Motion in Two Dimensions

Size: px
Start display at page:

Download "Motion in Two Dimensions"

Transcription

1 Phys 1 Chaper 4 Moon n Two Dmensons adzyubenko@csub.edu hp:// 005, 014 A. Dzyubenko 004 Brooks/Cole 1

2 Dsplacemen as a Vecor The poson of an objec s descrbed by s poson ecor, r The dsplacemen s defned as he change n objec s poson r r f r

3 Aerage Velocy The aerage elocy durng he me neral s defned as he dsplacemen dded by he me neral r s a ecor quany dreced along r Independen of pah aken Depends only on he nal and fnal poson ecors 3

4 Insananeous Velocy The nsananeous elocy s defned as he lm of he aerage elocy as D approaches zero: r lm 0 dr d The drecon a any pon s along he lne angen o he pah a ha pon The magnude of he nsananeous elocy ecor s called speed, whch s a scalar quany 4

5 Acceleraon The aerage acceleraon s defned as he change n he nsananeous elocy ecor dded by he me neral durng whch ha change occurs: f a f The nsananeous acceleraon s defned as he lmng alue of he rao / as approaches zero: d a lm 0 5 d

6 Ways an Objec Mgh Accelerae The magnude of he elocy (he speed) can change The drecon of he elocy can change Een hough he magnude s consan Boh he magnude and he drecon of he elocy ecor can change smulaneously 6

7 Quck Quz Consder he followng conrols n an auomoble: gas pedal, brake, seerng wheel. The conrols n hs ls ha cause acceleraon of he car are (a) all hree conrols (b) he gas pedal and he brakes (c) only he brake (d) only he gas pedal 7

8 Two-Dmensonal Moon wh Consan Acceleraon The moon of a parcle mong n he xy plane s descrbed by he poson ecor r r x ˆ + yˆj The elocy of a parcle s dr d dx d a a ˆ + ˆ x a j consan y ˆ + dy d ˆj ˆ ˆ x + y j xf yf x y + a x + a y 8

9 Velocy as a Funcon of Tme f ( + a ) ˆ + ( + a ) ( ˆ + ˆj ) + ( a ˆ + a ˆj ) x x y x x y y y ˆj + a f The elocy of a parcle equals he ecor sum of s nal elocy and addonal elocy a acqured a me as a resul of consan acceleraon 9

10 10 Poson Vecor Poson Vecor as a Funcon of Tme as a Funcon of Tme 1 1 a y y a x x y y f x x f ( ) ( ) ( ) ˆ ˆ 1 ˆ ˆ ˆ ˆ a a y x y x y x j j j j r ˆ 1 ˆ a y a x y y x x f

11 Poson Vecor as a Funcon of Tme, con r r + + f 1 a The poson ecor s he ecor sum of () orgnal poson r, () a dsplacemen arsng from he nal elocy and () a dsplacemen ½ a resulng from he consan acceleraon of he parcle 11

12 1 Componen Form of Knec Equaons Componen Form of Knec Equaons 1 f a r r a y y a x x y y f x x f + + a a y y yf x x xf f a + Two-dmensonal moon a a consan acceleraon s equalen o wo, x- and y-, ndependen moons

13 Projecle Moon Projecle moon: an objec may moe n boh he x- and y- drecons smulaneously Assumpons of projecle moon The free-fall acceleraon g s consan and s dreced downward The effec of ar ressance s neglgble The pah of a projecle (s rajecory) s always a parabola g 13

14 Rules of Projecle Moon The x- and y-drecons of moon can be reaed ndependenly The x-drecon s unform moon a x 0 The y-drecon s free fall a y - g The nal elocy can be broken down no s x- and y-componens 14

15 Projecle Moon 15

16 Some Deals abou Rules of Projecle Moon x-drecon a x 0 x cos θ cons x f ( cosθ ) x Ths s he only operae equaon n he x-drecon snce he elocy s unform n ha drecon 16

17 More Deals Abou he Rules y-drecon a y - g free fall problem y sn θ ake he pose drecon as upward unformly acceleraed moon, so he knec equaons all hold 17

18 Projecle Trajecory s a Parabola Sole he followng equaons smulaneously x y f f ( cosθ ) y + 1 a y x f cosθ ( sn θ ) From (1): subsue n () y g cos θ ( an θ ) x x 1 g (1) () y ax bx he equaon of a parabola ha passes hrough he orgn 18

19 Poson Vecor of Projecle as a Funcon of Tme r r + + f 1 g r 0 If here were no acceleraon, g 0, he projecle would connue o moe along a sragh pah n he drecon of 19

20 Quck Quz As a projecle hrown upwards moes n s parabolc pah, a wha pon along s pah are he elocy and acceleraon ecors for he projecle perpendcular o each oher? (a) nowhere (b) he hghes pon (a) he launch pon 0

21 Maxmum Hegh of a Projecle Noe ha a maxmum hegh h y 0 + a f 0 sn θ g A sn θ g A h Subsue n he equaon for a moon n he y-drecon ( sn θ ) sn θ g 1 sn θ g h sn θ g 1

22 Horzonal Range of a Projecle R s he horzonal range Toal me of flgh: B A A R x ( cosθ ) B ( cosθ ) sn θ g A sn θ cosθ. g sn θ sn θ cosθ R sn g B θ

23 Max Horzonal Range? R sn θ g R R when max sn θ 1 g θ? 45 o 3

24 Angle Dependence of Horzonal Range complemenary angles Complemenary alues of Θ (Θ 1 + Θ 90º) resul n he same alue of a horzonal range R of he projecle 4

25 Quck Quz Rank he launch angles for he fe pahs wh respec o he me of flgh, from he shores me of flgh o he longes 5

26 Some Varaons of Projecle Moon Objec may be fred horzonally The nal elocy s all n he x-drecon x and y 0 All he general rules of projecle moon apply 6

27 Some Varaons con. Follow he general rules for projecle moon Noce he orgn chosen: he numercal alue of y f has a negae sgn! 7

28 Unform Crcular Moon An objec raelng n a crcle, een hough moes wh a consan speed, wll hae an acceleraon The cenrpeal acceleraon s due o he change n he drecon of he elocy a f f 8

29 Cenrpeal Acceleraon Cenrpeal refers o cener-seekng The acceleraon n unform crcular moon s always perpendcular o he pah and pons oward he cener of he crcle a r r Perod T s he me of one complee reoluon T a c r πr r r 9

30 Perod T s he me of one complee reoluon Angular Speed The angle for one complee reoluon s π radans Angular speed: rad/s ω π T T πr ω π π r r ωr ω a c r r

31 Quck Quz Whch of he followng correcly descrbes he cenrpeal acceleraon ecor for a parcle mong unformly n a crcular pah? (a) consan and always perpendcular o he elocy ecor for he parcle (b) consan and always parallel o he elocy ecor for he parcle (c) of consan magnude and always perpendcular o he elocy ecor for he parcle (d) of consan magnude and always parallel o he elocy ecor for he parcle 31

32 Moon Along an Arbrary Cured Pah Velocy changes boh n drecon and n magnude The oal acceleraon ecor changes n drecon and n magnude from pon o pon 3

33 Moon Along an Arbrary Cured Pah, con The oal acceleraon ecor a can be resoled no wo componens : a radal componen a r along he radus of he model crcle a angenal componen a perpendcular o hs radus a a r + a 33

34 Tangenal Acceleraon The angenal acceleraon componen causes he change n he speed of he parcle d a d The drecon of a : he same as f s ncreasng oppose f s decreasng 34

35 Radal Acceleraon The radal acceleraon componen arses from he change n drecon of he elocy ecor a r a c r r s he radus of curaure of he pah a he pon a queson he negae sgn: he cenrpeal acceleraon s oppose o he radal un ecor r A a gen speed, a r s large when he radus of curaure s small 35

36 Toal Acceleraon n Terms of Un Vecors Defne un ecors: r s lyng along he radus ecor and dreced radally ouward from he cener of he crcle Θ s angen o he crcle (a ecor!) a a + a r d θˆ d r rˆ a a + a r 36

37 Quck Quz A parcle moes along a pah and s speed ncreases wh me. In whch of he followng cases are s acceleraon and elocy ecors perpendcular eerywhere along he pah? (a) he pah s crcular (b) he pah s sragh (c) he pah s a parabola (d) neer 37

38 Relay of Moon How obseraons of moon made by dfferen obserers n dfferen frames of reference are relaed each oher he relae elocy of he wo frames of reference The man s walkng on he mong belway 38

39 Relae Velocy I may be useful o use a mong frame of reference nsead of a saonary one I s mporan o specfy he frame of reference, snce he moon may be dfferen n dfferen frames of reference 39

40 Relae Velocy Two obserers mong relae o each oher generally do no agree on he oucome of a measuremen 40

41 Gallean Coordnae Transformaon Reference frame S s mong relae o S wh consan elocy 0 A 0 he orgns of he frames S and S concde n space fxed frame A me r s he parcle poson ecor relae o S r s he parcle poson ecor relae o S or r r 0 r r + 0 mong frame 41

42 Gallean Velocy Transformaon r r 0 Dfferenae wh respec o me dr d dr d 0 The elocy of a parcle measured n a fxed frame of reference S can be relaed o he elocy of he same parcle measured n a mong frame S by 0 or + 0 where 0 s he elocy of S relae o S 4

43 Relae Acceleraon The acceleraon of he parcle measured by an obserer n one frame of reference s he same as measured by any oher obserer mong wh consan elocy relae o he frs frame 43 0 Dfferenae wh respec o me d d 0 d d d d d d Because 0 s consan 0 0 a a

44 Solng Relae Velocy Problems The paern of subscrps can be useful n solng relae elocy problems + be br re Wre an equaon for he elocy of neres n erms of he eloces you know, machng he paern of subscrps 44

Chapters 2 Kinematics. Position, Distance, Displacement

Chapters 2 Kinematics. Position, Distance, Displacement Chapers Knemacs Poson, Dsance, Dsplacemen Mechancs: Knemacs and Dynamcs. Knemacs deals wh moon, bu s no concerned wh he cause o moon. Dynamcs deals wh he relaonshp beween orce and moon. The word dsplacemen

More information

PHYS 1443 Section 001 Lecture #4

PHYS 1443 Section 001 Lecture #4 PHYS 1443 Secon 001 Lecure #4 Monda, June 5, 006 Moon n Two Dmensons Moon under consan acceleraon Projecle Moon Mamum ranges and heghs Reerence Frames and relae moon Newon s Laws o Moon Force Newon s Law

More information

Displacement, Velocity, and Acceleration. (WHERE and WHEN?)

Displacement, Velocity, and Acceleration. (WHERE and WHEN?) Dsplacemen, Velocy, and Acceleraon (WHERE and WHEN?) Mah resources Append A n your book! Symbols and meanng Algebra Geomery (olumes, ec.) Trgonomery Append A Logarhms Remnder You wll do well n hs class

More information

WebAssign HW Due 11:59PM Tuesday Clicker Information

WebAssign HW Due 11:59PM Tuesday Clicker Information WebAssgn HW Due 11:59PM Tuesday Clcker Inormaon Remnder: 90% aemp, 10% correc answer Clcker answers wll be a end o class sldes (onlne). Some days we wll do a lo o quesons, and ew ohers Each day o clcker

More information

CHAPTER 2 Quick Quizzes

CHAPTER 2 Quick Quizzes CHAPTER Quck Quzzes (a) 00 yd (b) 0 (c) 0 (a) False The car may be slowng down, so ha he drecon o s acceleraon s oppose he drecon o s elocy (b) True I he elocy s n he drecon chosen as negae, a pose acceleraon

More information

Chapter 3: Vectors and Two-Dimensional Motion

Chapter 3: Vectors and Two-Dimensional Motion Chape 3: Vecos and Two-Dmensonal Moon Vecos: magnude and decon Negae o a eco: eese s decon Mulplng o ddng a eco b a scala Vecos n he same decon (eaed lke numbes) Geneal Veco Addon: Tangle mehod o addon

More information

Slide. King Saud University College of Science Physics & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 5: MOTION IN 1-D (PART 2) LECTURE NO.

Slide. King Saud University College of Science Physics & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 5: MOTION IN 1-D (PART 2) LECTURE NO. Slde Kng Saud Unersty College of Scence Physcs & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 5: MOTION IN 1-D (PART ) LECTURE NO. 6 THIS PRESENTATION HAS BEEN PREPARED BY: DR. NASSR S. ALZAYED Lecture

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

10. A.C CIRCUITS. Theoretically current grows to maximum value after infinite time. But practically it grows to maximum after 5τ. Decay of current :

10. A.C CIRCUITS. Theoretically current grows to maximum value after infinite time. But practically it grows to maximum after 5τ. Decay of current : . A. IUITS Synopss : GOWTH OF UNT IN IUIT : d. When swch S s closed a =; = d. A me, curren = e 3. The consan / has dmensons of me and s called he nducve me consan ( τ ) of he crcu. 4. = τ; =.63, n one

More information

UNIT 1 ONE-DIMENSIONAL MOTION GRAPHING AND MATHEMATICAL MODELING. Objectives

UNIT 1 ONE-DIMENSIONAL MOTION GRAPHING AND MATHEMATICAL MODELING. Objectives UNIT 1 ONE-DIMENSIONAL MOTION GRAPHING AND MATHEMATICAL MODELING Objeces To learn abou hree ways ha a physcs can descrbe moon along a sragh lne words, graphs, and mahemacal modelng. To acqure an nue undersandng

More information

2/20/2013. EE 101 Midterm 2 Review

2/20/2013. EE 101 Midterm 2 Review //3 EE Mderm eew //3 Volage-mplfer Model The npu ressance s he equalen ressance see when lookng no he npu ermnals of he amplfer. o s he oupu ressance. I causes he oupu olage o decrease as he load ressance

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 9 Hamlonan Equaons of Moon (Chaper 8) Wha We Dd Las Tme Consruced Hamlonan formalsm H ( q, p, ) = q p L( q, q, ) H p = q H q = p H = L Equvalen o Lagrangan formalsm Smpler, bu

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 9 Hamlonan Equaons of Moon (Chaper 8) Wha We Dd Las Tme Consruced Hamlonan formalsm Hqp (,,) = qp Lqq (,,) H p = q H q = p H L = Equvalen o Lagrangan formalsm Smpler, bu wce as

More information

First-order piecewise-linear dynamic circuits

First-order piecewise-linear dynamic circuits Frs-order pecewse-lnear dynamc crcus. Fndng he soluon We wll sudy rs-order dynamc crcus composed o a nonlnear resse one-por, ermnaed eher by a lnear capacor or a lnear nducor (see Fg.. Nonlnear resse one-por

More information

Chapter Lagrangian Interpolation

Chapter Lagrangian Interpolation Chaper 5.4 agrangan Inerpolaon Afer readng hs chaper you should be able o:. dere agrangan mehod of nerpolaon. sole problems usng agrangan mehod of nerpolaon and. use agrangan nerpolans o fnd deraes and

More information

5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( )

5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( ) 5-1. We apply Newon s second law (specfcally, Eq. 5-). (a) We fnd he componen of he foce s ( ) ( ) F = ma = ma cos 0.0 = 1.00kg.00m/s cos 0.0 = 1.88N. (b) The y componen of he foce s ( ) ( ) F = ma = ma

More information

Kinematics in two dimensions

Kinematics in two dimensions Lecure 5 Phsics I 9.18.13 Kinemaics in wo dimensions Course websie: hp://facul.uml.edu/andri_danlo/teaching/phsicsi Lecure Capure: hp://echo36.uml.edu/danlo13/phsics1fall.hml 95.141, Fall 13, Lecure 5

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4 CS434a/54a: Paern Recognon Prof. Olga Veksler Lecure 4 Oulne Normal Random Varable Properes Dscrmnan funcons Why Normal Random Varables? Analycally racable Works well when observaon comes form a corruped

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 0 Canoncal Transformaons (Chaper 9) Wha We Dd Las Tme Hamlon s Prncple n he Hamlonan formalsm Dervaon was smple δi δ Addonal end-pon consrans pq H( q, p, ) d 0 δ q ( ) δq ( ) δ

More information

2.1 Constitutive Theory

2.1 Constitutive Theory Secon.. Consuve Theory.. Consuve Equaons Governng Equaons The equaons governng he behavour of maerals are (n he spaal form) dρ v & ρ + ρdv v = + ρ = Conservaon of Mass (..a) d x σ j dv dvσ + b = ρ v& +

More information

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole Phys 221 Fall 2014 Chaper 2 Moion in One Dimension 2014, 2005 A. Dzyubenko 2004 Brooks/Cole 1 Kinemaics Kinemaics, a par of classical mechanics: Describes moion in erms of space and ime Ignores he agen

More information

s = rθ Chapter 10: Rotation 10.1: What is physics?

s = rθ Chapter 10: Rotation 10.1: What is physics? Chape : oaon Angula poson, velocy, acceleaon Consan angula acceleaon Angula and lnea quanes oaonal knec enegy oaonal nea Toque Newon s nd law o oaon Wok and oaonal knec enegy.: Wha s physcs? In pevous

More information

II. Light is a Ray (Geometrical Optics)

II. Light is a Ray (Geometrical Optics) II Lgh s a Ray (Geomercal Opcs) IIB Reflecon and Refracon Hero s Prncple of Leas Dsance Law of Reflecon Hero of Aleandra, who lved n he 2 nd cenury BC, posulaed he followng prncple: Prncple of Leas Dsance:

More information

( ) () we define the interaction representation by the unitary transformation () = ()

( ) () we define the interaction representation by the unitary transformation () = () Hgher Order Perurbaon Theory Mchael Fowler 3/7/6 The neracon Represenaon Recall ha n he frs par of hs course sequence, we dscussed he chrödnger and Hesenberg represenaons of quanum mechancs here n he chrödnger

More information

Notes on the stability of dynamic systems and the use of Eigen Values.

Notes on the stability of dynamic systems and the use of Eigen Values. Noes on he sabl of dnamc ssems and he use of Egen Values. Source: Macro II course noes, Dr. Davd Bessler s Tme Seres course noes, zarads (999) Ineremporal Macroeconomcs chaper 4 & Techncal ppend, and Hamlon

More information

1. The graph below shows the variation with time t of the acceleration a of an object from t = 0 to t = T. a

1. The graph below shows the variation with time t of the acceleration a of an object from t = 0 to t = T. a Kinemaics Paper 1 1. The graph below shows he ariaion wih ime of he acceleraion a of an objec from = o = T. a T The shaded area under he graph represens change in A. displacemen. B. elociy. C. momenum.

More information

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC CH.3. COMPATIBILITY EQUATIONS Connuum Mechancs Course (MMC) - ETSECCPB - UPC Overvew Compably Condons Compably Equaons of a Poenal Vecor Feld Compably Condons for Infnesmal Srans Inegraon of he Infnesmal

More information

One-Dimensional Kinematics

One-Dimensional Kinematics One-Dimensional Kinemaics One dimensional kinemaics refers o moion along a sraigh line. Een hough we lie in a 3-dimension world, moion can ofen be absraced o a single dimension. We can also describe moion

More information

THERMODYNAMICS 1. The First Law and Other Basic Concepts (part 2)

THERMODYNAMICS 1. The First Law and Other Basic Concepts (part 2) Company LOGO THERMODYNAMICS The Frs Law and Oher Basc Conceps (par ) Deparmen of Chemcal Engneerng, Semarang Sae Unversy Dhon Harano S.T., M.T., M.Sc. Have you ever cooked? Equlbrum Equlbrum (con.) Equlbrum

More information

Econ107 Applied Econometrics Topic 5: Specification: Choosing Independent Variables (Studenmund, Chapter 6)

Econ107 Applied Econometrics Topic 5: Specification: Choosing Independent Variables (Studenmund, Chapter 6) Econ7 Appled Economercs Topc 5: Specfcaon: Choosng Independen Varables (Sudenmund, Chaper 6 Specfcaon errors ha we wll deal wh: wrong ndependen varable; wrong funconal form. Ths lecure deals wh wrong ndependen

More information

Velocity is a relative quantity

Velocity is a relative quantity Veloci is a relaie quani Disenangling Coordinaes PHY2053, Fall 2013, Lecure 6 Newon s Laws 2 PHY2053, Fall 2013, Lecure 6 Newon s Laws 3 R. Field 9/6/2012 Uniersi of Florida PHY 2053 Page 8 Reference Frames

More information

A. Inventory model. Why are we interested in it? What do we really study in such cases.

A. Inventory model. Why are we interested in it? What do we really study in such cases. Some general yem model.. Inenory model. Why are we nereed n? Wha do we really udy n uch cae. General raegy of machng wo dmlar procee, ay, machng a fa proce wh a low one. We need an nenory or a buffer or

More information

Today s topic: IMPULSE AND MOMENTUM CONSERVATION

Today s topic: IMPULSE AND MOMENTUM CONSERVATION Today s opc: MPULSE ND MOMENTUM CONSERVTON Reew of Las Week s Lecure Elasc Poenal Energy: x: dsplaceen fro equlbru x = : equlbru poson Work-Energy Theore: W o W W W g noncons W non el W noncons K K K (

More information

Physics Notes - Ch. 2 Motion in One Dimension

Physics Notes - Ch. 2 Motion in One Dimension Physics Noes - Ch. Moion in One Dimension I. The naure o physical quaniies: scalars and ecors A. Scalar quaniy ha describes only magniude (how much), NOT including direcion; e. mass, emperaure, ime, olume,

More information

Chapter 3. r r. Position, Velocity, and Acceleration Revisited

Chapter 3. r r. Position, Velocity, and Acceleration Revisited Chapter 3 Poston, Velocty, and Acceleraton Revsted The poston vector of a partcle s a vector drawn from the orgn to the locaton of the partcle. In two dmensons: r = x ˆ+ yj ˆ (1) The dsplacement vector

More information

Lecture 9: Dynamic Properties

Lecture 9: Dynamic Properties Shor Course on Molecular Dynamcs Smulaon Lecure 9: Dynamc Properes Professor A. Marn Purdue Unversy Hgh Level Course Oulne 1. MD Bascs. Poenal Energy Funcons 3. Inegraon Algorhms 4. Temperaure Conrol 5.

More information

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS THE PREICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS INTROUCTION The wo dmensonal paral dfferenal equaons of second order can be used for he smulaon of compeve envronmen n busness The arcle presens he

More information

Chapter 12: Velocity, acceleration, and forces

Chapter 12: Velocity, acceleration, and forces To Feel a Force Chaper Spring, Chaper : A. Saes of moion For moion on or near he surface of he earh, i is naural o measure moion wih respec o objecs fixed o he earh. The 4 hr. roaion of he earh has a measurable

More information

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION INTERNATIONAL TRADE T. J. KEHOE UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 27 EXAMINATION Please answer wo of he hree quesons. You can consul class noes, workng papers, and arcles whle you are workng on he

More information

Chapter 3 Kinematics in Two Dimensions

Chapter 3 Kinematics in Two Dimensions Chaper 3 KINEMATICS IN TWO DIMENSIONS PREVIEW Two-dimensional moion includes objecs which are moing in wo direcions a he same ime, such as a projecile, which has boh horizonal and erical moion. These wo

More information

Scattering at an Interface: Oblique Incidence

Scattering at an Interface: Oblique Incidence Course Insrucor Dr. Raymond C. Rumpf Offce: A 337 Phone: (915) 747 6958 E Mal: rcrumpf@uep.edu EE 4347 Appled Elecromagnecs Topc 3g Scaerng a an Inerface: Oblque Incdence Scaerng These Oblque noes may

More information

IB Physics Kinematics Worksheet

IB Physics Kinematics Worksheet IB Physics Kinemaics Workshee Wrie full soluions and noes for muliple choice answers. Do no use a calculaor for muliple choice answers. 1. Which of he following is a correc definiion of average acceleraion?

More information

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!") i+1,q - [(!

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!) i+1,q - [(! ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL The frs hng o es n wo-way ANOVA: Is here neracon? "No neracon" means: The man effecs model would f. Ths n urn means: In he neracon plo (wh A on he horzonal

More information

Normal Random Variable and its discriminant functions

Normal Random Variable and its discriminant functions Noral Rando Varable and s dscrnan funcons Oulne Noral Rando Varable Properes Dscrnan funcons Why Noral Rando Varables? Analycally racable Works well when observaon coes for a corruped snle prooype 3 The

More information

Kinematics in two Dimensions

Kinematics in two Dimensions Lecure 5 Chaper 4 Phsics I Kinemaics in wo Dimensions Course websie: hp://facul.uml.edu/andri_danlo/teachin/phsicsi PHYS.141 Lecure 5 Danlo Deparmen of Phsics and Applied Phsics Toda we are oin o discuss:

More information

Energy Storage Devices

Energy Storage Devices Energy Sorage Deces Objece of Lecure Descrbe he consrucon of a capacor and how charge s sored. Inroduce seeral ypes of capacors Dscuss he elecrcal properes of a capacor The relaonshp beween charge, olage,

More information

Graduate Macroeconomics 2 Problem set 5. - Solutions

Graduate Macroeconomics 2 Problem set 5. - Solutions Graduae Macroeconomcs 2 Problem se. - Soluons Queson 1 To answer hs queson we need he frms frs order condons and he equaon ha deermnes he number of frms n equlbrum. The frms frs order condons are: F K

More information

Response of MDOF systems

Response of MDOF systems Response of MDOF syses Degree of freedo DOF: he nu nuber of ndependen coordnaes requred o deerne copleely he posons of all pars of a syse a any nsan of e. wo DOF syses hree DOF syses he noral ode analyss

More information

DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL

DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL Sco Wsdom, John Hershey 2, Jonahan Le Roux 2, and Shnj Waanabe 2 Deparmen o Elecrcal Engneerng, Unversy o Washngon, Seale, WA, USA

More information

Vibrations and Waves

Vibrations and Waves Chaper 3 3 Vbraons and Waes PROBEM SOUIONS 3. (a) ang o he rgh as pose, he sprng orce acng on he bloc a he nsan o release s F s 30 N 0.3 7 N or 7 N o he le A hs nsan, he acceleraon s a F s 7 N 0.60 g 8

More information

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s Ordnary Dfferenal Equaons n Neuroscence wh Malab eamples. Am - Gan undersandng of how o se up and solve ODE s Am Undersand how o se up an solve a smple eample of he Hebb rule n D Our goal a end of class

More information

MEEN Handout 4a ELEMENTS OF ANALYTICAL MECHANICS

MEEN Handout 4a ELEMENTS OF ANALYTICAL MECHANICS MEEN 67 - Handou 4a ELEMENTS OF ANALYTICAL MECHANICS Newon's laws (Euler's fundamenal prncples of moon) are formulaed for a sngle parcle and easly exended o sysems of parcles and rgd bodes. In descrbng

More information

Chapter 6: AC Circuits

Chapter 6: AC Circuits Chaper 6: AC Crcus Chaper 6: Oulne Phasors and he AC Seady Sae AC Crcus A sable, lnear crcu operang n he seady sae wh snusodal excaon (.e., snusodal seady sae. Complee response forced response naural response.

More information

J i-1 i. J i i+1. Numerical integration of the diffusion equation (I) Finite difference method. Spatial Discretization. Internal nodes.

J i-1 i. J i i+1. Numerical integration of the diffusion equation (I) Finite difference method. Spatial Discretization. Internal nodes. umercal negraon of he dffuson equaon (I) Fne dfference mehod. Spaal screaon. Inernal nodes. R L V For hermal conducon le s dscree he spaal doman no small fne spans, =,,: Balance of parcles for an nernal

More information

Calculus Chapter 1 Introduction to Calculus

Calculus Chapter 1 Introduction to Calculus Inroducon o Calculus Cal 1-3 Calculus Chaper 1 Inroducon o Calculus CHAPER 1 CALCULUS INRODUCION O hs chaper, whch replaces Chaper 4 n Physcs 2, s nended for sudens who have no had calculus, or as a calculus

More information

TSS = SST + SSE An orthogonal partition of the total SS

TSS = SST + SSE An orthogonal partition of the total SS ANOVA: Topc 4. Orhogonal conrass [ST&D p. 183] H 0 : µ 1 = µ =... = µ H 1 : The mean of a leas one reamen group s dfferen To es hs hypohess, a basc ANOVA allocaes he varaon among reamen means (SST) equally

More information

TUTORIAL SOLUTIONS. F.1 KCL, KVL, Power and Energy Q.1. i All units in VAΩ,,

TUTORIAL SOLUTIONS. F.1 KCL, KVL, Power and Energy Q.1. i All units in VAΩ,, F TUTOIAL SOLUTIONS F. KCL, KVL, Power and Energy Q. 8 9 6 All uns n VAΩ,, Appendx F Tuoral Soluons Applyng KCL o he doed surface: + + Q. All uns n V, A, Ω Nework A Nework B Applyng KCL o he doed surface:

More information

To Do. Resources. Algorithm Outline. Simplifications. Advanced Computer Graphics (Fall 2010) Surface Simplification: Goals (Garland)

To Do. Resources. Algorithm Outline. Simplifications. Advanced Computer Graphics (Fall 2010) Surface Simplification: Goals (Garland) danced Compuer Graphcs (Fall 2) CS 283, Lecure 7: Quadrc Error Mercs Ra Ramamoorh o Do ssgnmen, Due Oc 7. Should hae made some serous progress by end of week hs lecure reews quadrc error mercs and some

More information

Solution in semi infinite diffusion couples (error function analysis)

Solution in semi infinite diffusion couples (error function analysis) Soluon n sem nfne dffuson couples (error funcon analyss) Le us consder now he sem nfne dffuson couple of wo blocks wh concenraon of and I means ha, n a A- bnary sysem, s bondng beween wo blocks made of

More information

Chapter 5. Circuit Theorems

Chapter 5. Circuit Theorems Chaper 5 Crcu Theorems Source Transformaons eplace a olage source and seres ressor by a curren and parallel ressor Fgure 5.-1 (a) A nondeal olage source. (b) A nondeal curren source. (c) Crcu B-conneced

More information

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 1-3

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 1-3 A.P. Physics B Uni 1 Tes Reiew Physics Basics, Moemen, and Vecors Chapers 1-3 * In sudying for your es, make sure o sudy his reiew shee along wih your quizzes and homework assignmens. Muliple Choice Reiew:

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

Go over vector and vector algebra Displacement and position in 2-D Average and instantaneous velocity in 2-D Average and instantaneous acceleration

Go over vector and vector algebra Displacement and position in 2-D Average and instantaneous velocity in 2-D Average and instantaneous acceleration Mh Csquee Go oe eco nd eco lgeb Dsplcemen nd poson n -D Aege nd nsnneous eloc n -D Aege nd nsnneous cceleon n -D Poecle moon Unfom ccle moon Rele eloc* The componens e he legs of he gh ngle whose hpoenuse

More information

and v y . The changes occur, respectively, because of the acceleration components a x and a y

and v y . The changes occur, respectively, because of the acceleration components a x and a y Week 3 Reciaion: Chaper3 : Problems: 1, 16, 9, 37, 41, 71. 1. A spacecraf is raveling wih a veloci of v0 = 5480 m/s along he + direcion. Two engines are urned on for a ime of 84 s. One engine gives he

More information

Homework 8: Rigid Body Dynamics Due Friday April 21, 2017

Homework 8: Rigid Body Dynamics Due Friday April 21, 2017 EN40: Dynacs and Vbraons Hoework 8: gd Body Dynacs Due Frday Aprl 1, 017 School of Engneerng Brown Unversy 1. The earh s roaon rae has been esaed o decrease so as o ncrease he lengh of a day a a rae of

More information

s in boxe wers ans Put

s in boxe wers ans Put Pu answers in boxes Main Ideas in Class Toda Inroducion o Falling Appl Old Equaions Graphing Free Fall Sole Free Fall Problems Pracice:.45,.47,.53,.59,.61,.63,.69, Muliple Choice.1 Freel Falling Objecs

More information

Bayes rule for a classification problem INF Discriminant functions for the normal density. Euclidean distance. Mahalanobis distance

Bayes rule for a classification problem INF Discriminant functions for the normal density. Euclidean distance. Mahalanobis distance INF 43 3.. Repeon Anne Solberg (anne@f.uo.no Bayes rule for a classfcaon problem Suppose we have J, =,...J classes. s he class label for a pxel, and x s he observed feaure vecor. We can use Bayes rule

More information

Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Section 1-5 Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

More information

P R = P 0. The system is shown on the next figure:

P R = P 0. The system is shown on the next figure: TPG460 Reservor Smulaon 08 page of INTRODUCTION TO RESERVOIR SIMULATION Analycal and numercal soluons of smple one-dmensonal, one-phase flow equaons As an nroducon o reservor smulaon, we wll revew he smples

More information

Physics 201 Lecture 2

Physics 201 Lecture 2 Physcs 1 Lecure Lecure Chper.1-. Dene Poson, Dsplcemen & Dsnce Dsngush Tme nd Tme Inerl Dene Velocy (Aerge nd Insnneous), Speed Dene Acceleron Undersnd lgebrclly, hrough ecors, nd grphclly he relonshps

More information

[Link to MIT-Lab 6P.1 goes here.] After completing the lab, fill in the following blanks: Numerical. Simulation s Calculations

[Link to MIT-Lab 6P.1 goes here.] After completing the lab, fill in the following blanks: Numerical. Simulation s Calculations Chaper 6: Ordnary Leas Squares Esmaon Procedure he Properes Chaper 6 Oulne Cln s Assgnmen: Assess he Effec of Sudyng on Quz Scores Revew o Regresson Model o Ordnary Leas Squares () Esmaon Procedure o he

More information

CHAPTER 5: MULTIVARIATE METHODS

CHAPTER 5: MULTIVARIATE METHODS CHAPER 5: MULIVARIAE MEHODS Mulvarae Daa 3 Mulple measuremens (sensors) npus/feaures/arbues: -varae N nsances/observaons/eamples Each row s an eample Each column represens a feaure X a b correspons o he

More information

. The geometric multiplicity is dim[ker( λi. number of linearly independent eigenvectors associated with this eigenvalue.

. The geometric multiplicity is dim[ker( λi. number of linearly independent eigenvectors associated with this eigenvalue. Lnear Algebra Lecure # Noes We connue wh he dscusson of egenvalues, egenvecors, and dagonalzably of marces We wan o know, n parcular wha condons wll assure ha a marx can be dagonalzed and wha he obsrucons

More information

Including the ordinary differential of distance with time as velocity makes a system of ordinary differential equations.

Including the ordinary differential of distance with time as velocity makes a system of ordinary differential equations. Soluons o Ordnary Derenal Equaons An ordnary derenal equaon has only one ndependen varable. A sysem o ordnary derenal equaons consss o several derenal equaons each wh he same ndependen varable. An eample

More information

FTCS Solution to the Heat Equation

FTCS Solution to the Heat Equation FTCS Soluon o he Hea Equaon ME 448/548 Noes Gerald Reckenwald Porland Sae Unversy Deparmen of Mechancal Engneerng gerry@pdxedu ME 448/548: FTCS Soluon o he Hea Equaon Overvew Use he forward fne d erence

More information

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8.

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8. Kinemaics Vocabulary Kinemaics and One Dimensional Moion 8.1 WD1 Kinema means movemen Mahemaical descripion of moion Posiion Time Inerval Displacemen Velociy; absolue value: speed Acceleraion Averages

More information

Main Ideas in Class Today

Main Ideas in Class Today Main Ideas in Class Toda Inroducion o Falling Appl Consan a Equaions Graphing Free Fall Sole Free Fall Problems Pracice:.45,.47,.53,.59,.61,.63,.69, Muliple Choice.1 Freel Falling Objecs Refers o objecs

More information

Example: MOSFET Amplifier Distortion

Example: MOSFET Amplifier Distortion 4/25/2011 Example MSFET Amplfer Dsoron 1/9 Example: MSFET Amplfer Dsoron Recall hs crcu from a prevous handou: ( ) = I ( ) D D d 15.0 V RD = 5K v ( ) = V v ( ) D o v( ) - K = 2 0.25 ma/v V = 2.0 V 40V.

More information

The study of the motion of a body along a general curve. û N the unit vector normal to the curve. Clearly, these unit vectors change with time, uˆ

The study of the motion of a body along a general curve. û N the unit vector normal to the curve. Clearly, these unit vectors change with time, uˆ Secion. Curilinear Moion he sudy of he moion of a body along a general cure. We define û he uni ecor a he body, angenial o he cure û he uni ecor normal o he cure Clearly, hese uni ecors change wih ime,

More information

On One Analytic Method of. Constructing Program Controls

On One Analytic Method of. Constructing Program Controls Appled Mahemacal Scences, Vol. 9, 05, no. 8, 409-407 HIKARI Ld, www.m-hkar.com hp://dx.do.org/0.988/ams.05.54349 On One Analyc Mehod of Consrucng Program Conrols A. N. Kvko, S. V. Chsyakov and Yu. E. Balyna

More information

Born Oppenheimer Approximation and Beyond

Born Oppenheimer Approximation and Beyond L Born Oppenhemer Approxmaon and Beyond aro Barba A*dex Char Professor maro.barba@unv amu.fr Ax arselle Unversé, nsu de Chme Radcalare LGHT AD Adabac x dabac x nonadabac LGHT AD From Gree dabaos: o be

More information

Variants of Pegasos. December 11, 2009

Variants of Pegasos. December 11, 2009 Inroducon Varans of Pegasos SooWoong Ryu bshboy@sanford.edu December, 009 Youngsoo Cho yc344@sanford.edu Developng a new SVM algorhm s ongong research opc. Among many exng SVM algorhms, we wll focus on

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Lnear Response Theory: The connecon beween QFT and expermens 3.1. Basc conceps and deas Q: ow do we measure he conducvy of a meal? A: we frs nroduce a weak elecrc feld E, and hen measure

More information

Mach Effect Thrusters (Mets) And Over-Unity Energy Production. Professor Emeritus Jim Woodward CalState Fullerton, Dept. of Physics.

Mach Effect Thrusters (Mets) And Over-Unity Energy Production. Professor Emeritus Jim Woodward CalState Fullerton, Dept. of Physics. Mach ec Thrusers (Mes) And Over-Uny nergy Producon Proessor merus Jm Woodward CalSae ulleron, Dep. o Physcs 13 November, 2015 We rounely hear a crcsm o MTs based upon an argumen ha clams: a MT s operaed

More information

Lesson 2 Transmission Lines Fundamentals

Lesson 2 Transmission Lines Fundamentals Lesson Transmsson Lnes Funamenals 楊尚達 Shang-Da Yang Insue of Phooncs Technologes Deparmen of Elecrcal Engneerng Naonal Tsng Hua Unersy Tawan Sec. -1 Inroucon 1. Why o scuss TX lnes srbue crcus?. Crera

More information

0 time. 2 Which graph represents the motion of a car that is travelling along a straight road with a uniformly increasing speed?

0 time. 2 Which graph represents the motion of a car that is travelling along a straight road with a uniformly increasing speed? 1 1 The graph relaes o he moion of a falling body. y Which is a correc descripion of he graph? y is disance and air resisance is negligible y is disance and air resisance is no negligible y is speed and

More information

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance Ch: Moion along a sraigh line Moion Posiion and Displacemen Average Velociy and Average Speed Insananeous Velociy and Speed Acceleraion Consan Acceleraion: A Special Case Anoher Look a Consan Acceleraion

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan Ground Rules PC11 Fundamenals of Physics I Lecures 3 and 4 Moion in One Dimension A/Prof Tay Seng Chuan 1 Swich off your handphone and pager Swich off your lapop compuer and keep i No alking while lecure

More information

FI 3103 Quantum Physics

FI 3103 Quantum Physics /9/4 FI 33 Quanum Physcs Aleander A. Iskandar Physcs of Magnesm and Phooncs Research Grou Insu Teknolog Bandung Basc Conces n Quanum Physcs Probably and Eecaon Value Hesenberg Uncerany Prncle Wave Funcon

More information

Problem While being compressed, A) What is the work done on it by gravity? B) What is the work done on it by the spring force?

Problem While being compressed, A) What is the work done on it by gravity? B) What is the work done on it by the spring force? Problem 07-50 A 0.25 kg block s dropped on a relaed sprng that has a sprng constant o k 250.0 N/m (2.5 N/cm). The block becomes attached to the sprng and compresses t 0.12 m beore momentarl stoppng. Whle

More information

CS286.2 Lecture 14: Quantum de Finetti Theorems II

CS286.2 Lecture 14: Quantum de Finetti Theorems II CS286.2 Lecure 14: Quanum de Fne Theorems II Scrbe: Mara Okounkova 1 Saemen of he heorem Recall he las saemen of he quanum de Fne heorem from he prevous lecure. Theorem 1 Quanum de Fne). Le ρ Dens C 2

More information

Part II CONTINUOUS TIME STOCHASTIC PROCESSES

Part II CONTINUOUS TIME STOCHASTIC PROCESSES Par II CONTINUOUS TIME STOCHASTIC PROCESSES 4 Chaper 4 For an advanced analyss of he properes of he Wener process, see: Revus D and Yor M: Connuous marngales and Brownan Moon Karazas I and Shreve S E:

More information

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration PHYS 54 Tes Pracice Soluions Spring 8 Q: [4] Knowing ha in he ne epression a is acceleraion, v is speed, is posiion and is ime, from a dimensional v poin of view, he equaion a is a) incorrec b) correc

More information

The ray paths and travel times for multiple layers can be computed using ray-tracing, as demonstrated in Lab 3.

The ray paths and travel times for multiple layers can be computed using ray-tracing, as demonstrated in Lab 3. C. Trael me cures for mulple reflecors The ray pahs ad rael mes for mulple layers ca be compued usg ray-racg, as demosraed Lab. MATLAB scrp reflec_layers_.m performs smple ray racg. (m) ref(ms) ref(ms)

More information

Midterm Exam. Thursday, April hour, 15 minutes

Midterm Exam. Thursday, April hour, 15 minutes Economcs of Grow, ECO560 San Francsco Sae Unvers Mcael Bar Sprng 04 Mderm Exam Tursda, prl 0 our, 5 mnues ame: Insrucons. Ts s closed boo, closed noes exam.. o calculaors of an nd are allowed. 3. Sow all

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

Panel Data Regression Models

Panel Data Regression Models Panel Daa Regresson Models Wha s Panel Daa? () Mulple dmensoned Dmensons, e.g., cross-secon and me node-o-node (c) Pongsa Pornchawseskul, Faculy of Economcs, Chulalongkorn Unversy (c) Pongsa Pornchawseskul,

More information

Pendulum Dynamics. = Ft tangential direction (2) radial direction (1)

Pendulum Dynamics. = Ft tangential direction (2) radial direction (1) Pendulum Dynams Consder a smple pendulum wh a massless arm of lengh L and a pon mass, m, a he end of he arm. Assumng ha he fron n he sysem s proporonal o he negave of he angenal veloy, Newon s seond law

More information

Department of Economics University of Toronto

Department of Economics University of Toronto Deparmen of Economcs Unversy of Torono ECO408F M.A. Economercs Lecure Noes on Heeroskedascy Heeroskedascy o Ths lecure nvolves lookng a modfcaons we need o make o deal wh he regresson model when some of

More information

Physics 101 Lecture 4 Motion in 2D and 3D

Physics 101 Lecture 4 Motion in 2D and 3D Phsics 11 Lecure 4 Moion in D nd 3D Dr. Ali ÖVGÜN EMU Phsics Deprmen www.ogun.com Vecor nd is componens The componens re he legs of he righ ringle whose hpoenuse is A A A A A n ( θ ) A Acos( θ) A A A nd

More information