ω 1, dq, th ω, ad hc vry lmt of xωy, has th form jk ` 1. Sic r ξ{d for som uit ξ, ach x i X has th form ξ{dqjk ` 1q. If y 1 y ` d{k, th y 1 y d{k 0 mod q, i which cas It follows that whc ξ d jk ` 1q ˆ y 1 y d k 0 mod q. ˆξ jk ` 1q `y1 y ξ 0 mod q, d k ξ d jk ` 1qy1 ξ d jk ` 1qy ` ξ jk ` 1q k mod q

7 THE GRAPHIC NATURE OF GAUSSIAN PERIODS 7 ξ ξ jk ` 1qy ` mod q, d k Sic th fuctio is riodic with riod 1, w hav ˆ ˆ xy 1 ˆ xy ` ξ{k xy ξ. k xpx xpx xpx I othr words, th imag of σx is ivariat udr coutrclockwis rotatio by 2πξ{k about th origi. If mξ 1 mod kq, th th grah is also ivariat udr coutrclockwis rotatio by m 2πξ{k 2π{k. Dihdral symmtry follows, sic for all y i Z{Z, th th imag of σx cotais both σx yq ad σx yq σx yq. Examl 3.2. For m 1, 2, 3, 4, 6, 8, 12, lt Xm dot th orbit of 1 udr th actio of x4609y o Z{20485mqZ. Cosidr th cyclic surcharactr σx1, whos grah aars i Figur 4(b). W hav 20485, 4608q , q 1, so Thorm 3.1 guarats that σx1 has 1-fold dihdral symmtry. It is visibly aart that σx has o rotatioal symmtry. Figurs 5(a) to 5(f) dislay th grahs of σxm i th cass m 1. For ach such m, th grah of σxm cotais a scald coy of σx1 by Thorm 2.2 ad has m-fold dihdral symmtry by Thorm 3.1, sic 20485m, 4608q m. It is vidt from th associatd figurs that m is maximal i ach cas, i th ss that σxm havig k-fold dihdral symmtry imlis k ď m. (a) (b) (c) (d) () (f) Figur 5. Grahs of cyclic surcharactrs σx of Z{Z, whr X x4609y1. O ca roduc dihdrally symmtric imags cotaiig th o i Figur 4(b), ach rotatd coy of which is colord diffrtly.

8 8 W. DUKE, S. R. GARCIA, AND BOB LUTZ 4. Ral ad imagiary surcharactrs Th imags of som cyclic surcharactrs ar substs of th ral axis. May othrs ar substs of th uio of th ral ad imagiary axs. I this sctio, w stablish sufficit coditios for ach situatio to occur ad rovid xlicit valuatios i crtai cass. Lt σ X b a cyclic surcharactr of Z{Z, whr X Ar. If A cotais 1, th it is immdiat from (1) that σ X is ral-valud. Examl 4.1. Lt X b th orbit of 3 udr th actio of x164y o Z{855Z. Sic mod q, it follows that σ X is ral-valud, as suggstd by Figur 6(a). Examl 4.2. If A x 1y ad X Ar whr r 2, th X t r, ru ad σ X yq 2 cos2πry{q. Figur 6(b) illustrats this situatio. (a) 855, A x164y (b) 105, A x104y (c) 121, A x94y Figur 6. Grahs of cyclic surcharactrs σ X of Z{Z, whr X A1. Each σ X is ral-valud, sic ach A cotais 1. W tur our atttio to cyclic surcharactrs whos valus, if ot ral, ar urly imagiary (s Figur 7). To this d, w itroduc th followig otatio. Lt k b a ositiv divisor of, ad suos that I this situatio, w hav A xj 0 {k 1y, for som 1 ď j 0 ă k. (2) j 0 {k 1q m 1q m `mod k, so that vry lmt of A has ithr th form j k ` 1 or j k 1, whr 0 ď j ă k. I this situatio, w writ A tj{k ` 1 : j P J`u Y tj{k 1 : j P J u (3) for som substs J` ad J of t0, 1,..., k 1u. Th coditio (3) is vacuous if k. Howvr, if k ă ad j 0 ą 1 (i.., if A is otrivial), th it follows that 1q A 1 mod k q, whc A is v. I articular, this imlis J` J. Th substs J` ad J ar ot cssarily disjoit. For istac, if A x 1y t 1, 1u, th (3) holds whr k 1 ad J` J t0u. I gral, J` must cotai 0, sic A must cotai 1. Th followig rsult is tyical of thos obtaid by imosig rstrictios o J` ad J. Proositio 4.3. Lt σ X b a cyclic surcharactr of Z{Z, whr X Ar, ad suos that (3) holds, whr k is v ad J k 2 J`. (i) If r is v, th th imag of σ X is a subst of th ral axis. (ii) If r is odd, th σ X yq is ral whvr y is v ad urly imagiary whvr y is odd. Proof. Each x i X has th form j{k ` 1qr or k{2 jq {k ` 1q r. If y 2m for som itgr m, th for vry summad xy{q i th dfiitio of σ X yq havig th form 2mj{k ` 1qr{q, thr is o of th form 2m{2 j{k ` 1qr{q, its comlx cojugat. From this w dduc that σ X yq is ral whvr y is v. If y 2m ` 1, th for vry summad of th form 2m ` 1q j{k ` 1q r{q, thr

9 THE GRAPHIC NATURE OF GAUSSIAN PERIODS 9 is o of th form 2m ` 1q{2 j{k ` 1qr{q. If r is odd, th th lattr is th formr rflctd across th imagiary axis, i which cas σ X yq is urly imagiary. If r is v, th th lattr is th cojugat of th formr, whc σ X yq is ral. (a) 912, A x71y (b) 400, A x39y (c) 552, A x275y Figur 7. Grahs of cyclic surcharactrs σ X : Z{Z Ñ C whos valus ar ithr ral or urly imagiary. Examl 4.4. I th cas of Figur 7(a), w hav 912, r 1, k 38, j 0 3, J` t0, 2, 12, 16, 20, 22, 24, 26, 32u, ad J t3, 7, 17, 19, 25, 31, 33, 35, 37u, so th hyothss of Proositio 4.3(ii) hold. A xlicit valuatio of σ X is availabl if J` Y J t0, 1,..., k 1u. Th followig rsult, rstd without roof, trats this situatio (s Figur 7(b)). Proositio 4.5. Suos that k ą 2 is v, ad that (3) holds whr J` is th st of all v rsidus modulo k ad J is th st of all odd rsidus. If X is th orbit of a uit r udr th actio of A o Z{Z, th $ & k cos 2πry if k y, σ X yq ik si 2πry if y k 2 mod kq, % 0 othrwis. 5. Elliss Discrtizd lliss aar frqutly i th grahs of cyclic surcharactrs. Ths, i tur, form rimitiv lmts from which mor comlicatd surcharactr lots mrg. I ordr to rocd, w rcall th dfiitio of a Gauss sum. Suos that m ad k ar itgrs with k ą 0. If χ is a Dirichlt charactr modulo k, th th Gauss sum associatd with χ is giv by k Gm, χq l1 χlq ˆlm k If is rim, th quadratic Gauss sum gm; q ovr Z{Z is giv by gm; q gm, χq, whr χaq is th Lgdr symbol of a ad. That is, a gm; q k 1 l0 2 ˆml..

10 10 W. DUKE, S. R. GARCIA, AND BOB LUTZ W rquir th followig wll-kow rsult [3, Thm ]. Lmma 5.1. If 1 mod 4q is rim ad m, q 1, th ˆm?. gm; q Proositio 5.2. Suos that ad 1 mod 4q is rim. Lt ˆm Q tm P Z{Z : 1u dot th st of distict ozro quadratic rsidus modulo. If (3) holds whr J` taq ` b : q P Q u ad J tcq b : q P Q u (4) c for itgrs a, b, c corim to with, th σ X yq blogs to th ral a itrval r1, 1s whvr y, ad othrwis blogs to th llis dscribd by th quatio R zq 2 ` Im zq 2 { 1. Proof. For all y i Z{Z, w hav σ X yq xy xpa 1 j ` y ` jpj` jpj ˆaq ` bqy ` y ` qpq ˆby ` y ˆaqy ` whr θ y b`qy 1q{2 θ y q σ X yq l1 1q 2 qpq ˆal 2 y j qpq 1q{2 ` θ y q 1qy ˆcq bqy y ˆ by y l1. If y, th θ y q y q ad al2 y ˆ y ` If ot, th, yq 1 so that Lmma 5.1 yilds ˆcl 2 y qpq, ˆcqy q cl2 y q 1, so y 1q cos 2πy. σ X yq θ yq gay; q 1q ` θ y qgcy; q 1q 2 θ yqgay; q ` θ y qgcy; q cos 2πθ y? 2 ˆˆay ˆcy θ 2 y q ` θ y q cos 2πθ y? ˆy θ y q θ y q cos 2πθ y 2 ˆy? i si 2πθy cos 2πθ y,

11 THE GRAPHIC NATURE OF GAUSSIAN PERIODS 11 (a) 1535, A x613y (b) 559, A x171y (c) 770, A x153y (d) , A x613y () , A x171y (f) , A x1693y Figur 8. Grahs of cyclic surcharactrs σ X of Z{Z, whr X A1. Proositios 2.2, 3.1 ad 5.2 ca b usd to roduc surcharactrs whos imags fatur llitical attrs. Examl 5.3. Lt d ad cosidr th orbit X of r 1 udr th actio of A x63y x 17 1y o Z{Z. I this situatio, illustratd by Figur 8(a), (3) holds with J` t0, 4u 2Q 5 ` 2 ad J t2, 4u Q 17 ` 3. Figur 8(b) illustrats th situatio J` Q 13 ` 3 ad J 2Q 13 3, whil Figur 8(c) illustrats J` Q 5 `1 ad J 2Q 2 1. Th rmaidr of Figur 8 dmostrats th ffct of usig Proositios 2.2, 3.1 ad 5.2 to roduc surcharactrs whos imags fatur lliss. 6. Asymtotic bhavior W ow tur our atttio to a tirly diffrt mattr, amly th asymtotic bhavior of cyclic surcharactr lots. To this d w bgi by rcallig svral dfiitios ad rsults cocrig uiform distributio modulo 1. Th discrcy of a fiit subst S of r0, 1q m is th quatity DSq su B ˇ B X S S µbq ˇ, whr th surmum rus ovr all boxs B ra 1, b 1 qˆ ˆra m, b m q ad µ dots m-dimsioal Lbsgu masur. W say that a squc S of fiit substs of r0, 1q d is uiformly distributd if lim Ñ8 DS q 0. If S is a squc of fiit substs i R m, w say that S is uiformly distributd mod 1 if th corrsodig squc of sts tx 1 u, tx 2 u,..., tx d uq : x 1, x 2,..., x m q P S ( is uiformly distributd i r0, 1q m. Hr txu dots th fractioal art x txu of a ral umbr x. Th followig fudamtal rsult is du to H. Wyl [13].

12 12 W. DUKE, S. R. GARCIA, AND BOB LUTZ Lmma 6.1. A squc of fiit sts S i R m is uiformly distributd modulo 1 if ad oly if 1 lim u vq 0 Ñ8 S ups for ach v i Z m. I th followig, w suos that q a is a ozro owr of a odd rim ad that X d is a divisor of 1. Lt ω q dot a rimitiv dth root of uity modulo q ad lt " * l S q q 1, ω q, ωq, 2..., ωq ϕdq 1 q : l 0, 1,..., q 1 Ď r0, 1q ϕdq whr ϕ dots th Eulr totit fuctio. Th followig lmma of Myrso, whos roof w hav adatd to suit our otatio, ca b foud i [11, Thm. 12]. Lmma 6.2. Th sts S q for q 1 mod dq ar uiformly distributd modulo 1. Proof. Fix a ozro vctor v a 0, a 1,..., a ϕdq 1 q i Z ϕdq ad lt Lt r q{q, fω q qq, ad obsrv that ftq a 0 ` a 1 t ` ` a ϕdq 1 t ϕdq 1. ups q u vq q 1 l0 ˆfωq ql q q{r 1 m`1qr 1 ˆfωq ql r m0 lmr q r 1 ˆfωq ql r r l0 # q if q fω q q, 0 ls. Havig fixd d ad v, w claim that th sum abov is ozro for oly fiitly may q 1 mod dq. Lttig Φ d dot th dth cyclotomic olyomial, rcall that dg Φ d ϕdq ad that Φ d is th miimal olyomial of ay rimitiv dth root of uity. Clarly th gcd of ftq ad Φ d tq as olyomials i Qrts is i Z. Thus thr xist atq ad btq i Zrts so that atqφ d tq ` btqftq for som itgr. Passig to Z{qZ ad lttig t ω q, w fid that bω q qfω q q mod q. This mas that q fω q q imlis that q, which ca occur for oly fiitly may rim owrs q. Puttig this all togthr, w fid that lim qñ8 q 1 mod dq 1 S q ups q u vq 0 holds for all v i Z ϕdq. By Wyl s Critrio, it follows that th sts S q ar uiformly distributd mod 1 as q 1 mod dq tds to ifiity.

13 THE GRAPHIC NATURE OF GAUSSIAN PERIODS 13 Thorm 6.3. Lt σ X b a cyclic surcharactr of Z{qZ, whr q a is a ozro owr of a odd rim. If X A1 ad X d divids 1, th th imag of σ X is cotaid i th imag of th fuctio g : r0, 1q ϕdq Ñ C dfid by gz 1, z 2,..., z ϕdq q whr th itgrs b k,j ar giv by t k ϕdq 1 j0 d 1 k0 ϕdq 1 ź j0 z b k,j j`1 (5) b k,j t j mod Φ d tqq. (6) For a fixd d, as q bcoms larg, th imag of σ X fills out th imag of g, i th ss that, giv ɛ ą 0, thr xists som q 1 mod dq such that if σ X : Z{qZ Ñ C is a cyclic surcharactr with X d, th vry o ball of radius ɛ ą 0 i th imag of g has omty itrsctio with th imag of σ X. Proof. Lt ω q b a rimitiv dth root of uity modulo q, so that A xω q y i Z{qZqˆ. Rcall that t1, 1 ϕdq 1 dq,..., d qu is a Z-basis for th rig of itgrs of th cyclotomic fild Q 1 dqq [12, Pro. 10.2]. For k 0, 1,..., d 1, th itgrs b k,j i th xrssio ϕdq 1 ˆk ˆ j b k,j, d d j0 ar dtrmid by (6). I articular, it follows that W hav xpx ω k ϕdq 1 j0 σ X yq d 1 ˆxy q k0 b k,j ω j ωk mod q. d 1 k0 ϕdq 1 j0 ωl j b k,j, from which it follows that th imag of σ X is cotaid i th imag of th fuctio g : T ϕdq Ñ C dfid by (5). Th dsity claim ow follows from Lmma 6.2. I combiatio with Proositios 2.2 ad 2.4, th rcdig thorm charactrizs th boudary curvs of cyclic surcharactrs with rim owr moduli. If d is v, th X is closd udr gatio, so σ X is ral. If d a whr is a odd rim, th g : T ϕaq Ñ C is giv by gz 1, z 2,, z ϕdq q ϕdq j1 z j ` a 1 2 ź j1 l0 z 1 j`l a 1. A articularly cocrt maifstatio of our rsult is Thorm 1.1, whos roof w rst blow. Rcall that a hyocycloid is a laar curv obtaid by tracig th ath of a distiguishd oit o a small circl which rolls withi a largr circl. Rollig a circl of itgral radius λ withi a circl of itgral radius κ, whr κ ą λ, yilds th aramtrizatio θ ÞÑ κ λq iθ ` λ 1 κ{λqiθ of th hyocycloid ctrd at th origi, cotaiig th oit κ, ad havig rcisly κ cuss.

14 14 W. DUKE, S. R. GARCIA, AND BOB LUTZ (a) 2017, A x294y (b) 32587, A x10922y (c) , A x35098y (d) 4019, A x1551y () 32173, A x3223y (f) , A x11073y Figur 9. Cyclic surcharactrs σ X of Z{Z, whr X A1, whos grahs fill out X -hyocycloids. Pf. of Thm Comutig th cofficits b k,j from (6) w fid that b k,j δ kj for k 0, 1,..., d 2, ad b d 1,j 1 for all j, from which (5) yilds gz 1, z 2,..., z d 1 q z 1 ` z 2 `... ` z d 1 ` 1 z 1 z 2 z d 1. Th imag of th fuctio g : T d 1 Ñ C dfid abov is th filld hyocycloid corrsodig to th aramtrs κ d ad λ 1, as obsrvd i [9, 3]. Rfrcs [1] Carlos A. M. Adré. Th basic charactr tabl of th uitriagular grou. J. Algbra, 241(1): , [2] Carlos A. M. Adré. Basic charactrs of th uitriagular grou (for arbitrary rims). Proc. Amr. Math. Soc., 130(7): (lctroic), [3] Bruc C. Brdt, Roald J. Evas, ad Kth S. Williams. Gauss ad Jacobi sums. Caadia Mathmatical Socity Sris of Moograhs ad Advacd Txts. Joh Wily & Sos Ic., Nw York, A Wily-Itrscic Publicatio. [4] J.L. Brumbaugh, Madli Bulkow, Patrick S. Flmig, Luis Albrto Garcia, Stha Ramo Garcia, Gizm Karaali, Matthw Michal, ad Adrw P. Turr. Surcharactrs, xotial sums, ad th ucrtaity ricil. (rrit) htt://arxiv.org/abs/ [5] Harold Davort. Multilicativ umbr thory, volum 74 of Graduat Txts i Mathmatics. Srigr-Vrlag, Nw York, third ditio, [6] Prsi Diacois ad I. M. Isaacs. Surcharactrs ad surclasss for algbra grous. Tras. Amr. Math. Soc., 360(5): , [7] P.S. Flmig, S.R. Garcia, ad G. Karaali. Classical Kloostrma sums: rrstatio thory, magic squars, ad Ramauja multigrahs. J. Numbr Thory, 131(4): , 2011.

15 THE GRAPHIC NATURE OF GAUSSIAN PERIODS 15 [8] Christohr Fowlr, Stha Ramo Garcia, ad Gizm Karaali. Ramauja sums as surcharactrs. Ramauja J. (i rss) htt://arxiv.org/abs/ [9] N. Kaisr. Ma igvalus for siml, simly coctd, comact Li grous. J. Phys. A, 39(49): , [10] D. H. Lhmr ad Emma Lhmr. Cyclotomy with short riods. Math. Com., 41(164): , [11] Grald Myrso. A combiatorial roblm i fiit filds. II. Quart. J. Math. Oxford Sr. (2), 31(122): , [12] Jürg Nukirch. Algbraic umbr thory, volum 322 of Grudlhr dr Mathmatisch Wissschaft. Srigr-Vrlag, Brli, Traslatd from th 1992 Grma origial ad with a ot by Norbrt Schaachr, With a forword by G. Hardr. [13] H. Wyl. Übr di Glichvrtilug vo Zahl mod. Eis. Math. A., 77(3): , Dartmt of Mathmatics, UCLA, Los Agls, Califoria, , USA addrss: wdduk@ucla.du URL: htt:// Dartmt of Mathmatics, Pomoa Collg, Clarmot, Califoria, 91711, USA addrss: Stha.Garcia@omoa.du URL: htt://ags.omoa.du/~sg Currt addrss: Dartmt of Mathmatics, Uivrsity of Michiga, 2074 East Hall, 530 Church Strt, A Arbor, MI addrss: boblutz@umich.du

arxiv: v5 [math.nt] 14 Apr 2014

arxiv: v5 [math.nt] 14 Apr 2014 THE GRAPHIC NATURE OF GAUSSIAN PERIODS WILLIAM DUKE, STEPHAN RAMON GARCIA, AND BOB LUTZ arxiv:1212.6825v5 [math.nt] 14 Ar 2014 Abstract. Rct work has show that th study of surcharactrs o Ablia grous rovids

More information

The Graphic Nature of Gaussian Periods

The Graphic Nature of Gaussian Periods Clarmot Collgs Scholarshi @ Clarmot Pomoa Faculty Publicatios a Rsarch Pomoa Faculty Scholarshi 1-1-2013 Th Grahic Natur of Gaussia Prios William Duk Stha Ramo Garcia Pomoa Collg Bob Lutz '13 Pomoa Collg

More information

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple 5/24/5 A PROOF OF THE CONTINUED FRACTION EXPANSION OF / Thomas J Oslr INTRODUCTION This ar givs aothr roof for th rmarkabl siml cotiud fractio = 3 5 / Hr is ay ositiv umbr W us th otatio x= [ a; a, a2,

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

SCHUR S THEOREM REU SUMMER 2005

SCHUR S THEOREM REU SUMMER 2005 SCHUR S THEOREM REU SUMMER 2005 1. Combinatorial aroach Prhas th first rsult in th subjct blongs to I. Schur and dats back to 1916. On of his motivation was to study th local vrsion of th famous quation

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms Math Sci Ltt Vol No 8-87 (0) adamard Exotial al Matrix, Its Eigvalus ad Som Norms İ ad M bula Mathmatical Scics Lttrs Itratioal Joural @ 0 NSP Natural Scics Publishig Cor Dartmt of Mathmatics, aculty of

More information

Restricted Factorial And A Remark On The Reduced Residue Classes

Restricted Factorial And A Remark On The Reduced Residue Classes Applid Mathmatics E-Nots, 162016, 244-250 c ISSN 1607-2510 Availabl fr at mirror sits of http://www.math.thu.du.tw/ am/ Rstrictd Factorial Ad A Rmark O Th Rducd Rsidu Classs Mhdi Hassai Rcivd 26 March

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

(Reference: sections in Silberberg 5 th ed.)

(Reference: sections in Silberberg 5 th ed.) ALE. Atomic Structur Nam HEM K. Marr Tam No. Sctio What is a atom? What is th structur of a atom? Th Modl th structur of a atom (Rfrc: sctios.4 -. i Silbrbrg 5 th d.) Th subatomic articls that chmists

More information

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

DFT: Discrete Fourier Transform

DFT: Discrete Fourier Transform : Discrt Fourir Trasform Cogruc (Itgr modulo m) I this sctio, all lttrs stad for itgrs. gcd m, = th gratst commo divisor of ad m Lt d = gcd(,m) All th liar combiatios r s m of ad m ar multils of d. a b

More information

INCOMPLETE KLOOSTERMAN SUMS AND MULTIPLICATIVE INVERSES IN SHORT INTERVALS. xy 1 (mod p), (x, y) I (j)

INCOMPLETE KLOOSTERMAN SUMS AND MULTIPLICATIVE INVERSES IN SHORT INTERVALS. xy 1 (mod p), (x, y) I (j) INCOMPLETE KLOOSTERMAN SUMS AND MULTIPLICATIVE INVERSES IN SHORT INTERVALS T D BROWNING AND A HAYNES Abstract W invstigat th solubility of th congrunc xy (mod ), whr is a rim and x, y ar rstrictd to li

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES Digst Joural of Naomatrials ad Biostructurs Vol 4, No, March 009, p 67-76 NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES A IRANMANESH a*, O KHORMALI b, I NAJAFI KHALILSARAEE c, B SOLEIMANI

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

The Interplay between l-max, l-min, p-max and p-min Stable Distributions

The Interplay between l-max, l-min, p-max and p-min Stable Distributions DOI: 0.545/mjis.05.4006 Th Itrplay btw lma lmi pma ad pmi Stabl Distributios S Ravi ad TS Mavitha Dpartmt of Studis i Statistics Uivrsity of Mysor Maasagagotri Mysuru 570006 Idia. Email:ravi@statistics.uimysor.ac.i

More information

THERMAL STATES IN THE k-generalized HYPERGEOMETRIC COHERENT STATES REPRESENTATION

THERMAL STATES IN THE k-generalized HYPERGEOMETRIC COHERENT STATES REPRESENTATION THE PULISHING HOUSE PROCEEDINGS O THE ROMNIN CDEMY Sris O THE ROMNIN CDEMY Volum 9 Numbr 3/8 43 438 THERML STTES IN THE -GENERLIED HYPERGEOMETRIC COHERENT STTES REPRESENTTION Duša POPOV Uivrsity Polithica

More information

Law of large numbers

Law of large numbers Law of larg umbrs Saya Mukhrj W rvisit th law of larg umbrs ad study i som dtail two typs of law of larg umbrs ( 0 = lim S ) p ε ε > 0, Wak law of larrg umbrs [ ] S = ω : lim = p, Strog law of larg umbrs

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

Folding of Hyperbolic Manifolds

Folding of Hyperbolic Manifolds It. J. Cotmp. Math. Scics, Vol. 7, 0, o. 6, 79-799 Foldig of Hyprbolic Maifolds H. I. Attiya Basic Scic Dpartmt, Collg of Idustrial Educatio BANE - SUEF Uivrsity, Egypt hala_attiya005@yahoo.com Abstract

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

Independent Domination in Line Graphs

Independent Domination in Line Graphs Itratoal Joural of Sctfc & Egrg Rsarch Volum 3 Issu 6 Ju-1 1 ISSN 9-5518 Iddt Domato L Grahs M H Muddbhal ad D Basavarajaa Abstract - For ay grah G th l grah L G H s th trscto grah Thus th vrtcs of LG

More information

DISTRIBUTION OF DIFFERENCE BETWEEN INVERSES OF CONSECUTIVE INTEGERS MODULO P

DISTRIBUTION OF DIFFERENCE BETWEEN INVERSES OF CONSECUTIVE INTEGERS MODULO P DISTRIBUTION OF DIFFERENCE BETWEEN INVERSES OF CONSECUTIVE INTEGERS MODULO P Tsz Ho Chan Dartmnt of Mathmatics, Cas Wstrn Rsrv Univrsity, Clvland, OH 4406, USA txc50@cwru.du Rcivd: /9/03, Rvisd: /9/04,

More information

Cross-Sections for p-adically Closed Fields

Cross-Sections for p-adically Closed Fields JOURNAL OF ALGEBRA 183, 913928 1996 ARTICLE NO. 0244 Cross-Sctios for -Adically Closd Filds Phili Scowcroft* Wslya Uirsity, iddltow, Cocticut 06459 Couicatd by Loard Lishitz Rcivd Dcbr 1994 INTRODUCTION

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

Narayana IIT Academy

Narayana IIT Academy INDIA Sc: LT-IIT-SPARK Dat: 9--8 6_P Max.Mars: 86 KEY SHEET PHYSIS A 5 D 6 7 A,B 8 B,D 9 A,B A,,D A,B, A,B B, A,B 5 A 6 D 7 8 A HEMISTRY 9 A B D B B 5 A,B,,D 6 A,,D 7 B,,D 8 A,B,,D 9 A,B, A,B, A,B,,D A,B,

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

UNIT 2: MATHEMATICAL ENVIRONMENT

UNIT 2: MATHEMATICAL ENVIRONMENT UNIT : MATHEMATICAL ENVIRONMENT. Itroductio This uit itroducs som basic mathmatical cocpts ad rlats thm to th otatio usd i th cours. Wh ou hav workd through this uit ou should: apprciat that a mathmatical

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 07 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat

More information

15/03/1439. Lectures on Signals & systems Engineering

15/03/1439. Lectures on Signals & systems Engineering Lcturs o Sigals & syms Egirig Dsigd ad Prd by Dr. Ayma Elshawy Elsfy Dpt. of Syms & Computr Eg. Al-Azhar Uivrsity Email : aymalshawy@yahoo.com A sigal ca b rprd as a liar combiatio of basic sigals. Th

More information

GALOIS STRUCTURE ON INTEGRAL VALUED POLYNOMIALS

GALOIS STRUCTURE ON INTEGRAL VALUED POLYNOMIALS GALOIS STRUCTURE ON INTEGRAL VALUED POLYNOMIALS BAHAR HEIDARYAN, MATTEO LONGO, AND GIULIO PERUGINELLI Abstract. W charactriz finit Galois xtnsions K of th fild of rational numbrs in trms of th rings Int

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

MATH 681 Notes Combinatorics and Graph Theory I. ( 4) n. This will actually turn out to be marvelously simplifiable: C n = 2 ( 4) n n + 1. ) (n + 1)!

MATH 681 Notes Combinatorics and Graph Theory I. ( 4) n. This will actually turn out to be marvelously simplifiable: C n = 2 ( 4) n n + 1. ) (n + 1)! MATH 681 Nots Combiatorics ad Graph Thory I 1 Catala umbrs Prviously, w usd gratig fuctios to discovr th closd form C = ( 1/ +1) ( 4). This will actually tur out to b marvlously simplifiabl: ( ) 1/ C =

More information

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation.

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation. MAT 444 H Barclo Spring 004 Homwork 6 Solutions Sction 6 Lt H b a subgroup of a group G Thn H oprats on G by lft multiplication Dscrib th orbits for this opration Th orbits of G ar th right costs of H

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

Further Results on Pair Sum Graphs

Further Results on Pair Sum Graphs Applid Mathmatis, 0,, 67-75 http://dx.doi.org/0.46/am.0.04 Publishd Oli Marh 0 (http://www.sirp.org/joural/am) Furthr Rsults o Pair Sum Graphs Raja Poraj, Jyaraj Vijaya Xavir Parthipa, Rukhmoi Kala Dpartmt

More information

FORBIDDING RAINBOW-COLORED STARS

FORBIDDING RAINBOW-COLORED STARS FORBIDDING RAINBOW-COLORED STARS CARLOS HOPPEN, HANNO LEFMANN, KNUT ODERMANN, AND JULIANA SANCHES Abstract. W cosidr a xtrmal problm motivatd by a papr of Balogh [J. Balogh, A rmark o th umbr of dg colorigs

More information

Limiting value of higher Mahler measure

Limiting value of higher Mahler measure Limiting valu of highr Mahlr masur Arunabha Biswas a, Chris Monico a, a Dpartmnt of Mathmatics & Statistics, Txas Tch Univrsity, Lubbock, TX 7949, USA Abstract W considr th k-highr Mahlr masur m k P )

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim and n a positiv intgr, lt ν p (n dnot th xponnt of p in n, and u p (n n/p νp(n th unit part of n. If α

More information

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

On Deterministic Finite Automata and Syntactic Monoid Size, Continued

On Deterministic Finite Automata and Syntactic Monoid Size, Continued O Dtrmiistic Fiit Automata ad Sytactic Mooid Siz, Cotiud Markus Holzr ad Barbara Köig Istitut für Iformatik, Tchisch Uivrsität Müch, Boltzmastraß 3, D-85748 Garchig bi Müch, Grmay mail: {holzr,koigb}@iformatik.tu-much.d

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

That is, we start with a general matrix: And end with a simpler matrix:

That is, we start with a general matrix: And end with a simpler matrix: DIAGON ALIZATION OF THE STR ESS TEN SOR INTRO DUCTIO N By th us of Cauchy s thorm w ar abl to rduc th numbr of strss componnts in th strss tnsor to only nin valus. An additional simplification of th strss

More information

International Journal of Advanced and Applied Sciences

International Journal of Advanced and Applied Sciences Itratioal Joural of Advacd ad Applid Scics x(x) xxxx Pags: xx xx Cotts lists availabl at Scic Gat Itratioal Joural of Advacd ad Applid Scics Joural hompag: http://wwwscic gatcom/ijaashtml Symmtric Fuctios

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

A Review of Complex Arithmetic

A Review of Complex Arithmetic /0/005 Rviw of omplx Arithmti.do /9 A Rviw of omplx Arithmti A omplx valu has both a ral ad imagiary ompot: { } ad Im{ } a R b so that w a xprss this omplx valu as: whr. a + b Just as a ral valu a b xprssd

More information

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C Joural of Mathatical Aalysis ISSN: 2217-3412, URL: www.ilirias.co/ja Volu 8 Issu 1 2017, Pags 156-163 SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C BURAK

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim (implicit in notation and n a positiv intgr, lt ν(n dnot th xponnt of p in n, and U(n n/p ν(n, th unit

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1 Chaptr 11 Th singular sris Rcall that by Thorms 10 and 104 togthr provid us th stimat 9 4 n 2 111 Rn = SnΓ 2 + on2, whr th singular sris Sn was dfind in Chaptr 10 as Sn = q=1 Sq q 9, with Sq = 1 a q gcda,q=1

More information

How many neutrino species?

How many neutrino species? ow may utrio scis? Two mthods for dtrmii it lium abudac i uivrs At a collidr umbr of utrio scis Exasio of th uivrs is ovrd by th Fridma quatio R R 8G tot Kc R Whr: :ubblcostat G :Gravitatioal costat 6.

More information

STIRLING'S 1 FORMULA AND ITS APPLICATION

STIRLING'S 1 FORMULA AND ITS APPLICATION MAT-KOL (Baja Luka) XXIV ()(08) 57-64 http://wwwimviblorg/dmbl/dmblhtm DOI: 075/МК80057A ISSN 0354-6969 (o) ISSN 986-588 (o) STIRLING'S FORMULA AND ITS APPLICATION Šfkt Arslaagić Sarajvo B&H Abstract:

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

Chapter 10. The singular integral Introducing S(n) and J(n)

Chapter 10. The singular integral Introducing S(n) and J(n) Chaptr Th singular intgral Our aim in this chaptr is to rplac th functions S (n) and J (n) by mor convnint xprssions; ths will b calld th singular sris S(n) and th singular intgral J(n). This will b don

More information

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 0 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat th

More information

Hardy-Littlewood Conjecture and Exceptional real Zero. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R.

Hardy-Littlewood Conjecture and Exceptional real Zero. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R. Hardy-Littlwood Conjctur and Excptional ral Zro JinHua Fi ChangLing Company of Elctronic Tchnology Baoji Shannxi P.R.China E-mail: fijinhuayoujian@msn.com Abstract. In this papr, w assum that Hardy-Littlwood

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Asmptotic xpasios ar usd i aalsis to dscrib th bhavior of a fuctio i a limitig situatio. Wh a fuctio ( x, dpds o a small paramtr, ad th solutio of

More information

arxiv: v1 [math.nt] 13 Sep 2016

arxiv: v1 [math.nt] 13 Sep 2016 EXPLICIT EVALUATION OF DOUBLE GAUSS SUMS ŞABAN ALACA AND GREG DOYLE arxiv:6090399v [mathnt] 3 S 06 Abstract W rsnt an xlicit valuation of th doubl Gauss sum G(a,b,c;S; n := n x, πis(ax +bxy+cy / n, whr

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

A Propagating Wave Packet Group Velocity Dispersion

A Propagating Wave Packet Group Velocity Dispersion Lctur 8 Phys 375 A Propagating Wav Packt Group Vlocity Disprsion Ovrviw and Motivation: In th last lctur w lookd at a localizd solution t) to th 1D fr-particl Schrödingr quation (SE) that corrsponds to

More information

[ 47 ] then T ( m ) is true for all n a. 2. The greatest integer function : [ ] is defined by selling [ x]

[ 47 ] then T ( m ) is true for all n a. 2. The greatest integer function : [ ] is defined by selling [ x] [ 47 ] Number System 1. Itroductio Pricile : Let { T ( ) : N} be a set of statemets, oe for each atural umber. If (i), T ( a ) is true for some a N ad (ii) T ( k ) is true imlies T ( k 1) is true for all

More information

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor .8 NOISE.8. Th Nyquist Nois Thorm W ow wat to tur our atttio to ois. W will start with th basic dfiitio of ois as usd i radar thory ad th discuss ois figur. Th typ of ois of itrst i radar thory is trmd

More information

#A27 INTEGERS 12 (2012) SUM-PRODUCTS ESTIMATES WITH SEVERAL SETS AND APPLICATIONS

#A27 INTEGERS 12 (2012) SUM-PRODUCTS ESTIMATES WITH SEVERAL SETS AND APPLICATIONS #A27 INTEGERS 12 (2012) SUM-PRODUCTS ESTIMATES WITH SEVERAL SETS AND APPLICATIONS Antal Balog Alfréd Rényi Institut of Mathmatics, Hungarian Acadmy of Scincs, Budast, Hungary balog@rnyihu Kvin A Broughan

More information

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

A GENERALIZED RAMANUJAN-NAGELL EQUATION RELATED TO CERTAIN STRONGLY REGULAR GRAPHS

A GENERALIZED RAMANUJAN-NAGELL EQUATION RELATED TO CERTAIN STRONGLY REGULAR GRAPHS #A35 INTEGERS 4 (204) A GENERALIZED RAMANUJAN-NAGELL EQUATION RELATED TO CERTAIN STRONGLY REGULAR GRAPHS B d Wgr Faculty of Mathmatics ad Computr Scic, Eidhov Uivrsity of Tchology, Eidhov, Th Nthrlads

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels LUR 3 illig th bads Occupacy o Availabl rgy Lvls W hav dtrmid ad a dsity o stats. W also d a way o dtrmiig i a stat is illd or ot at a giv tmpratur. h distributio o th rgis o a larg umbr o particls ad

More information

Character sums over generalized Lehmer numbers

Character sums over generalized Lehmer numbers Ma t al. Joural of Iualitis ad Applicatios 206 206:270 DOI 0.86/s3660-06-23-y R E S E A R C H Op Accss Charactr sums ovr gralizd Lhmr umbrs Yuakui Ma, Hui Ch 2, Zhzh Qi 2 ad Tiapig Zhag 2* * Corrspodc:

More information

PRIME RECIPROCALS AND PRIMES IN ARITHMETIC PROGRESSION

PRIME RECIPROCALS AND PRIMES IN ARITHMETIC PROGRESSION PRIME RECIPROCALS AND PRIMES IN ARITHMETIC PROGRESSION DANIEL LITT Abstract. This aer is a exository accout of some (very elemetary) argumets o sums of rime recirocals; though the statemets i Proositios

More information

WHAT LIES BETWEEN + AND (and beyond)? H.P.Williams

WHAT LIES BETWEEN + AND (and beyond)? H.P.Williams Working Par LSEOR 10-119 ISSN 2041-4668 (Onlin) WHAT LIES BETWEEN + AND (and byond)? HPWilliams London School of Economics hwilliams@lsacuk First ublishd in Grat Britain in 2010 by th Orational Rsarch

More information

arxiv: v1 [math.fa] 18 Feb 2016

arxiv: v1 [math.fa] 18 Feb 2016 SPECTRAL PROPERTIES OF WEIGHTE COMPOSITION OPERATORS ON THE BLOCH AN IRICHLET SPACES arxiv:60.05805v [math.fa] 8 Fb 06 TE EKLUN, MIKAEL LINSTRÖM, AN PAWE L MLECZKO Abstract. Th spctra of ivrtibl wightd

More information

Outline. Ionizing Radiation. Introduction. Ionizing radiation

Outline. Ionizing Radiation. Introduction. Ionizing radiation Outli Ioizig Radiatio Chaptr F.A. Attix, Itroductio to Radiological Physics ad Radiatio Dosimtry Radiological physics ad radiatio dosimtry Typs ad sourcs of ioizig radiatio Dscriptio of ioizig radiatio

More information

Equidistribution and Weyl s criterion

Equidistribution and Weyl s criterion Euidistribution and Wyl s critrion by Brad Hannigan-Daly W introduc th ida of a sunc of numbrs bing uidistributd (mod ), and w stat and prov a thorm of Hrmann Wyl which charactrizs such suncs. W also discuss

More information

DIOPHANTINE APPROXIMATION WITH FOUR SQUARES AND ONE K-TH POWER OF PRIMES

DIOPHANTINE APPROXIMATION WITH FOUR SQUARES AND ONE K-TH POWER OF PRIMES oural of atatical Scics: Advacs ad Alicatios Volu 6 Nubr 00 Pas -6 DOPHANNE APPROAON WH FOUR SQUARES AND ONE -H POWER OF PRES Dartt of atatics ad foratio Scic Ha Uivrsit of Ecooics ad Law Zzou 000 P. R.

More information

COMPUTING FOLRIER AND LAPLACE TRANSFORMS. Sven-Ake Gustafson. be a real-valued func'cion, defined for nonnegative arguments.

COMPUTING FOLRIER AND LAPLACE TRANSFORMS. Sven-Ake Gustafson. be a real-valued func'cion, defined for nonnegative arguments. 77 COMPUTNG FOLRER AND LAPLACE TRANSFORMS BY MEANS OF PmER SERES EVALU\TON Sv-Ak Gustafso 1. NOTATONS AND ASSUMPTONS Lt f b a ral-valud fuc'cio, dfid for ogativ argumts. W shall discuss som aspcts of th

More information

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation. Lur 7 Fourir Transforms and th Wav Euation Ovrviw and Motivation: W first discuss a fw faturs of th Fourir transform (FT), and thn w solv th initial-valu problm for th wav uation using th Fourir transform

More information

ECE594I Notes set 6: Thermal Noise

ECE594I Notes set 6: Thermal Noise C594I ots, M. odwll, copyrightd C594I Nots st 6: Thrmal Nois Mark odwll Uivrsity of Califoria, ata Barbara rodwll@c.ucsb.du 805-893-344, 805-893-36 fax frcs ad Citatios: C594I ots, M. odwll, copyrightd

More information

How many neutrons does this aluminium atom contain? A 13 B 14 C 27 D 40

How many neutrons does this aluminium atom contain? A 13 B 14 C 27 D 40 alumiium atom has a uclo umbr of 7 ad a roto umbr of 3. How may utros dos this alumiium atom cotai? 3 4 7 40 atom of lmt Q cotais 9 lctros, 9 rotos ad 0 utros. What is Q? calcium otassium strotium yttrium

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

COUNTING TAMELY RAMIFIED EXTENSIONS OF LOCAL FIELDS UP TO ISOMORPHISM

COUNTING TAMELY RAMIFIED EXTENSIONS OF LOCAL FIELDS UP TO ISOMORPHISM COUNTING TAMELY RAMIFIED EXTENSIONS OF LOCAL FIELDS UP TO ISOMORPHISM Jim Brown Dpartmnt of Mathmatical Scincs, Clmson Univrsity, Clmson, SC 9634, USA jimlb@g.clmson.du Robrt Cass Dpartmnt of Mathmatics,

More information

Construction of asymmetric orthogonal arrays of strength three via a replacement method

Construction of asymmetric orthogonal arrays of strength three via a replacement method isid/ms/26/2 Fbruary, 26 http://www.isid.ac.in/ statmath/indx.php?modul=prprint Construction of asymmtric orthogonal arrays of strngth thr via a rplacmnt mthod Tian-fang Zhang, Qiaoling Dng and Alok Dy

More information

Week 3: Connected Subgraphs

Week 3: Connected Subgraphs Wk 3: Connctd Subgraphs Sptmbr 19, 2016 1 Connctd Graphs Path, Distanc: A path from a vrtx x to a vrtx y in a graph G is rfrrd to an xy-path. Lt X, Y V (G). An (X, Y )-path is an xy-path with x X and y

More information

Chapter 4 - The Fourier Series

Chapter 4 - The Fourier Series M. J. Robrts - 8/8/4 Chaptr 4 - Th Fourir Sris Slctd Solutios (I this solutio maual, th symbol,, is usd for priodic covolutio bcaus th prfrrd symbol which appars i th txt is ot i th fot slctio of th word

More information

Australian Journal of Basic and Applied Sciences, 4(9): , 2010 ISSN

Australian Journal of Basic and Applied Sciences, 4(9): , 2010 ISSN Australia Joural of Basic ad Applid Scics, 4(9): 4-43, ISSN 99-878 Th Caoical Product of th Diffrtial Equatio with O Turig Poit ad Sigular Poit A Dabbaghia, R Darzi, 3 ANaty ad 4 A Jodayr Akbarfa, Islaic

More information

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei.

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei. 37 1 How may utros ar i a uclus of th uclid l? 20 37 54 2 crtai lmt has svral isotops. Which statmt about ths isotops is corrct? Thy must hav diffrt umbrs of lctros orbitig thir ucli. Thy must hav th sam

More information