COPYRIGHT NOTICE: For COURSE PACK PERMISSIONS, refer to entry on previous menu. For more information, send to

Size: px
Start display at page:

Download "COPYRIGHT NOTICE: For COURSE PACK PERMISSIONS, refer to entry on previous menu. For more information, send to"

Transcription

1 COPYRT NOTCE: TRBBE: Pnceon ue o Avance Physcs s publshe by Pnceon Unvesy Pess an copyghe, (c) 996, by Pnceon Unvesy Pess. All ghs eseve. Ths ex may be use an shae n accoance wh he fa-use povsons of US copygh law, an may be achve an esbue n eleconc fom, pove ha hs ene noce s cae an pove ha Pnceon Unvesy Pess s nofe an no fee s chage fo access. Achvng, esbuon, o epublcaon of hs ex on ohe ems, n any meum, eques he consen of Pnceon Unvesy Pess. o COURSE PAC PERMSSONS, efe o eny on pevous menu. o moe nfomaon, sen e-mal o pemssons@pupess.pnceon.eu

2 .0 CASSCA MECANCS. UNDAMENTA TECNQUES.. The Val Theoem The equaon of moon of a sysem can be wen n he fom We ae neese n he quany Dffeenang hs expesson gves om Equaon. hs euces o p = 0. (.) = p. (.) = p + p = m + p. (.3) = T+. (.4) Aveagng ove a peo of me τ, we oban 0 τ τ 0 τ = τ ( ) ( ) = T +. (.5) f he moon s peoc, wh τ = peo, hen hen lef han se of Equaon.5 s eo an we see ha T =. (.6)

3 .. D'Alembe's Pncple om Equaon. follows ha he vual wok one by hs sysem s also eo, p δ = 0. (.7) The oal foce wll be a combnaon of exenally apple foces an nenal consans, so ha Equaon.8 euces o a = + f, (.8) a e p δ f δ = 0. (.9) f we esc ou aenon o g boes an ohe sysems fo whch he foces of consan o no wok hen we conclue ha he conon fo equlbum of a sysem s gven by D'Alembes pncple whch saes a e p δ = 0. (.0)..3 agange's Equaon f s a funcon of nepenen vaables q, hen δ = δ q q. (.) Doppng he supescp "a" fo convenence, he fs em fom Equaon.0 s δ = δq = Qδq, (.) q,

4 whee Q s he geneale foce. The secon em n Equaon.0 s By efnon an Smlaly p δ = m δ = m q, m = m m q q v q = q = q δ q. (.3) q, (.4). (.5) v = q q k + (.6) k k so follows ha v q =. (.7) q Usng Equaons.5 an.7 n Equaon.4 we fn ha m q = mv v q mv Equaons. an.8 ae combne o gve q mv q mv Q q δ v. (.8) q = 0, (.9)

5 o T q T q Q q δ = 0. (.0) Consequenly, T q T q Q =. (.) f V =, hen Q q V q V q = = =. (.) Equaon. s equvalen o T q q T V ( ) = 0. (.3) We efne =T V o be he agangan. f V s no a funcon of me hen q q = 0, (.4) whch s known as agange's equaon, can be use o eemne he equaons of moon. We also efne p q =, (.5) o be he canoncal, o conugae, momenum. f he agangan oes no conan a gven coonae q hen he coonae s sa o be cyclc o gnoable.

6 ..3. The Two Boy Cenal oce Poblem As an example of he applcaon of agange's equaon, conse a sysem of wo mass pons m an m subec o an neacon poenal V, whee V s any funcon of he veco beween he pacles. The knec enegy s T = m + m. (.6) The knec enegy can also be wen as he knec enegy of he cene of mass plus he knec enegy abou he cene of mass. We efne R = poson of he cene of mass, an = = veco beween m an m. The knec enegy of he cene of mass s gven by Tcm = ( m + m) R. (.7) Relave o he cene of mass, he poson of m an m ae gven by an ' ' m = m + m, (.8) m = m + m. (.9) Theefoe, he knec enegy abou he cene of mass s gven by Consequenly, he agangan s T ' = mm m m m m ' + ' = +. (.30) = mm m m R m m ( + ) + + V (,,...). (.3) We see mmeaely ha because he poenal s only a funcon of he veco beween he pacles he conugae momenum of R, (he momenum of he cene of mass), s consan. Tha s, he moon of he cene of mass has no

7 effec on he moon abou he cene of mass. Ths also mples ha hee wll be no ou of plane moon...3. The nvese Squae aw of oces When V s a funcon of only, as s he case fo gavaonal o elecosac foces, Equaon.3 may be expesse n pola coonaes as = µ e + θ V( ). (.3) Noe ha we have chosen o gnoe he em escbng he moon of he cene of mass snce has no effec on ohe paamees an we have nouce he efnon mm µ= m + m, (.33) whee µ s eme he euce mass. The equaons of moon ae foun fom agange's equaon, (Equaon.4). o he vaable q = θ we have whle fo q = we have ( µ θ) θ θ = = 0, (.34) V µ µ θ = + = 0. (.35) o many poblems of nees, such as obal mechancs, m >> m an µ m. The physcal consequence s ha he smalle pacle, m, s subece o he lages peubaon n s moon. om hs pon fowa we wll follow he usual convenon an eplace µ wh he symbol m wh he unesanng ha efes o he moon of he smalle of m an m abou he cene of mass. Equaon.34 s he saemen of consevaon of angula momenum. Tha s, l = m θ, (.36)

8 s a consan. Equaon.36 can be ewen n he fom whch mples an l = m θ, (.37) l = m l = m θ, (.38) l m θ θ. (.39) The aea swep ou by a movng boy s gven by A= bθg. (.40) follows ha A l = m θ M N O l b θg =. (.4) P Q Because angula momenum s conseve A/ s also consan. Ths s eple's Secon aw whch saes ha he planes sweep ou equal aeas n equal mes. om he efnon of l, equaon.35 becomes m l m 3 V =, (.4) o, because V s only a funcon of, m = V + l m. (.43)

9 The pacle moves n an effecve poenal gven by l Veff = V + m. (.44) Equaon.43 euces o Veff m =, (.45) hus m = m Veff Veff = =. (.46) Consequenly, m + V eff = 0, (.47) whch s he saemen ha enegy s conseve. om hs equaon, we also fn ha o smply m E V m E V l =± eff =±, (.48) m = m E V l m. (.49) Subsung he elaon beween an θ, Equaon.37, an we fn ha θ= me mv l l. (.50)

10 k Conse he case when he poenal s of he fom V = = ku. Equaon.50 becomes θ= me mk + u u l l u. (.5) negang hs expesson gves θ f θ = acsn mk u+ l 8mE mk + l l l mk = acsn. (.5) El + mk nveng hs expesson gves R mk El = M + S l M mk T N Ths s usually wen n he fom whee O P P Q U snθf θ V. (.53) W mk = { e snθ f θ }, (.54) l El e = + mk. (.55) Ths s he equaon fo a conc secon havng seveal classes of soluons as shown below..) f e >, an E > 0, he ob s a hypebola..) f e =, an E = 0, he ob s a paabola.

11 3.) f e <, an E < 0, he ob s an ellpse. mk 4.) f e = 0, an E = l, he ob s a ccle.. VARATONA TECNQUES.. The Calculus of Vaaons Conse a funcon f ( y, y, x) efne on a pah y=y(x) beween x an x whee y = y/ x. We wsh o fn a pacula pah y(x) such ha he negal x = f( yyxx,, ), (.56) x has a saonay value elave o pahs ffeng nfnesmally fom he coec funcon y(x). Snce mus have a saonay value fo he coec pah elave o any neghbong pah, he vaaon mus be eo elave o some pacula se of neghbong pahs. Such a se of pahs can be enoe by y( x, α)= y( x, 0 )+ αη( x), (.57) whee y(x, 0) s he coec pah an η(x ) η(x ) = 0. Explcly, x ( α)= f ( y( x, α), y( x, α), x) x. (.58) x A necessay conon fo a saonay pon s om Equaon.58 α α = 0 = 0. (.59)

12 x x f y f y = + x. (.60) α y α y α s easly seen ha f y f y =, (.6) y α y xα so ha x x f y x x x f y f y f y = x = x y α y α x y α x y. (.6) α x x om he bounay conons, he fs em on he gh han se vanshes an Equaon.60 euces o x x f f = α y x y x x y x. (.63) α The funamenal lemma of he calculus of vaaons saes ha f x M( x) η ( x) x = 0, (.64) x fo all η(x) connuous hough he secon evave hen M(x) mus be encally eo on he neval. Thus s saonay only f f f s a funcon of many nepenen vaables hen f f y x y = 0. (.65) f y f x y = 0. (.66)

13 .. amlon's Pncple amlon's pncple saes ha he moon, n confguaon space, of a sysem whee all non-consanng foces ae evable fom a geneale scala poenal ha may be a funcon of coonaes, veloces, an me s such ha he negal =, (.67) has a saonay value fo he coec pah of he moon. Tha s, δ = δ = 0. (.68) The negal s eme he acon, an amlon's pncple saes ha he vaaon n s eo. n ohe wos, he acon s mnme. By compason wh Equaon.65 follows ha q q = 0, (.69) whch s agange's equaon...3 agange Mulples D'Alembes pncple, an he esulng fom of agange's equaon, assume no consan foces. Conse a eamen when he equaons of consan can be pu n he fom alkqk + al = 0, (.70) k whee he a lk an a l 's may be funcons of a,. o vual splacemens follows ha

14 f hs s ue, hen mus also follow ha λ alkδ qk = 0. (.7) k a δq = 0, (.7) l lk k k whee he λ l ae uneemne coeffcens calle agange mulples. om Equaons.63,.68, an.69 s seen ha amlon's pncple s equvalen o By he same pocess, Equaon.7 s equvalen o k δqk = 0. (.73) q q k k λlalkδqk = 0. (.74) kl, We combne hese wo elaons o oban n = k q k + q k l λ a l lk δq = 0. (.75) k The δq k 's ae no necessaly nepenen, bu because he values of he λ l 's ae uneemne we may choose hem such ha q k λlalk q =. (.76) Thes equaons, ogehe wh Equaon.70, can be use o eemne he equaons of moons fo sysems wh consanng foces. k l

15 Example. Conse he case of a lae of lengh ha s nclne agans a fconless wall an floo as shown a gh. n he equaons of moon. θ The poson of he cene of mass of he lae, an s oenaon, can be escbe wh he vaables x, y, θ. The moon of he lae s consane by he wall an floo. We have he wo consans x = snθ, (.77) an y = cosθ. (.78) om Equaon.60 follows ha hese gve he consanng elaons an λ λ M N M N especvely. By nspecon, he knec enegy s O x cos θθ 0 P =, (.79) Q O y + sn θθ 0 P =, (.80) Q T = m x + y + e θ, (.8) whee = m. Smlaly, he poenal enegy s V = mgy, (.8)

16 so ha he agangan s m = m x + y e + θ mgy. (.83) 4 om Equaons.76,.79, an.80 he equaons of moon ae mx =λ, (.84) my + mg =λ, (.85) an m 4 cos θ= λ θ λ sn θ +, (.86) especvely. om Equaons.77 an.78 we see ha sn x = θθ + cos θθ, (.87) an cos y = θθ sn θθ. (.88) om Equaons.84 an.87 we see ha λ = m θθ θθ sn + cos, (.89) whle fom Equaon.85 an.88 we see ha λ = m θθ θθ cos sn + g. (.90) When hese ae combne wh Equaon.86 an smplfe we oban θ= e 6 sn θθ + cos θθ b cos θg e cos θθ sn θθ + g b sn θg, (.9)

17 whch s equvalen o 5 θ= 6 sn θ cos θθ g sn θ. (.9). RD BODY MOTON.. Roaons A g boy n space nees 6 nepenen geneale coonaes o specfy s confguaon. o example, 3 coonaes ae neee o specfy he locaon of he cene of mass elave o some exenal axes an 3 ohe coonaes ae neee o specfy he oenaon of he boy elave o a coonae sysem paallel o he exenal axes. The oenaon s specfe by sang he econ cosne of he boy axes elave o he exenal axes. Tha s, f he pme enoes boy axes hen $ $ $ $ $ $ $' = $' + $' + e$' k k, (.93) o $ $ $ $' = α + α+ α3 k, (.94) o $ $ $ $ $ $ $' = cos $', + cos $', + cos e$', k k. (.95) Smlaly, whee R = x'= Rx, (.96) α α α β β β γ γ γ (.97)

18 Because x' = x, (.98) we have RR =, (.99) o α + β + γ =, (.00) fo l =,, 3. Tha s, x'= ax, (.0) an x' x'= aakxxk = xx. (.0) Theefoe α α k =, f = k, α α k = 0 ohewse. n wo mensons R = cos φ snφ snφ cos φ. (.03)... eneal Popees of Roaons f = A an we ansfom o a new coonae sysem hen - B = BA = BAB B we say ha BAB - s he fom of A n he new coonae sysem. A'= BAB - efnes a smlay ansfomaon. n some coonae sysem cos φ snφ 0 A' = snφ cos φ 0, (.04) 0 0 so ha TA = + cos φ. Ths popey hols ue n all coonae sysems.

19 Example. n he axs of oaon an compue he angle of oaon fo R = T = can easly be vefe ha RR, so R sasfes he equemens of a oaon max. The axs of oaon can be efne as he econ ha any veco whch emans unchange by R pons. Tha s, f x = Rx, hen x s he axs of oaon. We mus solve whch gves he equaons x 6 x 3 4 = bx x x g, (.05) 3 x3 4 3x+ 6x + x3 = 4x, (.06) 6x+ x + 6x3 = 4x, (.07) x 6x + 3x3 = 4x3. (.08) These hee equaons can be solve o show ha x = x 3 an x = 0. The nomale axs of oaon s heefoe b0,, g. By examnaon, T R = + cos θ =, so ha θ = 60º.

20 ... The Eule Angles Rahe han specfy he 9 nepenen elemens of he oaon max we may escbe he oenaon n ems of 3 Eule angles. o example, oae he nal sysem of axes, xy, by an angle ψ couneclockwse abou. Ths efnes he ξηζ axes. Nex oae abou he ξ axs by an angle θ n he couneclockwse econ. Ths efnes he ξ'η'ζ' axes. nally oae couneclockwse by an angle φ abou he ζ' axes. Ths efnes he ξ'ψ'ζ' axes. n max fom whee an B = C = D = x'= Ax, (.09) A= BCD, (.0) cos ψ sn ψ 0 snψ cos ψ 0, (.) cosθ snθ, (.) 0 snθ cos θ cos φ snφ 0 snφ cos φ 0. (.3) The Cayley-len Paamees Conse a geneal lnea ansfomaon n mensonal space an u'= αu+ β v, (.4)

21 whee he ansfomaon max s v'= γu+ δ v, (.5) Q = α β γ δ. (.6) Noe ha α, β, γ, δ may be complex. f we eque fn ha β = γ* an δ = α*, ha s QQ = an Q =+ we α β Q = β* α*. (.7) Conse a max of he fom P x y = x+ y, (.8) such ha P'= QPQ. (.9) The heman popey an he ace of a max ae unaffece by smlay ansfomaons. Consequenly, P' s of he fom f we le x+ = x+ y an x = x y, hen ' x' y' P' =. (.0) x' + y' ' x P' = ' ' x ' ' = α γ + β δ x + x δ β γ α. (.) n hs way, we may efne a 9 elemen oaon max n ems of 4 Cayley- len paamees.

22 .. The Rae of Change of a Veco The ae of change of a veco as seen by an obseve n he boy sysem of axes wll ffe fom he coesponng change as seen by an obseve fxe n space. f he boy axes ae oang wh angula velocy ω he geneal soluon s We have = + ω. (.) space boy an a successve applcaon of Equaon. gves v = v +ω, (.3) s b ω as = ab +( ω vb) + ω ( ω ) +. (.4) f he angula velocy of he boy s consan Newon's law s = mas = mab + m( ω vb)+ mω ( ω ). (.5) To an obseve n he oang sysem appeas as hough he pacle s movng une an effecve foce eff = mab = m( ω vb ) mω ( ω ). (.6) The secon em on he gh han se s calle he Cools foce an he las em on he gh han se s calle he cenfugal foce.

23 Example.3 Show ha f a pacle s hown up vecally wh nal spee v o an eache a hegh h, ha wll expemen a Cools eflecon ha s oppose n econ, an fou mes geae n magnue, han he eflecon woul expeence f wee oppe a es fom he same maxmum hegh. The ae of oaon of he Eah, ω, s encal fo each scenao. The ffeence s he nal velocy an poson of he pacle. om equaon.6, he Cools foce s bω v b g. Defnng he coonae axes as shown, we have ωx = ωy =0 an ω = ω, whle v x = 0, vy = vcosθ, an v = v snθ. As a esul, x s s ω θ x b b y s y b bω v $ $ g= + bωvcos θg + 0 b g+ 0 b gk$, (.7) b As a esul, he acceleaon ue o he Cools foce s smply x = ωvcosθ. (.8) A boy fallng une he nfluence of gavy sasfes he conon v = vb0g g, (.9) whee v(0) s efne as he velocy a me = 0. Subsung hs no Equaon.8 an negang gves x = cos O ω θ vb0g g. (.30) M P N Q negang a secon me gves 3O x = ωcosθ vb0g g, (.3) M P 6 N Q

24 To solve he poblem a han, we le be he me akes fo he pacle o complee he p. The poson of he pacle a any me s gven by h b g= hb0g+ vb0g g, (.3) n one case, he pacle sas a es, v(0) = 0, a hegh h. om he efnon of he poblem, can be seen ha he me eque o complee he op o he goun s h vo = =, (.33) g g Consequenly, he eflecon when oppe fom es a hegh h s x g v 3 3 o O vo = g 6 g 3 g N M Q P = ωcosθ ωcos θ. (.34) f nsea, we le be he me akes o fall fom hegh h, we have v = v o an =. The eflecon s x 3 3 vo vo O 4 vo = vo g g 6 g 3 N M Q P =+ ωcos θ ωcos θ. (.35) g Thus, he eflecon when hown fom he goun up s oppose n econ, an fou mes geae n magnue, han hen eflecon when oppe fom es...3 The Rg Boy Equaons of Moon We have pevously seen ha he oal knec enegy of a g boy may be expesse as he sum of he knec enegy of he ene boy as f concenae a he cene of mass, plus he knec enegy of he moon abou he cene of mass. f a g boy moves wh one pon saonay, he angula momenum abou he cene of mass s

25 Snce s a fxe veco n he boy Thus = m ( v). (.36) v =ω. (.37) m m = ( ( ω ))= ( ω ( ω)). (.38) The x-componen s x x y = ω m ( x ) ω m x y ω m x, (.39) o x = xxωx + xyωy + xω. (.40) We efne k = ρ ( )( δ k x xk ) V, (.4) v o be he nea enso so ha The knec enegy of moon abou a pon s = ω. (.4) T = mv mv = ( ω ), (.43) o ω T = = ω ω. (.44)

26 The momen of nea,, abou some gven axs s elae o he momen abou a paallel axs hough he cene of mass. e he veco fom he ogn o he cene of mass be R an le he a vecos fom he ogn an he cene of mass o he h pacle be an ' especvely. Tha s a b R CoM The momen of neal abou axs a s o = R+ '. (.45) a = m( n$ ) = m [(R+ ') n$ ], (.46) a = M( R n$ ) + m ( '+ n$ ) + m( R n$ )( ' n$ ). (.47) The las em s ( R n$ ) ( n$ m '), bu m ' =0 an b = m( ' n) $ so a = b + M( R n$ ). (.48)..3. The Eule Equaons an Toque-ee Moon By efnon n he boy sysem, usng = ω, we fn N = + ω =. (.49) s ω b + ε ω ω = N. (.50) k k k

27 The Eule equaons ae ω ω ω ( ) = N, (.5) 3 3 ω ω ω ( ) = N, (.5) 3 3 ω ω ω ( ) = N. (.53) The pncple axes of a sysem ae hose whee he enso s he case, T = s agonal. f hs. (.54) Because T s consan, he elaon efnes an ellpso fxe n he boy axes. Because angula momenum s conseve mus be on a fxe sphee efne by 3 = + +. (.55) o he gven nal conons, knec enegy an angula momenum, he pah of s consane o be he nesecon of he sphee,, an he ellpso, T. f we have a boy symmecal abou he axs so ha = he Eule equaons ae, n he absence of oque's, We have ω 3 = consan, an whee ω =( ) ω ω, (.56) 3 3 ω = ( ) ω ω, (.57) 3 3 ω 3 ω 3 = 0. (.58) Ω ω, ω Ω ω, (.59) = = Ω= 3 ω 3. (.60)

28 Thus, ω = Ω ω, (.6) whch has soluons ω = Acos Ω an ω = AsnΩ. ence, he oal angula velocy s consan n magnue bu pecesses wh fequency Ω abou he ζ- axs. We may solve fo A an ω 3 by nong ha an T = A + 3ω, (.6) = A + ω. (.63)..3. The eavy Symmecal Top Conse a heavy op wh a symmey axs aken o be he -axs of he coonae sysem fxe n he boy as shown. The 3 Eule angles ae: θ = nclnaon of he -axs fom he vecal, φ = amuh of he op abou he vecal, an ψ = oaon angle of he op abou s own -axs. The knec enegy s o The poenal enegy s T = ( ω + + ω ) 3ω, (.64) 3 T = ( θ + φ sn θ) + 3( ψ + φ cos θ ). (.65) so ha he agangan s gven by V = mgl cosθ, (.66)

29 = ( θ + φ sn θ) + 3( ψ + φ cos θ) mgl cosθ. (.67) We have p ψ = = ( ψ + φ 3 cos θ) = 3ω3 = a, (.68) ψ p φ = = ( sn θ+ cos θ) φ + ψ cos θ= b 3 3, (.69) φ an E = T + V = ( θ + φ sn θ) + ω + Mgl cos θ. (.70) 3 3 Combnng hese fs wo expessons gves cos θ φ = b a, (.7) sn θ an a b acosθ ψ = cos θ. (.7) sn θ 3.3 OSCATORY MOTON.3. Oscllaons Conse a sysem ha s subece o a poenal ha s only a funcon of coonaes. f we expan he coonaes q abou he equlbum poson accong o q = q +η, (.73) o an hen pefom a Taylo sees expanson on he poenal we oban

30 V V V( q)= V( q )+ η o q + qq o + o ηη (.74) The fs em on he gh han se may be eefne o be eo by shfng he eo poenal o be he equlbum value. Smlaly, f he geneale foces ae eo he secon em s also eo. As a esul, he poenal can be appoxmae by he max elaon Smlaly, we can efne so ha he agangan s V V( q) qq o ηη. (.75) T = m q q = m ηη = T ηη, (.76) = T ηη V ηη. (.77) The equaons of moon ae gven by T η + V η = 0. (.78) ω f we y a soluon of he fom η = Ca exp we fn ha whch s equvalen o V a ω T a = 0, (.79) V ω T = 0. (.80) Example.4

31 Two pacles move n one menson a he uncon of hee spngs as shown. The spngs all have unseche lengh a an foce consans as shown. n he fequences of he nomal moes of oscllaon. m m x x We efne he coonaes x an x o escbe he splacemen of he wo blocks, elave o he lef aachmen pon. n hese coonaes T = mx + mx. (.8) Expanng abou equlbum, we efne x = a + η, x = a + η. Equaon.8 s equvalen o whee T = mη + mη = T η η, (.8) m T = 0 0 m. (.83) Smlaly, V = k x a + k x x a + k a x 3 b g b g, (.84) o V = V ηη, (.85) wh V V = xx a. (.86)

32 By examnaon V x = kbx ag 3kbx x ag, (.87) V x = k + 3k = 4k, (.88) an V x = 3kbx x ag kba x g, (.89) V x = 3k + k = 4k. (.90) kewse, he coss ems ae V x x V = = 3k, (.9) x x so ha V = 4k 3k k k. (.9) 3 4 The secula equaon s whch euces o V ω T = 4k ω m 3k 3k 4k ω m = 0, (.93) 4 e4k ω m 9k = m ω 8kmω + 7k = 0. (.94) om he quaac equaon, hs has soluons

33 ω = k m, (.95) an 7k ω = m. (.96).4 AMTON'S EQUATONS.4. egene Tansfomaons an amlon's Equaons of Moon Conse a funcon f of wo vaables such ha f = ux + vy, (.97) f whee u = f an v =. We wsh o change fom he vaables x, y o he x y vaables u, y. We efne a funcon We have g = f ux. (.98) g = f ux ux = vy xu, (.99) g so ha x = u an v g =. Ths s an example of a egene ansfomaon. y s fequenly use n hemoynamcs. Recall ha agange's equaons ae q whee = ( q, q, ), an he conugae momena ae q = 0, (.00)

34 p q q = (,,). (.0) q We can ansfom fom he vaables ( q, q,) o he vaables ( q, p, ) by he use of ( q, p, ) = q p ( q, q,), (.0) whee s calle he amlonan. We have oweve, fom he efnon q q p p = + +. (.03) p q q p q q q q = +, (.04) o smply q p q q =. (.05) Compang he wo expessons fo we oban amlon's equaons q = = p, (.06) q p = q, (.07) =. (.08) f he equaons efnng he geneale coonaes on' epen on me explcly, an f he foces ae evable fom a consevave poenal V, hen = T + V = E. (.09)

35 f we efne a column max η wh n elemens such ha η fo n, hen an = q, η n p + =, η = q, (.0) η + n = p. (.) f we efne = 0 0, hen amlon's equaons may be wen n he fom Ths s calle symplecc noaon. η =. (.) η Example.5 The agangan fo a smple spng s gven by = mx kx. n he amlonan an he equaons of moon usng he amlonan fomulaon. enfy any conseve quanes. om he efnon of p we have px = x =mx. (.3) om he efnon of he amlonan, equaon.7, we see ha = x bmx g mx + kx, (.4)

36 o smply om amlon's equaons we have m p = x + kx. (.5) q p = kx = p, (.6) x px = = m x, (.7) = 0. (.8) The fs equaon s he equaon of moon n one menson, mx + kx =0, (.9) he secon equaon s he efnon of momenum, an he las equaon s he saemen of consevaon of enegy..5. Canoncal Tansfomaons f a geneale coonae q has consan conugae momena s sa o be cyclc. f hs s he case, hen p = 0, whch ells us ha he amlonan s nepenen of ha p. f all coonaes q ae cyclc he conugae momena can be efne by p = α. Consequenly, q = = ω, (.0) α o q = ω + β. (.) A poblem s ofen ease o solve f we can fn a sysem whee he numbe of cyclc coonaes s maxmum. ow o we ansfom o hs se of

37 coonaes? We nee a new se of coonaes Q, P, whee Q = Q bq, p, g, P = P bq, p, g. We eque Q, P o be canoncal coonaes. Theefoe, some funcon = bq, P, g exss such ha Q =, (.) P an P = Q. (.3) f Q, P ae canoncal coonaes hey mus sasfy a mofe amlon's pncple ha can be pu n he fom δ PQ ( Q, P, ) = 0, (.4) because he ol coonaes sasfy δ pq ( q, p, ) g = 0. (.5) b Boh equemens can be sasfe f we eque a elaon λ pq PQ b g = +, (.6) whee λ = consan an s any funcon of he phase space coonaes connuous hough he secon evave. λ s elae o a scale ansfomaon. f λ = he elaon efnes a canoncal ansfomaon. The funcon s eme he geneang funcon. may be a funcon of q, p, Q, P, an efnes he ansfomaon..5.3 Symplecc Tansfomaons an Posson Backes

38 Recall ha amlon's equaons can be wen n he fom η =. (.7) η f we have a canoncal ansfomaon fom η ξ = ξ( η), hen ξ ξ η =. (.8) η n max fom, ξ = M η, (.9) whee M = ξ η. We have ξ= M, (.30) η also η ξ =, (.3) ξ η an = M. (.3) η ξ Consequenly, Theefoe, a ansfomaon s canoncal f ξ= MM =. (.33) ξ ξ MM =. (.34)

39 The Posson backe of a funcon s efne by We have u uv, v u PB = q p p v. (.35) q ηη, PB =, (.36) an ξξ, PB ξ ξ = = MM =. (.37) η η n ohe wos, he funamenal Posson backes ae nvaan une canoncal ansfomaons. We also have o Smlaly, u u q q u p p u = + +, (.38) u u = u, + PB. (.39) q = q,, p p, PB =. (.40) PB.6 CONTNUOUS SYSTEMS.6. The Tanson fom a Dscee o a Connuous Sysem Conse an nfnely long elasc o ha can unego small longunal vbaons. We appoxmae hs by an nfne chan of equal mass pons a sance a apa an connece by unfom massless spngs havng foce consans k. The knec enegy s

40 T = m η, (.4) whee m s he mass of each pacle an η s he locaon of he h pacle. The poenal enegy s We have o The equaons of moon ae m a V = kb η+ η g. (.4) O = m η kbη + η g, (.43) NM QP a m η = η ka a NM η + η a η η η η ka ka a + a + O. (.44) QP = 0. (.45) We have m/a = µ = mass/un lengh. ooke's law saes ha he exenson of a o/un lengh s popoonal o he foce,.e. = Yξ, (.46) η+ η whee ξ = s he exenson/un lengh. The foce necessay o a sech he sng by an amoun x s η+ η = kbη+ η g = ka a. (.47) Consequenly, ka = Y = Young's moulus. Noe ha

41 , η+ η η( x+ a) η( x) η =, (.48) a a x as a 0. Also as a 0 he summaon ove he pacles becomes an negal an Equaon.44 becomes The equaon of moon s = Y x η µη x. (.49) η η µ Y = 0. (.50) x Ths s a wave equaon wh wave popagaon velocy v.49 s sa o efne a agangan ensy η = Y η µ x Y = µ. Equaon. (.5).6. The agangan omulaon Conse a agangan ensy η η, η, x, x. (.5) = amlon's pncple s δ = δ x = 0. (.53) We choose value of η such ha η( x, ; α) = η( x, ; 0 ) + αξ( x, ), (.54)

42 whee η(x,;0) s he funcon ha sasfes amlon's pncple. We have δ α α = = =0 0, (.55) whee x x x x x α η η α η α η η α η = + + R S T U V W. (.56) Ths expesson may be smplfe as follows. s, η α η η η α R S T U V W = N M M M M O Q P P P P, (.57) plus a bounay em ha goes o eo. Also, x x x x x x x x x x η α η η η α R S T U V W = N M M M M O Q P P P P, (.58) plus anohe bounay em ha goes o eo. Theefoe, δ η η η η α α x x x x x = R S T U V W = = 0 0, (.59) an

43 ,,, η x Smlaly fo ohe agangans. + x η = 0. (.60) η.6.3 Noehe's Theoem A fomal escpon of he connecon beween nvaance o symmey popees an conseve quanes s conane n Noehe's heoem. We conse ansfomaons whee ' µ µ µ µ x x = x +δx, (.6) ' ' ηρ xµ η e ρ x µ = ηρ xµ + ηρ δxµ, (.6) ' ' ' ' ' eηρ xµ ηρ, ν xµ, xµ ' η x, η x, x e e ρ µ ρ, ν µ µ. (.63) We make hee assumpons:.) 4-space s Euclean,.) The agangan ensy has he same funconal fom afe ansfomaon, 3.) The magnue of he acon negal s nvaan une he ansfomaon. om assumpons, 3 we have Ω' ' ' ' ' ρ ρ, ν µ µ ρ ρ, ν µ µ Ω eη η, x x eη η, x x =0. (.64) x µ ' s a ummy vaable, so le x ' µ µ x o oban

44 ',, ', ',,,, ' ' eη x x, x x x, ρ µ η ρν η η, µ µ µ e ρ µ ρ, ν xµ xµ xµ =0. (.65) Ω' Ω Une he ansfomaons he fs oe ffeence beween he negals consss of wo pas, one s an negal ove Ω an he ohe s an negal ove Ω' Ω. o example, n one menson, b+ δb a+ δa b a b+ δb f ( x) + δf ( x) x f ( x) x = b a a+ δa δf ( x) x f ( x) δf ( x) x f ( x) δf ( x) x. (.66) To fs oe, he las wo ems ae b The ffeence beween negals s b b b b + δb a+ δa f ( x) x f ( x) x = δbf ( b) δaf ( a). (.67) b a b N a b O δf ( x) x+ f ( x) δx = δf ( x) + δxf ( x) g x. (.68) a M P x Consequenly, fo he agangans we have o Ω' µ µ µ µ Ω η x x η, x x Ω' To fs oe, = η x η x x + ηδx S = Ω' b g µ µ µ µ µ R xµ S η xµ η xµ + eη, x δx x T µ S a µ µ Q 0, (.69) U V= 0. (.70) W

45 ', ', η x η, x, η δη µ µ = ρ + δηρν, (.7) η ρ ρν, o η xµ η, xµ = x ν η ρ, ν δη ρ. (.7) The nvaance conon s We efne because an we have Equaon.305 euces o R xµ S δηρ + δx xν η T ρ, ν δx ν U νv W = 0. (.73) = ε X, δηρ = ε Ψ ρ, (.74) ν ' ' η e ρ x µ = ηρ xµ + δηρ xµ, (.75) δη ρ ηρ = δηρ + δx σ, (.76) x σ δη = ε e η X. (.77) ρ Ψ ρ ρ, σ σ R U ε S ηρσ, δνσ X σ xν ηρ ν Ψ ηρν ρ Vx T,, W µ = 0. (.78)

46 The esul s Noehe's heoem, whch saes ha x ν R S η T, ρ ν η δ X ρσ, νσ σ η ρν, U ρv W Ψ = 0. (.79).7 Bblogaphy ancos, C., The Vaaonal Pncples of Mechancs, 4h E., (Toono, Canaa: Unvesy of Toono Pess, 970). olsen,., Classcal Mechancs, n E., (Reang, MA: Ason-Wesley Publshng Co., 980.) Symon,. R., Mechancs, 3 E., (Reang, MA: Publshng Co., 97.) Ason-Wesley

5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( )

5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( ) 5-1. We apply Newon s second law (specfcally, Eq. 5-). (a) We fnd he componen of he foce s ( ) ( ) F = ma = ma cos 0.0 = 1.00kg.00m/s cos 0.0 = 1.88N. (b) The y componen of he foce s ( ) ( ) F = ma = ma

More information

s = rθ Chapter 10: Rotation 10.1: What is physics?

s = rθ Chapter 10: Rotation 10.1: What is physics? Chape : oaon Angula poson, velocy, acceleaon Consan angula acceleaon Angula and lnea quanes oaonal knec enegy oaonal nea Toque Newon s nd law o oaon Wok and oaonal knec enegy.: Wha s physcs? In pevous

More information

Rotations.

Rotations. oons j.lbb@phscs.o.c.uk To s summ Fmes of efeence Invnce une nsfomons oon of wve funcon: -funcons Eule s ngles Emple: e e - - Angul momenum s oon geneo Genec nslons n Noehe s heoem Fmes of efeence Conse

More information

Field due to a collection of N discrete point charges: r is in the direction from

Field due to a collection of N discrete point charges: r is in the direction from Physcs 46 Fomula Shee Exam Coulomb s Law qq Felec = k ˆ (Fo example, f F s he elecc foce ha q exes on q, hen ˆ s a un veco n he decon fom q o q.) Elecc Feld elaed o he elecc foce by: Felec = qe (elecc

More information

Nanoparticles. Educts. Nucleus formation. Nucleus. Growth. Primary particle. Agglomeration Deagglomeration. Agglomerate

Nanoparticles. Educts. Nucleus formation. Nucleus. Growth. Primary particle. Agglomeration Deagglomeration. Agglomerate ucs Nucleus Nucleus omaon cal supesauaon Mng o eucs, empeaue, ec. Pmay pacle Gowh Inegaon o uson-lme pacle gowh Nanopacles Agglomeaon eagglomeaon Agglomeae Sablsaon o he nanopacles agans agglomeaon! anspo

More information

Modern Energy Functional for Nuclei and Nuclear Matter. By: Alberto Hinojosa, Texas A&M University REU Cyclotron 2008 Mentor: Dr.

Modern Energy Functional for Nuclei and Nuclear Matter. By: Alberto Hinojosa, Texas A&M University REU Cyclotron 2008 Mentor: Dr. Moden Enegy Funconal fo Nucle and Nuclea Mae By: lbeo noosa Teas &M Unvesy REU Cycloon 008 Meno: D. Shalom Shlomo Oulne. Inoducon.. The many-body poblem and he aee-fock mehod. 3. Skyme neacon. 4. aee-fock

More information

L4:4. motion from the accelerometer. to recover the simple flutter. Later, we will work out how. readings L4:3

L4:4. motion from the accelerometer. to recover the simple flutter. Later, we will work out how. readings L4:3 elave moon L4:1 To appl Newon's laws we need measuemens made fom a 'fed,' neal efeence fame (unacceleaed, non-oang) n man applcaons, measuemens ae made moe smpl fom movng efeence fames We hen need a wa

More information

2 shear strain / L for small angle

2 shear strain / L for small angle Sac quaons F F M al Sess omal sess foce coss-seconal aea eage Shea Sess shea sess shea foce coss-seconal aea llowable Sess Faco of Safe F. S San falue Shea San falue san change n lengh ognal lengh Hooke

More information

Chapter 3: Vectors and Two-Dimensional Motion

Chapter 3: Vectors and Two-Dimensional Motion Chape 3: Vecos and Two-Dmensonal Moon Vecos: magnude and decon Negae o a eco: eese s decon Mulplng o ddng a eco b a scala Vecos n he same decon (eaed lke numbes) Geneal Veco Addon: Tangle mehod o addon

More information

Physics 201 Lecture 15

Physics 201 Lecture 15 Phscs 0 Lecue 5 l Goals Lecue 5 v Elo consevaon of oenu n D & D v Inouce oenu an Iulse Coens on oenu Consevaon l oe geneal han consevaon of echancal eneg l oenu Consevaon occus n sses wh no ne eenal foces

More information

Name of the Student:

Name of the Student: Engneeng Mahemacs 05 SUBJEC NAME : Pobably & Random Pocess SUBJEC CODE : MA645 MAERIAL NAME : Fomula Maeal MAERIAL CODE : JM08AM007 REGULAION : R03 UPDAED ON : Febuay 05 (Scan he above QR code fo he dec

More information

CHAPTER 13 LAGRANGIAN MECHANICS

CHAPTER 13 LAGRANGIAN MECHANICS CHAPTER 3 AGRANGIAN MECHANICS 3 Inoucon The usual way of usng newonan mechancs o solve a poblem n ynamcs s fs of all o aw a lage, clea agam of he sysem, usng a ule an a compass Then mak n he foces on he

More information

Course Outline. 1. MATLAB tutorial 2. Motion of systems that can be idealized as particles

Course Outline. 1. MATLAB tutorial 2. Motion of systems that can be idealized as particles Couse Oulne. MATLAB uoal. Moon of syses ha can be dealzed as pacles Descpon of oon, coodnae syses; Newon s laws; Calculang foces equed o nduce pescbed oon; Deng and solng equaons of oon 3. Conseaon laws

More information

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations Today - Lecue 13 Today s lecue coninue wih oaions, oque, Noe ha chapes 11, 1, 13 all inole oaions slide 1 eiew Roaions Chapes 11 & 1 Viewed fom aboe (+z) Roaional, o angula elociy, gies angenial elociy

More information

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 9 Solutions [Theorems of Gauss and Stokes]

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 9 Solutions [Theorems of Gauss and Stokes] ENGI 44 Avance alculus fo Engineeing Faculy of Engineeing an Applie cience Poblem e 9 oluions [Theoems of Gauss an okes]. A fla aea A is boune by he iangle whose veices ae he poins P(,, ), Q(,, ) an R(,,

More information

( ) () we define the interaction representation by the unitary transformation () = ()

( ) () we define the interaction representation by the unitary transformation () = () Hgher Order Perurbaon Theory Mchael Fowler 3/7/6 The neracon Represenaon Recall ha n he frs par of hs course sequence, we dscussed he chrödnger and Hesenberg represenaons of quanum mechancs here n he chrödnger

More information

8. HAMILTONIAN MECHANICS

8. HAMILTONIAN MECHANICS 8. HAMILTONIAN MECHANICS In ode o poceed fom he classcal fomulaon of Maxwell's elecodynamcs o he quanum mechancal descpon a new mahemacal language wll be needed. In he pevous secons he elecomagnec feld

More information

RELATIVE MOTION OF SYSTEMS IN A PARAMETRIC FORMULATION OF MECHANICS UDC Đorđe Mušicki

RELATIVE MOTION OF SYSTEMS IN A PARAMETRIC FORMULATION OF MECHANICS UDC Đorđe Mušicki FCT UNIVESITTIS Sees: Mechancs, uoac Conol an obocs Vol.3, N o,, pp. 39-35 ELTIVE MOTION OF SYSTEMS IN PMETIC FOMULTION OF MECHNICS UDC 53. Đođe Mušck Faculy of Physcs, Unvesy of Belgae, an Maheacal Insue

More information

The Feigel Process. The Momentum of Quantum Vacuum. Geert Rikken Vojislav Krstic. CNRS-France. Ariadne call A0/1-4532/03/NL/MV 04/1201

The Feigel Process. The Momentum of Quantum Vacuum. Geert Rikken Vojislav Krstic. CNRS-France. Ariadne call A0/1-4532/03/NL/MV 04/1201 The Fegel Pocess The Momenum of Quanum Vacuum a an Tggelen CNRS -Fance Laboaoe e Physque e Moélsaon es Mleux Complexes Unesé Joseph Foue/CNRS, Genoble, Fance Gee Ren Vosla Ksc CNRS Fance CNRS-Fance Laboaoe

More information

1 Constant Real Rate C 1

1 Constant Real Rate C 1 Consan Real Rae. Real Rae of Inees Suppose you ae equally happy wh uns of he consumpon good oday o 5 uns of he consumpon good n peod s me. C 5 Tha means you ll be pepaed o gve up uns oday n eun fo 5 uns

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 9 Hamlonan Equaons of Moon (Chaper 8) Wha We Dd Las Tme Consruced Hamlonan formalsm H ( q, p, ) = q p L( q, q, ) H p = q H q = p H = L Equvalen o Lagrangan formalsm Smpler, bu

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 9 Hamlonan Equaons of Moon (Chaper 8) Wha We Dd Las Tme Consruced Hamlonan formalsm Hqp (,,) = qp Lqq (,,) H p = q H q = p H L = Equvalen o Lagrangan formalsm Smpler, bu wce as

More information

Lecture 5. Plane Wave Reflection and Transmission

Lecture 5. Plane Wave Reflection and Transmission Lecue 5 Plane Wave Reflecon and Tansmsson Incden wave: 1z E ( z) xˆ E (0) e 1 H ( z) yˆ E (0) e 1 Nomal Incdence (Revew) z 1 (,, ) E H S y (,, ) 1 1 1 Refleced wave: 1z E ( z) xˆ E E (0) e S H 1 1z H (

More information

Radial Motion of Two Mutually Attracting Particles

Radial Motion of Two Mutually Attracting Particles Radal Moon of Two Muually Aacng Pacles Cal E. Mungan, U.S. Naval Academy, Annapols, MD A pa of masses o oppose-sgn chages eleased fom es wll move decly owad each ohe unde he acon of he nvesedsance-squaed

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 0 Canoncal Transformaons (Chaper 9) Wha We Dd Las Tme Hamlon s Prncple n he Hamlonan formalsm Dervaon was smple δi δ Addonal end-pon consrans pq H( q, p, ) d 0 δ q ( ) δq ( ) δ

More information

EN221 - Fall HW # 7 Solutions

EN221 - Fall HW # 7 Solutions EN221 - Fall2008 - HW # 7 Soluions Pof. Vivek Shenoy 1.) Show ha he fomulae φ v ( φ + φ L)v (1) u v ( u + u L)v (2) can be pu ino he alenaive foms φ φ v v + φv na (3) u u v v + u(v n)a (4) (a) Using v

More information

Part V: Velocity and Acceleration Analysis of Mechanisms

Part V: Velocity and Acceleration Analysis of Mechanisms Pat V: Velocty an Acceleaton Analyss of Mechansms Ths secton wll evew the most common an cuently pactce methos fo completng the knematcs analyss of mechansms; escbng moton though velocty an acceleaton.

More information

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle 1 PHYS 705: Classcal Mechancs Devaton of Lagange Equatons fom D Alembet s Pncple 2 D Alembet s Pncple Followng a smla agument fo the vtual dsplacement to be consstent wth constants,.e, (no vtual wok fo

More information

I-POLYA PROCESS AND APPLICATIONS Leda D. Minkova

I-POLYA PROCESS AND APPLICATIONS Leda D. Minkova The XIII Inenaonal Confeence Appled Sochasc Models and Daa Analyss (ASMDA-009) Jne 30-Jly 3, 009, Vlns, LITHUANIA ISBN 978-9955-8-463-5 L Sakalaskas, C Skadas and E K Zavadskas (Eds): ASMDA-009 Seleced

More information

WORK POWER AND ENERGY Consevaive foce a) A foce is said o be consevaive if he wok done by i is independen of pah followed by he body b) Wok done by a consevaive foce fo a closed pah is zeo c) Wok done

More information

1. A body will remain in a state of rest, or of uniform motion in a straight line unless it

1. A body will remain in a state of rest, or of uniform motion in a straight line unless it Pncples of Dnamcs: Newton's Laws of moton. : Foce Analss 1. A bod wll eman n a state of est, o of unfom moton n a staght lne unless t s acted b etenal foces to change ts state.. The ate of change of momentum

More information

Outline. GW approximation. Electrons in solids. The Green Function. Total energy---well solved Single particle excitation---under developing

Outline. GW approximation. Electrons in solids. The Green Function. Total energy---well solved Single particle excitation---under developing Peenaon fo Theoecal Condened Mae Phyc n TU Beln Geen-Funcon and GW appoxmaon Xnzheng L Theoy Depamen FHI May.8h 2005 Elecon n old Oulne Toal enegy---well olved Sngle pacle excaon---unde developng The Geen

More information

Numerical solution of differential equations

Numerical solution of differential equations Numecal soluon of ffeenal euaons Devng an solvng ffeenal euaons DE s a common ask n compuaonal eseac. Many pyscal laws/elaons ae fomulae n ems of DE. Mos connuum smulaon meos ae base on soluon of DE. Aloug

More information

Chapter Finite Difference Method for Ordinary Differential Equations

Chapter Finite Difference Method for Ordinary Differential Equations Chape 8.7 Fne Dffeence Mehod fo Odnay Dffeenal Eqaons Afe eadng hs chape, yo shold be able o. Undesand wha he fne dffeence mehod s and how o se o solve poblems. Wha s he fne dffeence mehod? The fne dffeence

More information

CHAPTER 10: LINEAR DISCRIMINATION

CHAPTER 10: LINEAR DISCRIMINATION HAPER : LINEAR DISRIMINAION Dscmnan-based lassfcaon 3 In classfcaon h K classes ( k ) We defned dsmnan funcon g () = K hen gven an es eample e chose (pedced) s class label as f g () as he mamum among g

More information

NATIONAL UNIVERSITY OF SINGAPORE PC5202 ADVANCED STATISTICAL MECHANICS. (Semester II: AY ) Time Allowed: 2 Hours

NATIONAL UNIVERSITY OF SINGAPORE PC5202 ADVANCED STATISTICAL MECHANICS. (Semester II: AY ) Time Allowed: 2 Hours NATONAL UNVERSTY OF SNGAPORE PC5 ADVANCED STATSTCAL MECHANCS (Semeser : AY 1-13) Tme Allowed: Hours NSTRUCTONS TO CANDDATES 1. Ths examnaon paper conans 5 quesons and comprses 4 prned pages.. Answer all

More information

Sharif University of Technology - CEDRA By: Professor Ali Meghdari

Sharif University of Technology - CEDRA By: Professor Ali Meghdari Shaif Univesiy of echnology - CEDRA By: Pofesso Ali Meghai Pupose: o exen he Enegy appoach in eiving euaions of oion i.e. Lagange s Meho fo Mechanical Syses. opics: Genealize Cooinaes Lagangian Euaion

More information

The Unique Solution of Stochastic Differential Equations. Dietrich Ryter. Midartweg 3 CH-4500 Solothurn Switzerland

The Unique Solution of Stochastic Differential Equations. Dietrich Ryter. Midartweg 3 CH-4500 Solothurn Switzerland The Unque Soluon of Sochasc Dffeenal Equaons Dech Rye RyeDM@gawne.ch Mdaweg 3 CH-4500 Solohun Swzeland Phone +4132 621 13 07 Tme evesal n sysems whou an exenal df sngles ou he an-iô negal. Key wods: Sochasc

More information

Physics 2A Chapter 11 - Universal Gravitation Fall 2017

Physics 2A Chapter 11 - Universal Gravitation Fall 2017 Physcs A Chapte - Unvesal Gavtaton Fall 07 hese notes ae ve pages. A quck summay: he text boxes n the notes contan the esults that wll compse the toolbox o Chapte. hee ae thee sectons: the law o gavtaton,

More information

Lecture 22 Electromagnetic Waves

Lecture 22 Electromagnetic Waves Lecue Elecomagneic Waves Pogam: 1. Enegy caied by he wave (Poyning veco).. Maxwell s equaions and Bounday condiions a inefaces. 3. Maeials boundaies: eflecion and efacion. Snell s Law. Quesions you should

More information

ESS 265 Spring Quarter 2005 Kinetic Simulations

ESS 265 Spring Quarter 2005 Kinetic Simulations SS 65 Spng Quae 5 Knec Sulaon Lecue une 9 5 An aple of an lecoagnec Pacle Code A an eaple of a knec ulaon we wll ue a one denonal elecoagnec ulaon code called KMPO deeloped b Yohhau Oua and Hoh Mauoo.

More information

A multi-band approach to arterial traffic signal optimization. Nathan H. Gartner Susan F. Assmann Fernando Lasaga Dennin L. Hou

A multi-band approach to arterial traffic signal optimization. Nathan H. Gartner Susan F. Assmann Fernando Lasaga Dennin L. Hou A mul-an appoach o aeal affc sgnal opmzaon Nahan H. Gane Susan F. Assmann Fenano Lasaga Dennn L. Hou MILP- The asc, symmec, unfom-h anh maxmzaon polem MILP- Exens he asc polem o nclue asymmec anhs n opposng

More information

University of California, Davis Date: June xx, PRELIMINARY EXAMINATION FOR THE Ph.D. DEGREE ANSWER KEY

University of California, Davis Date: June xx, PRELIMINARY EXAMINATION FOR THE Ph.D. DEGREE ANSWER KEY Unvesy of Calfona, Davs Dae: June xx, 009 Depamen of Economcs Tme: 5 hous Mcoeconomcs Readng Tme: 0 mnues PRELIMIARY EXAMIATIO FOR THE Ph.D. DEGREE Pa I ASWER KEY Ia) Thee ae goods. Good s lesue, measued

More information

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!") i+1,q - [(!

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!) i+1,q - [(! ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL The frs hng o es n wo-way ANOVA: Is here neracon? "No neracon" means: The man effecs model would f. Ths n urn means: In he neracon plo (wh A on he horzonal

More information

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law Physcs 11b Lectue # Electc Feld Electc Flux Gauss s Law What We Dd Last Tme Electc chage = How object esponds to electc foce Comes n postve and negatve flavos Conseved Electc foce Coulomb s Law F Same

More information

Go over vector and vector algebra Displacement and position in 2-D Average and instantaneous velocity in 2-D Average and instantaneous acceleration

Go over vector and vector algebra Displacement and position in 2-D Average and instantaneous velocity in 2-D Average and instantaneous acceleration Mh Csquee Go oe eco nd eco lgeb Dsplcemen nd poson n -D Aege nd nsnneous eloc n -D Aege nd nsnneous cceleon n -D Poecle moon Unfom ccle moon Rele eloc* The componens e he legs of he gh ngle whose hpoenuse

More information

MAE 210B. Homework Solution #6 Winter Quarter, U 2 =r U=r 2 << 1; ) r << U : (1) The boundary conditions written in polar coordinates,

MAE 210B. Homework Solution #6 Winter Quarter, U 2 =r U=r 2 << 1; ) r << U : (1) The boundary conditions written in polar coordinates, MAE B Homewok Solution #6 Winte Quate, 7 Poblem a Expecting a elocity change of oe oe a aial istance, the conition necessay fo the ow to be ominate by iscous foces oe inetial foces is O( y ) O( ) = =

More information

New Stability Condition of T-S Fuzzy Systems and Design of Robust Flight Control Principle

New Stability Condition of T-S Fuzzy Systems and Design of Robust Flight Control Principle 96 JOURNAL O ELECRONIC SCIENCE AND ECHNOLOGY, VOL., NO., MARCH 3 New Sably Conon of -S uzzy Sysems an Desgn of Robus lgh Conol Pncple Chun-Nng Yang, Ya-Zhou Yue, an Hu L Absac Unlke he pevous eseach woks

More information

The sound field of moving sources

The sound field of moving sources Nose Engneeng / Aoss -- ong Soes The son el o mong soes ong pon soes The pesse el geneae by pon soe o geneal me an The pess T poson I he soe s onenae a he sngle mong pon, soe may I he soe s I be wen as

More information

Simulation of Non-normal Autocorrelated Variables

Simulation of Non-normal Autocorrelated Variables Jounal of Moden Appled Sascal Mehods Volume 5 Issue Acle 5 --005 Smulaon of Non-nomal Auocoelaed Vaables HT Holgesson Jönöpng Inenaonal Busness School Sweden homasholgesson@bshse Follow hs and addonal

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Lnear Response Theory: The connecon beween QFT and expermens 3.1. Basc conceps and deas Q: ow do we measure he conducvy of a meal? A: we frs nroduce a weak elecrc feld E, and hen measure

More information

Control Volume Derivation

Control Volume Derivation School of eospace Engineeing Conol Volume -1 Copyigh 1 by Jey M. Seizman. ll ighs esee. Conol Volume Deiaion How o cone ou elaionships fo a close sysem (conol mass) o an open sysem (conol olume) Fo mass

More information

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s MÜHENDİSLİK MEKANİĞİ. HAFTA İMPULS- MMENTUM-ÇARPIŞMA Linea oenu of a paicle: The sybol L denoes he linea oenu and is defined as he ass ies he elociy of a paicle. L ÖRNEK : THE LINEAR IMPULSE-MMENTUM RELATIN

More information

Chapters 2 Kinematics. Position, Distance, Displacement

Chapters 2 Kinematics. Position, Distance, Displacement Chapers Knemacs Poson, Dsance, Dsplacemen Mechancs: Knemacs and Dynamcs. Knemacs deals wh moon, bu s no concerned wh he cause o moon. Dynamcs deals wh he relaonshp beween orce and moon. The word dsplacemen

More information

SCIENCE CHINA Technological Sciences

SCIENCE CHINA Technological Sciences SIENE HINA Technologcal Scences Acle Apl 4 Vol.57 No.4: 84 8 do:.7/s43-3-5448- The andom walkng mehod fo he seady lnea convecondffuson equaon wh axsymmec dsc bounday HEN Ka, SONG MengXuan & ZHANG Xng *

More information

PHYS 1443 Section 001 Lecture #4

PHYS 1443 Section 001 Lecture #4 PHYS 1443 Secon 001 Lecure #4 Monda, June 5, 006 Moon n Two Dmensons Moon under consan acceleraon Projecle Moon Mamum ranges and heghs Reerence Frames and relae moon Newon s Laws o Moon Force Newon s Law

More information

Chapter Fifiteen. Surfaces Revisited

Chapter Fifiteen. Surfaces Revisited Chapte Ffteen ufaces Revsted 15.1 Vecto Descpton of ufaces We look now at the vey specal case of functons : D R 3, whee D R s a nce subset of the plane. We suppose s a nce functon. As the pont ( s, t)

More information

p E p E d ( ) , we have: [ ] [ ] [ ] Using the law of iterated expectations, we have:

p E p E d ( ) , we have: [ ] [ ] [ ] Using the law of iterated expectations, we have: Poblem Se #3 Soluons Couse 4.454 Maco IV TA: Todd Gomley, gomley@m.edu sbued: Novembe 23, 2004 Ths poblem se does no need o be uned n Queson #: Sock Pces, vdends and Bubbles Assume you ae n an economy

More information

Computer Propagation Analysis Tools

Computer Propagation Analysis Tools Compue Popagaion Analysis Tools. Compue Popagaion Analysis Tools Inoducion By now you ae pobably geing he idea ha pedicing eceived signal sengh is a eally impoan as in he design of a wieless communicaion

More information

10. A.C CIRCUITS. Theoretically current grows to maximum value after infinite time. But practically it grows to maximum after 5τ. Decay of current :

10. A.C CIRCUITS. Theoretically current grows to maximum value after infinite time. But practically it grows to maximum after 5τ. Decay of current : . A. IUITS Synopss : GOWTH OF UNT IN IUIT : d. When swch S s closed a =; = d. A me, curren = e 3. The consan / has dmensons of me and s called he nducve me consan ( τ ) of he crcu. 4. = τ; =.63, n one

More information

FI 3103 Quantum Physics

FI 3103 Quantum Physics /9/4 FI 33 Quanum Physcs Aleander A. Iskandar Physcs of Magnesm and Phooncs Research Grou Insu Teknolog Bandung Basc Conces n Quanum Physcs Probably and Eecaon Value Hesenberg Uncerany Prncle Wave Funcon

More information

TRANSIENTS. Lecture 5 ELEC-E8409 High Voltage Engineering

TRANSIENTS. Lecture 5 ELEC-E8409 High Voltage Engineering TRANSIENTS Lece 5 ELECE8409 Hgh Volage Engneeng TRANSIENT VOLTAGES A ansen even s a sholved oscllaon (sgnfcanly fase han opeang feqency) n a sysem cased by a sdden change of volage, cen o load. Tansen

More information

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC CH.3. COMPATIBILITY EQUATIONS Connuum Mechancs Course (MMC) - ETSECCPB - UPC Overvew Compably Condons Compably Equaons of a Poenal Vecor Feld Compably Condons for Infnesmal Srans Inegraon of he Infnesmal

More information

Reflection and Refraction

Reflection and Refraction Chape 1 Reflecon and Refacon We ae now neesed n eplong wha happens when a plane wave avelng n one medum encounes an neface (bounday) wh anohe medum. Undesandng hs phenomenon allows us o undesand hngs lke:

More information

2.1 Constitutive Theory

2.1 Constitutive Theory Secon.. Consuve Theory.. Consuve Equaons Governng Equaons The equaons governng he behavour of maerals are (n he spaal form) dρ v & ρ + ρdv v = + ρ = Conservaon of Mass (..a) d x σ j dv dvσ + b = ρ v& +

More information

( ) ( )) ' j, k. These restrictions in turn imply a corresponding set of sample moment conditions:

( ) ( )) ' j, k. These restrictions in turn imply a corresponding set of sample moment conditions: esng he Random Walk Hypohess If changes n a sees P ae uncoelaed, hen he followng escons hold: va + va ( cov, 0 k 0 whee P P. k hese escons n un mply a coespondng se of sample momen condons: g µ + µ (,,

More information

Lagrangian & Hamiltonian Mechanics:

Lagrangian & Hamiltonian Mechanics: XII AGRANGIAN & HAMITONIAN DYNAMICS Iouco Hamlo aaoal Pcple Geealze Cooaes Geealze Foces agaga s Euao Geealze Momea Foces of Cosa, agage Mulples Hamloa Fucos, Cosevao aws Hamloa Dyamcs: Hamlo s Euaos agaga

More information

Lecture 17: Kinetics of Phase Growth in a Two-component System:

Lecture 17: Kinetics of Phase Growth in a Two-component System: Lecue 17: Kineics of Phase Gowh in a Two-componen Sysem: descipion of diffusion flux acoss he α/ ineface Today s opics Majo asks of oday s Lecue: how o deive he diffusion flux of aoms. Once an incipien

More information

Motion in Two Dimensions

Motion in Two Dimensions Phys 1 Chaper 4 Moon n Two Dmensons adzyubenko@csub.edu hp://www.csub.edu/~adzyubenko 005, 014 A. Dzyubenko 004 Brooks/Cole 1 Dsplacemen as a Vecor The poson of an objec s descrbed by s poson ecor, r The

More information

ANSWERS TO ODD NUMBERED EXERCISES IN CHAPTER 2

ANSWERS TO ODD NUMBERED EXERCISES IN CHAPTER 2 Joh Rley Novembe ANSWERS O ODD NUMBERED EXERCISES IN CHAPER Seo Eese -: asvy (a) Se y ad y z follows fom asvy ha z Ehe z o z We suppose he lae ad seek a oado he z Se y follows by asvy ha z y Bu hs oads

More information

7 Wave Equation in Higher Dimensions

7 Wave Equation in Higher Dimensions 7 Wave Equaion in Highe Dimensions We now conside he iniial-value poblem fo he wave equaion in n dimensions, u c u x R n u(x, φ(x u (x, ψ(x whee u n i u x i x i. (7. 7. Mehod of Spheical Means Ref: Evans,

More information

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( ) Clculu 4, econ Lm/Connuy & Devve/Inel noe y Tm Plchow, wh domn o el Wh we hve o : veco-vlued uncon, ( ) ( ) ( ) j ( ) nume nd ne o veco The uncon, nd A w done wh eul uncon ( x) nd connuy e he componen

More information

ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS.

ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS. GNRAL PHYSICS PH -3A (D. S. Mov) Test (/3/) key STUDNT NAM: STUDNT d #: -------------------------------------------------------------------------------------------------------------------------------------------

More information

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation Lecue 8: Kineics of Phase Gowh in a Two-componen Sysem: geneal kineics analysis based on he dilue-soluion appoximaion Today s opics: In he las Lecues, we leaned hee diffeen ways o descibe he diffusion

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

Lecture 3 summary. C4 Lecture 3 - Jim Libby 1

Lecture 3 summary. C4 Lecture 3 - Jim Libby 1 Lecue su Fes of efeece Ivce ude sfoos oo of H wve fuco: d-fucos Eple: e e - µ µ - Agul oeu s oo geeo Eule gles Geec slos cosevo lws d Noehe s heoe C4 Lecue - Lbb Fes of efeece Cosde fe of efeece O whch

More information

Continuous-time evolutionary stock and bond markets with time-dependent strategies

Continuous-time evolutionary stock and bond markets with time-dependent strategies Afcan Jounal of Busness Managemen Vol. 64 pp. 463-474 Febuay Avalable onlne a hp://www.acaemcjounals.og/ajbm DOI:.5897/AJBM.5 ISSN 993-833 Acaemc Jounals Full Lengh Reseach Pape Connuous-me evoluonay soc

More information

BISTATIC COHERENT MIMO CLUTTER RANK ANALYSIS

BISTATIC COHERENT MIMO CLUTTER RANK ANALYSIS 3 Euopean Sgnal Pocessng Confeence (EUSIPCO BISAIC COHEEN MIMO CLUE ANK ANALYSIS Ksne Bell, * Joel Johnson, Chsophe Bae, Gaeme Smh, an Mualha angaswam * Meon, Inc, 88 Lba S, Sue 600, eson, Vgna 090, USA

More information

Solution in semi infinite diffusion couples (error function analysis)

Solution in semi infinite diffusion couples (error function analysis) Soluon n sem nfne dffuson couples (error funcon analyss) Le us consder now he sem nfne dffuson couple of wo blocks wh concenraon of and I means ha, n a A- bnary sysem, s bondng beween wo blocks made of

More information

Response of MDOF systems

Response of MDOF systems Response of MDOF syses Degree of freedo DOF: he nu nuber of ndependen coordnaes requred o deerne copleely he posons of all pars of a syse a any nsan of e. wo DOF syses hree DOF syses he noral ode analyss

More information

Orthotropic Materials

Orthotropic Materials Kapiel 2 Ohoopic Maeials 2. Elasic Sain maix Elasic sains ae elaed o sesses by Hooke's law, as saed below. The sesssain elaionship is in each maeial poin fomulaed in he local caesian coodinae sysem. ε

More information

Dynamics of Rigid Bodies

Dynamics of Rigid Bodies Dynamcs of Rgd Bodes A gd body s one n whch the dstances between consttuent patcles s constant thoughout the moton of the body,.e. t keeps ts shape. Thee ae two knds of gd body moton: 1. Tanslatonal Rectlnea

More information

PHYS PRACTICE EXAM 2

PHYS PRACTICE EXAM 2 PHYS 1800 PRACTICE EXAM Pa I Muliple Choice Quesions [ ps each] Diecions: Cicle he one alenaive ha bes complees he saemen o answes he quesion. Unless ohewise saed, assume ideal condiions (no ai esisance,

More information

Chapter 6 Plane Motion of Rigid Bodies

Chapter 6 Plane Motion of Rigid Bodies Chpe 6 Pne oon of Rd ode 6. Equon of oon fo Rd bod. 6., 6., 6.3 Conde d bod ced upon b ee een foce,, 3,. We cn ume h he bod mde of e numbe n of pce of m Δm (,,, n). Conden f he moon of he m cene of he

More information

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany Herarchcal Markov Normal Mxure models wh Applcaons o Fnancal Asse Reurns Appendx: Proofs of Theorems and Condonal Poseror Dsrbuons John Geweke a and Gann Amsano b a Deparmens of Economcs and Sascs, Unversy

More information

Simple Harmonic Mo/on. Mandlebrot Set (image courtesy of Wikipedia)

Simple Harmonic Mo/on. Mandlebrot Set (image courtesy of Wikipedia) Simple Hamonic Mo/on Mandlebot Set (image coutesy of Wikipedia) Oscilla/ons Oscilla/on the mo/on of an object that egulaly epeats itself, back and foth, ove the same path. We say that mo/on is peiodic,

More information

Chapter 13 - Universal Gravitation

Chapter 13 - Universal Gravitation Chapte 3 - Unesal Gataton In Chapte 5 we studed Newton s thee laws of moton. In addton to these laws, Newton fomulated the law of unesal gataton. Ths law states that two masses ae attacted by a foce gen

More information

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay)

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay) Secions 3.1 and 3.4 Eponenial Funcions (Gowh and Decay) Chape 3. Secions 1 and 4 Page 1 of 5 Wha Would You Rahe Have... $1million, o double you money evey day fo 31 days saing wih 1cen? Day Cens Day Cens

More information

Density Matrix Description of NMR BCMB/CHEM 8190

Density Matrix Description of NMR BCMB/CHEM 8190 Densy Marx Descrpon of NMR BCMBCHEM 89 Operaors n Marx Noaon Alernae approach o second order specra: ask abou x magnezaon nsead of energes and ranson probables. If we say wh one bass se, properes vary

More information

Scattering at an Interface: Oblique Incidence

Scattering at an Interface: Oblique Incidence Course Insrucor Dr. Raymond C. Rumpf Offce: A 337 Phone: (915) 747 6958 E Mal: rcrumpf@uep.edu EE 4347 Appled Elecromagnecs Topc 3g Scaerng a an Inerface: Oblque Incdence Scaerng These Oblque noes may

More information

calculating electromagnetic

calculating electromagnetic Theoeal mehods fo alulang eleomagne felds fom lghnng dshage ajeev Thoapplll oyal Insue of Tehnology KTH Sweden ajeev.thoapplll@ee.kh.se Oulne Despon of he poblem Thee dffeen mehods fo feld alulaons - Dpole

More information

A VISCOPLASTIC MODEL OF ASYMMETRICAL COLD ROLLING

A VISCOPLASTIC MODEL OF ASYMMETRICAL COLD ROLLING SISOM 4, BUCHAEST, - May A VISCOPLASTIC MODEL OF ASYMMETICAL COLD OLLING odca IOAN Spu Hae Unvesy Buchaes, odcaoan7@homal.com Absac: In hs pape s gven a soluon of asymmecal sp ollng poblem usng a Bngham

More information

CHAPTER 5: MULTIVARIATE METHODS

CHAPTER 5: MULTIVARIATE METHODS CHAPER 5: MULIVARIAE MEHODS Mulvarae Daa 3 Mulple measuremens (sensors) npus/feaures/arbues: -varae N nsances/observaons/eamples Each row s an eample Each column represens a feaure X a b correspons o he

More information

N 1. Time points are determined by the

N 1. Time points are determined by the upplemena Mehods Geneaon of scan sgnals In hs secon we descbe n deal how scan sgnals fo 3D scannng wee geneaed. can geneaon was done n hee seps: Fs, he dve sgnal fo he peo-focusng elemen was geneaed o

More information

FIRMS IN THE TWO-PERIOD FRAMEWORK (CONTINUED)

FIRMS IN THE TWO-PERIOD FRAMEWORK (CONTINUED) FIRMS IN THE TWO-ERIO FRAMEWORK (CONTINUE) OCTOBER 26, 2 Model Sucue BASICS Tmelne of evens Sa of economc plannng hozon End of economc plannng hozon Noaon : capal used fo poducon n peod (decded upon n

More information

MCTDH Approach to Strong Field Dynamics

MCTDH Approach to Strong Field Dynamics MCTDH ppoach o Song Feld Dynamcs Suen Sukasyan Thomas Babec and Msha Ivanov Unvesy o Oawa Canada Impeal College ondon UK KITP Sana Babaa. May 8 009 Movaon Song eld dynamcs Role o elecon coelaon Tunnel

More information

PHYS 705: Classical Mechanics. Canonical Transformation

PHYS 705: Classical Mechanics. Canonical Transformation PHYS 705: Classcal Mechancs Canoncal Transformaon Canoncal Varables and Hamlonan Formalsm As we have seen, n he Hamlonan Formulaon of Mechancs,, are ndeenden varables n hase sace on eual foong The Hamlon

More information

β A Constant-G m Biasing

β A Constant-G m Biasing p 2002 EE 532 Anal IC Des II Pae 73 Cnsan-G Bas ecall ha us a PTAT cuen efeence (see p f p. 66 he nes) bas a bpla anss pes cnsan anscnucance e epeaue (an als epenen f supply lae an pcess). Hw h we achee

More information

Density Functional Theory I

Density Functional Theory I Densty Functonal Theoy I cholas M. Hason Depatment of Chemsty Impeal College Lonon & Computatonal Mateals Scence Daesbuy Laboatoy ncholas.hason@c.ac.uk Densty Functonal Theoy I The Many Electon Schönge

More information

Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas)

Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas) Lecure 8: The Lalace Transform (See Secons 88- and 47 n Boas) Recall ha our bg-cure goal s he analyss of he dfferenal equaon, ax bx cx F, where we emloy varous exansons for he drvng funcon F deendng on

More information