MAE SUMMER 2015 HOMEWORK 1 SOLUTION

Size: px
Start display at page:

Download "MAE SUMMER 2015 HOMEWORK 1 SOLUTION"

Transcription

1 MAE 04 - SUMMER 205 HOMEWORK SOLUTION Problem :. Plot the drag coefficient, c D, the aerodynamic efficiency, AE, and the center of pressure, x cp, of the airplane as a function of the angle of attack. By combining together the plots for the polar curve and the c L as a function of α, we obtain the c D data. The result is shown in Figure. Figure : Drag coefficient of the airplane as a function of the angle of attack. The aerodynamic efficiency is defined as AE = c L /c D. By combining the c L and c D plots we get AE as a function of α, represented in Figure 2. Consider the sketch presented in Figure 3 for the geometry of the problem. The origin of the (x, y) axis is located at the front of the airplane. Applying the definition of center of pressure: M cp = N (x cp x c/4 ) + Mc/4 = 0.

2 Figure 2: Aerodynamic efficiency of the airplane as a function of the angle of attack. By using the definition of the aerodynamic coefficients, defining the average chord length as c = S/b, and using the relation c N = c L cos(α) + c D sin(α), we find that the location of the center of pressure is x cp = 0.6 d S b cm c/4 c N, Figure 4 represents the location of the center of pressure as a function of the angle of attack. y N U8 η x M c/4 c.p. ξ α Figure 3: Sketch for the geometry of the problem. 2

3 Figure 4: Center of pressure as a function of the angle of attack. 2. Calculate the stalling velocity of the airplane. What are α, c D, c Mc/4 and AE at this flight condition? 2W c L,max.8 V stall = 74.2 m/s, ρsc L,max α stall 38, c D,stall.2, c Mc/4,stall 0.09, AE stall.5. ** The angle of attack α stall is very large. Since the engines are fixed to the airplane, the thrust at high angles of attack have a non-zero component parallel to the lift. Now that we know that α is large, we need to take into account this component of the thrust in order to calculate the actual V stall. However, this is out of the scope of this problem, and for simplicity, here on I will use the approximation of small α (all the text in blue), and I will consider it as good in my grading. If you are interested in knowing the actual solution, keep reading. Consider the force balance plotted in Figure 5. Equilibrium of forces renders W = L + T sin(α), D= T cos(α), 3

4 U8 α T L D W Figure 5: Force balance for high angles of attack. and thus: 2 ρv 2 S [c L + c D tan(α)] = W, 2W V stall = ρs [c L + c D tan(α)] max The stall doesn t happen now at the maximum c L but at the maximum c L +c D tan(α), which is the coefficient of total force counteracting the airplane s weight. Figure 6 depicts the dependence of c L + c D tan(α) with α. It can be seen that this coefficient of force doesn t reach a maximum for the range of angles of attack provided. This means that the airplane can reach very high angles of attack and thus very low speeds without stalling. Potentially, if the curve doesn t reach a maximum, in a flight with lower weight, the airplane could stay vertically with zero speed and balancing the Figure 6: Coefficient of total force counteracting the airplane s weight. 4

5 Figure 7: Airplane flying at α = π 2 rad. weight with just the thrust provided by the engines. And just to finish, Figure 7 shows a cool picture of a MIG-29 performing the cobra maneuver in which it stays vertical, with zero velocity, and balanced just by the engines thrust 3. Under the conditions described in the previous part, calculate the lift, drag, moment with respect to the front of the airplane M 0 and traction acting on the airplane. L stall = W = 230, 535 N, D stall = 2 ρv stallsc 2 D,stall 5, 700 N, M 0,stall = N 0.6 d + M c/4 = 2 ρv stallsc [ dc ] (c L,max cos(α) + c D,stall sin(α)) + c Mc/4 M 0,stall 2, 788, 496 N m, T stall = D stall 5, 700 N. 4. Calculate the maximum velocity of the airplane. What are α, c L, c Mc/4 and AE at this flight condition? 5

6 The airplane has two engines, and thus the maximum thrust is T max = 2T. 2T max c D,min 0.05 V max = m/s, ρsc D,min α cd,min 5, c L,cD,min 0.4, c Mc/4,c D,min 0.7, AE cd,min Under the conditions described in the previous part, calculate the lift, drag, moment with respect to the front of the airplane and traction acting on the airplane. L cd.min = 2 ρv 2 maxsc L,cD,min = 43, 596 N W, D cd,min = T max = 58, 400 N, M 0,cD,max = N 0.6 d + M c/4 = [ 2 ρv maxsc d ( cl,cd,min c cos(α) + c D,min sin(α) ) ] + c Mc/4 M 0,cD,min 2, 754, 348 N m, T cd,min = T max = 58, 400 N. 6. What is the angle of attack that maximizes AE? Calculate the lift to drag ratio, velocity, lift L, drag D, moment with respect to the front of the airplane M 0 and thrust T for that angle of attack. α AEmax 0, AE max 6.3, 2W V AEmax = 37.4 m/s, ρsc L,AEmax L AEmax = W = 230, 535 N, D AEmax = W AE max 36, 332 N, M 0,AEmax = N 0.6 d + M c/4 = 0.6 d (L AEmax cos(α) + D AEmax sin(α)) + 2 ρv AE 2 max Scc Mc/4 M 0,AEmax 2, 74, 243 N m, T AEmax = D AEmax 36, 332 N. 6

7 7. When the airplane is at a height h = 4, 000m. both engines are turned off (T = 0N.) and the airplane is glided to the ground. Calculate the maximum distance that the airplane is able to glide at maximum lift to drag ratio. If x is the traveled distance: AE = x h = tan(α) x AE max = AE max h 25, 38 m. 8. Specify the units of all the previous results. All the results in the previous questions have the correct units. Bonus: Is there anything wrong with questions 4. and 5.? The velocity is supersonic, and thus the theory used doesn t hold. 7

8 Problem 2:. What is the relation between the lift L and normal force N on the airfoil? Justify why we can integrate along the reference system (x 2, y 2 ) instead of (x, y) to calculate L. The integral of c p on the surface of the airfoil, projected on (x 2, y 2 ) will render the normal and axial forces. However, we are interested in the lift force Given that α is very small: L = N cos(α) A sin(α) L N. 2. Integrate c p along the surface of the airfoil to calculate L. Hint: use the coordinate system (x 2, y 2 ). c c l c n = c c p,u (x 2 )dx 2 + c p,l (x 2 )dx 2 = { } 2x 2 /c 2α + 2x 2 /c + 2x 2/c α2 + 2x 2 /c + 2α 2x 2 /c + 2x 2 /c 2x 2/c α2 dx 2 = + 2x 2 /c c 2x 2 /c 4α + 2x 2 /c dx 2 Making the change of variable x 2 = c 2 ξ: c l 2α ξ= ξ= ξ dξ = 2πα + ξ L = 2 ρu 2 Sc l ρu 2 Sπα 3. Calculate the coefficient of moment at the leading edge of the airfoil, c ml.e.. 8

9 Using the reference system (x 2, y 2 ): c m,l.e. = c 2 c 2 [ c p,u (x 2 ) c p,l (x 2 ) 4α Making the change of variable x 2 = c 2 ξ: c m,l.e. = α ξ= ξ= 2x 2 /c + 2x 2 /c ] ( x 2 + c 2 ( x 2 + c ) dx 2 2 ξ + ξ (ξ + ) dξ = α 2 π ) dx 2 = 4. Calculate the coefficient of moment at the c/4 point, c mc/4. c m,c/4 = c m,l.e. + 4 c l c m,c/4 = 0 9

Chapter 5 Performance analysis I Steady level flight (Lectures 17 to 20) Keywords: Steady level flight equations of motion, minimum power required,

Chapter 5 Performance analysis I Steady level flight (Lectures 17 to 20) Keywords: Steady level flight equations of motion, minimum power required, Chapter 5 Performance analysis I Steady level flight (Lectures 17 to 20) Keywords: Steady level flight equations of motion, minimum power required, minimum thrust required, minimum speed, maximum speed;

More information

A SIMPLIFIED ANALYSIS OF NONLINEAR LONGITUDINAL DYNAMICS AND CONCEPTUAL CONTROL SYSTEM DESIGN

A SIMPLIFIED ANALYSIS OF NONLINEAR LONGITUDINAL DYNAMICS AND CONCEPTUAL CONTROL SYSTEM DESIGN A SIMPLIFIED ANALYSIS OF NONLINEAR LONGITUDINAL DYNAMICS AND CONCEPTUAL CONTROL SYSTEM DESIGN ROBBIE BUNGE 1. Introduction The longitudinal dynamics of fixed-wing aircraft are a case in which classical

More information

Airfoil Lift Measurement by Surface Pressure Distribution Lab 2 MAE 424

Airfoil Lift Measurement by Surface Pressure Distribution Lab 2 MAE 424 Airfoil Lift Measurement by Surface Pressure Distribution Lab 2 MAE 424 Evan Coleman April 29, 2013 Spring 2013 Dr. MacLean 1 Abstract The purpose of this experiment was to determine the lift coefficient,

More information

Chapter 5 Wing design - selection of wing parameters 2 Lecture 20 Topics

Chapter 5 Wing design - selection of wing parameters 2 Lecture 20 Topics Chapter 5 Wing design - selection of wing parameters Lecture 0 Topics 5..4 Effects of geometric parameters, Reynolds number and roughness on aerodynamic characteristics of airfoils 5..5 Choice of airfoil

More information

Incompressible Flow Over Airfoils

Incompressible Flow Over Airfoils Chapter 7 Incompressible Flow Over Airfoils Aerodynamics of wings: -D sectional characteristics of the airfoil; Finite wing characteristics (How to relate -D characteristics to 3-D characteristics) How

More information

Introduction to Aerospace Engineering

Introduction to Aerospace Engineering Introduction to Aerosace Engineering Lecture slides hallenge the future Introduction to Aerosace Engineering Aerodynamics & Prof. H. Bijl ir. N. Timmer &. Airfoils and finite wings Anderson 5.9 end of

More information

Flight Dynamics and Control. Lecture 3: Longitudinal stability Derivatives G. Dimitriadis University of Liege

Flight Dynamics and Control. Lecture 3: Longitudinal stability Derivatives G. Dimitriadis University of Liege Flight Dynamics and Control Lecture 3: Longitudinal stability Derivatives G. Dimitriadis University of Liege Previously on AERO0003-1 We developed linearized equations of motion Longitudinal direction

More information

AA 242B/ ME 242B: Mechanical Vibrations (Spring 2016)

AA 242B/ ME 242B: Mechanical Vibrations (Spring 2016) AA 242B/ ME 242B: Mechanical Vibrations (Spring 2016) Homework #2 Due April 17, 2016 This homework focuses on developing a simplified analytical model of the longitudinal dynamics of an aircraft during

More information

Aircraft Structures Design Example

Aircraft Structures Design Example University of Liège Aerospace & Mechanical Engineering Aircraft Structures Design Example Ludovic Noels Computational & Multiscale Mechanics of Materials CM3 http://www.ltas-cm3.ulg.ac.be/ Chemin des Chevreuils

More information

Flight and Orbital Mechanics

Flight and Orbital Mechanics Flight and Orbital Mechanics Lecture slides Challenge the future 1 Flight and Orbital Mechanics Lecture hours 3, 4 Minimum time to climb Mark Voskuijl Semester 1-2012 Delft University of Technology Challenge

More information

Air Loads. Airfoil Geometry. Upper surface. Lower surface

Air Loads. Airfoil Geometry. Upper surface. Lower surface AE1 Jha Loads-1 Air Loads Airfoil Geometry z LE circle (radius) Chord line Upper surface thickness Zt camber Zc Zl Zu Lower surface TE thickness Camber line line joining the midpoints between upper and

More information

Rotor reference axis

Rotor reference axis Rotor reference axis So far we have used the same reference axis: Z aligned with the rotor shaft Y perpendicular to Z and along the blade (in the rotor plane). X in the rotor plane and perpendicular do

More information

Fundamentals of Airplane Flight Mechanics

Fundamentals of Airplane Flight Mechanics David G. Hull Fundamentals of Airplane Flight Mechanics With 125 Figures and 25 Tables y Springer Introduction to Airplane Flight Mechanics 1 1.1 Airframe Anatomy 2 1.2 Engine Anatomy 5 1.3 Equations of

More information

Chapter 5 Lecture 19. Performance analysis I Steady level flight 3. Topics. Chapter-5

Chapter 5 Lecture 19. Performance analysis I Steady level flight 3. Topics. Chapter-5 Chapter 5 Lecture 19 Performance analysis I Steady level flight 3 Topics 5.8 Influence of level flight analysis on airplane design 5.9 Steady level flight performance with a given engine 5.10 Steady level

More information

DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS M.Tech. Curriculum

DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS M.Tech. Curriculum DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS M.Tech. Curriculum SEMESTER I AS5010 Engg. Aerodyn. & Flt. Mech. 3 0 0 3 AS5020 Elements of Gas Dyn. & Propln. 3 0 0 3 AS5030 Aircraft and Aerospace Structures

More information

Stability and Control Some Characteristics of Lifting Surfaces, and Pitch-Moments

Stability and Control Some Characteristics of Lifting Surfaces, and Pitch-Moments Stability and Control Some Characteristics of Lifting Surfaces, and Pitch-Moments The lifting surfaces of a vehicle generally include the wings, the horizontal and vertical tail, and other surfaces such

More information

AE Stability and Control of Aerospace Vehicles

AE Stability and Control of Aerospace Vehicles AE 430 - Stability and ontrol of Aerospace Vehicles Static/Dynamic Stability Longitudinal Static Stability Static Stability We begin ith the concept of Equilibrium (Trim). Equilibrium is a state of an

More information

( ) A i,j. Appendices. A. Sensitivity of the Van Leer Fluxes The flux Jacobians of the inviscid flux vector in Eq.(3.2), and the Van Leer fluxes in

( ) A i,j. Appendices. A. Sensitivity of the Van Leer Fluxes The flux Jacobians of the inviscid flux vector in Eq.(3.2), and the Van Leer fluxes in Appendices A. Sensitivity of the Van Leer Fluxes The flux Jacobians of the inviscid flux vector in Eq.(3.2), and the Van Leer fluxes in Eq.(3.11), can be found in the literature [9,172,173] and are therefore

More information

Airfoils and Wings. Eugene M. Cliff

Airfoils and Wings. Eugene M. Cliff Airfoils and Wings Eugene M. Cliff 1 Introduction The primary purpose of these notes is to supplement the text material related to aerodynamic forces. We are mainly interested in the forces on wings and

More information

Propeller theories. Blade element theory

Propeller theories. Blade element theory 30 1 Propeller theories Blade element theory The blade elements are assumed to be made up of airfoil shapes of known lift, C l and drag, C d characteristics. In practice a large number of different airfoils

More information

Flight and Orbital Mechanics. Exams

Flight and Orbital Mechanics. Exams 1 Flight and Orbital Mechanics Exams Exam AE2104-11: Flight and Orbital Mechanics (23 January 2013, 09.00 12.00) Please put your name, student number and ALL YOUR INITIALS on your work. Answer all questions

More information

Theory of turbo machinery / Turbomaskinernas teori. Chapter 3

Theory of turbo machinery / Turbomaskinernas teori. Chapter 3 Theory of turbo achinery / Turboaskinernas teori Chapter 3 D cascades Let us first understand the facts and then we ay seek the causes. (Aristotle) D cascades High hub-tip ratio (of radii) negligible radial

More information

Lab Reports Due on Monday, 11/24/2014

Lab Reports Due on Monday, 11/24/2014 AE 3610 Aerodynamics I Wind Tunnel Laboratory: Lab 4 - Pressure distribution on the surface of a rotating circular cylinder Lab Reports Due on Monday, 11/24/2014 Objective In this lab, students will be

More information

Mechanics of Flight. Warren F. Phillips. John Wiley & Sons, Inc. Professor Mechanical and Aerospace Engineering Utah State University WILEY

Mechanics of Flight. Warren F. Phillips. John Wiley & Sons, Inc. Professor Mechanical and Aerospace Engineering Utah State University WILEY Mechanics of Flight Warren F. Phillips Professor Mechanical and Aerospace Engineering Utah State University WILEY John Wiley & Sons, Inc. CONTENTS Preface Acknowledgments xi xiii 1. Overview of Aerodynamics

More information

AE 2020: Low Speed Aerodynamics. I. Introductory Remarks Read chapter 1 of Fundamentals of Aerodynamics by John D. Anderson

AE 2020: Low Speed Aerodynamics. I. Introductory Remarks Read chapter 1 of Fundamentals of Aerodynamics by John D. Anderson AE 2020: Low Speed Aerodynamics I. Introductory Remarks Read chapter 1 of Fundamentals of Aerodynamics by John D. Anderson Text Book Anderson, Fundamentals of Aerodynamics, 4th Edition, McGraw-Hill, Inc.

More information

Gliding, Climbing, and Turning Flight Performance Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018

Gliding, Climbing, and Turning Flight Performance Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018 Gliding, Climbing, and Turning Flight Performance Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018 Learning Objectives Conditions for gliding flight Parameters for maximizing climb angle and rate

More information

AER1216: Fundamentals of UAVs PERFORMANCE

AER1216: Fundamentals of UAVs PERFORMANCE AER1216: Fundamentals of UAVs PERFORMANCE P.R. Grant Spring 2016 Introduction What we will cover: 1 Simplified Standard Atmosphere 2 Simplified Airspeed measurements 3 Propulsion Basics 4 Fixed Wing Performance

More information

Introduction to Flight Dynamics

Introduction to Flight Dynamics Chapter 1 Introduction to Flight Dynamics Flight dynamics deals principally with the response of aerospace vehicles to perturbations in their flight environments and to control inputs. In order to understand

More information

SPC Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30

SPC Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30 SPC 307 - Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30 1. The maximum velocity at which an aircraft can cruise occurs when the thrust available with the engines operating with the

More information

/ m U) β - r dr/dt=(n β / C) β+ (N r /C) r [8+8] (c) Effective angle of attack. [4+6+6]

/ m U) β - r dr/dt=(n β / C) β+ (N r /C) r [8+8] (c) Effective angle of attack. [4+6+6] Code No: R05322101 Set No. 1 1. (a) Explain the following terms with examples i. Stability ii. Equilibrium. (b) Comment upon the requirements of stability of a i. Military fighter aircraft ii. Commercial

More information

Definitions. Temperature: Property of the atmosphere (τ). Function of altitude. Pressure: Property of the atmosphere (p). Function of altitude.

Definitions. Temperature: Property of the atmosphere (τ). Function of altitude. Pressure: Property of the atmosphere (p). Function of altitude. Definitions Chapter 3 Standard atmosphere: A model of the atmosphere based on the aerostatic equation, the perfect gas law, an assumed temperature distribution, and standard sea level conditions. Temperature:

More information

I would re-name this chapter Unpowered flight The drag polar, the relationship between lift and drag.

I would re-name this chapter Unpowered flight The drag polar, the relationship between lift and drag. Chapter 3 - Aerodynamics I would re-name this chapter Unpowered flight The drag polar, the relationship between lift and drag. Aerodynamically: = and = So the lift and drag forces are functions of the

More information

PRINCIPLES OF FLIGHT

PRINCIPLES OF FLIGHT 1 Considering a positive cambered aerofoil, the pitching moment when Cl=0 is: A infinite B positive (nose-up). C negative (nose-down). D equal to zero. 2 The angle between the aeroplane longitudinal axis

More information

Given the water behaves as shown above, which direction will the cylinder rotate?

Given the water behaves as shown above, which direction will the cylinder rotate? water stream fixed but free to rotate Given the water behaves as shown above, which direction will the cylinder rotate? ) Clockwise 2) Counter-clockwise 3) Not enough information F y U 0 U F x V=0 V=0

More information

Introduction to Aerospace Engineering

Introduction to Aerospace Engineering Introduction to Aerospace Engineering 5. Aircraft Performance 5.1 Equilibrium Flight In order to discuss performance, stability, and control, we must first establish the concept of equilibrium flight.

More information

AE 245 homework #4 solutions

AE 245 homework #4 solutions AE 245 homework #4 solutions Tim Smith 14 February 2000 1 Problem1 Consider a general aviation aircraft with weight of 3300 lbs and wing surface area of 310 ft 2. It is powered by a piston engine that

More information

Consider a wing of finite span with an elliptic circulation distribution:

Consider a wing of finite span with an elliptic circulation distribution: Question 1 (a) onsider a wing of finite span with an elliptic circulation distribution: Γ( y) Γo y + b = 1, - s y s where s=b/ denotes the wing semi-span. Use this equation, in conjunction with the Kutta-Joukowsky

More information

Chapter 1 Lecture 2. Introduction 2. Topics. Chapter-1

Chapter 1 Lecture 2. Introduction 2. Topics. Chapter-1 Chapter 1 Lecture 2 Introduction 2 Topics 1.4 Equilibrium of airplane 1.5 Number of equations of motion for airplane in flight 1.5.1 Degrees of freedom 1.5.2 Degrees of freedom for a rigid airplane 1.6

More information

Cruising Flight Envelope Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018

Cruising Flight Envelope Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018 Cruising Flight Envelope Robert Stengel, Aircraft Flight Dynamics, MAE 331, 018 Learning Objectives Definitions of airspeed Performance parameters Steady cruising flight conditions Breguet range equations

More information

Active Control of Separated Cascade Flow

Active Control of Separated Cascade Flow Chapter 5 Active Control of Separated Cascade Flow In this chapter, the possibility of active control using a synthetic jet applied to an unconventional axial stator-rotor arrangement is investigated.

More information

University of California at Berkeley Department of Mechanical Engineering ME 163 ENGINEERING AERODYNAMICS FINAL EXAM, 13TH DECEMBER 2005

University of California at Berkeley Department of Mechanical Engineering ME 163 ENGINEERING AERODYNAMICS FINAL EXAM, 13TH DECEMBER 2005 University of California at Berkeley Department of Mechanical Engineering ME 163 ENGINEERING AERODYNAMICS FINAL EXAM, 13TH DECEMBER 2005 Answer both questions. Question 1 is worth 30 marks and question

More information

Performance analysis II Steady climb, descent and glide 3

Performance analysis II Steady climb, descent and glide 3 Chapter 6 Lecture 3 Performance analysis II Steady climb, descent and glide 3 Topics 6.6. Climb hydrograph 6.7. Absolute ceiling and service ceiling 6.8 Time to climb 6.9 Steady descent 6.0 Glide 6.0.

More information

I. Introduction. external compression. supersonic flow. II. Design Criteria

I. Introduction. external compression. supersonic flow. II. Design Criteria Design Optimization of High Speed Inlets Doyle D Knight Dept of Mechanical and Aerospace Engineering Rutgers - The State University of New Jersey New Brunswick, NJ 08903 knight@soemailrutgersedu I Introduction

More information

Introduction to Atmospheric Flight. Dr. Guven Aerospace Engineer (P.hD)

Introduction to Atmospheric Flight. Dr. Guven Aerospace Engineer (P.hD) Introduction to Atmospheric Flight Dr. Guven Aerospace Engineer (P.hD) What is Atmospheric Flight? There are many different ways in which Aerospace engineering is associated with atmospheric flight concepts.

More information

High Speed Aerodynamics. Copyright 2009 Narayanan Komerath

High Speed Aerodynamics. Copyright 2009 Narayanan Komerath Welcome to High Speed Aerodynamics 1 Lift, drag and pitching moment? Linearized Potential Flow Transformations Compressible Boundary Layer WHAT IS HIGH SPEED AERODYNAMICS? Airfoil section? Thin airfoil

More information

Performance analysis II Steady climb, descent and glide 2

Performance analysis II Steady climb, descent and glide 2 Chapter 6 Lecture Performance analysis II Steady climb, descent and glide Topics 6.5 Maximum rate of climb and imum angle of climb 6.5. Parameters influencing (R/C) of a jet airplane 6.5. Parameters influencing

More information

Aerodynamics SYST 460/560. George Mason University Fall 2008 CENTER FOR AIR TRANSPORTATION SYSTEMS RESEARCH. Copyright Lance Sherry (2008)

Aerodynamics SYST 460/560. George Mason University Fall 2008 CENTER FOR AIR TRANSPORTATION SYSTEMS RESEARCH. Copyright Lance Sherry (2008) Aerodynamics SYST 460/560 George Mason University Fall 2008 1 CENTER FOR AIR TRANSPORTATION SYSTEMS RESEARCH Copyright Lance Sherry (2008) Ambient & Static Pressure Ambient Pressure Static Pressure 2 Ambient

More information

Forces on a banked airplane that travels in uniform circular motion.

Forces on a banked airplane that travels in uniform circular motion. Question (60) Forces on a banked airplane that travels in uniform circular motion. A propeller-driven airplane of mass 680 kg is turning in a horizontal circle with a constant speed of 280 km/h. Its bank

More information

Introduction to Aerospace Engineering

Introduction to Aerospace Engineering Introduction to Aerospace Engineering Lecture slides Challenge the future 1 Introduction Aerospace Engineering Flight Mechanics Dr. ir. Mark Voskuijl 15-12-2012 Delft University of Technology Challenge

More information

FLIGHT DYNAMICS. Robert F. Stengel. Princeton University Press Princeton and Oxford

FLIGHT DYNAMICS. Robert F. Stengel. Princeton University Press Princeton and Oxford FLIGHT DYNAMICS Robert F. Stengel Princeton University Press Princeton and Oxford Preface XV Chapter One Introduction 1 1.1 ELEMENTS OF THE AIRPLANE 1 Airframe Components 1 Propulsion Systems 4 1.2 REPRESENTATIVE

More information

Maneuver of fixed-wing combat aircraft

Maneuver of fixed-wing combat aircraft Loughborough University Institutional Repository Maneuver of fixed-wing combat aircraft This item was submitted to Loughborough University's Institutional Repository by the/an author. Citation: RENDER,

More information

Gliding, Climbing, and Turning Flight Performance! Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2016

Gliding, Climbing, and Turning Flight Performance! Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2016 Gliding, Climbing, and Turning Flight Performance! Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2016 Learning Objectives Conditions for gliding flight Parameters for maximizing climb angle and rate

More information

θ α W Description of aero.m

θ α W Description of aero.m Description of aero.m Determination of the aerodynamic forces, moments and power by means of the blade element method; for known mean wind speed, induction factor etc. Simplifications: uniform flow (i.e.

More information

Aircraft Flight Dynamics & Vortex Lattice Codes

Aircraft Flight Dynamics & Vortex Lattice Codes Aircraft Flight Dynamics Vortex Lattice Codes AA241X April 14 2014 Stanford University Overview 1. Equations of motion 2. Non-dimensional EOM Aerodynamics 3. Trim Analysis Longitudinal Lateral 4. Linearized

More information

ME 425: Aerodynamics

ME 425: Aerodynamics ME 425: erodynamics r..b.m. oufique Hasan Professor epartment of Mechanical Engineering Bangladesh University of Engineering & echnology (BUE), haka ecture-25 26/0/209 irplane pa Performance toufiquehasan.buet.ac.bd

More information

Aircraft Performance, Stability and control with experiments in Flight. Questions

Aircraft Performance, Stability and control with experiments in Flight. Questions Aircraft Performance, Stability and control with experiments in Flight Questions Q. If only the elevator size of a given aircraft is decreased; keeping horizontal tail area unchanged; then the aircraft

More information

Introduction to Aeronautics

Introduction to Aeronautics Introduction to Aeronautics ARO 101 Sections 03 & 04 Sep 30, 2015 thru Dec 9, 2015 Instructor: Raymond A. Hudson Week #8 Lecture Material 1 Topics For Week #8 Airfoil Geometry & Nomenclature Identify the

More information

ME 425: Aerodynamics

ME 425: Aerodynamics ME 45: Aerodynamics Dr. A.B.M. Toufique Hasan Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET), Dhaka Lecture-0 Introduction toufiquehasan.buet.ac.bd

More information

Stability and Control

Stability and Control Stability and Control Introduction An important concept that must be considered when designing an aircraft, missile, or other type of vehicle, is that of stability and control. The study of stability is

More information

Aeroelasticity & Experimental Aerodynamics. Lecture 7 Galloping. T. Andrianne

Aeroelasticity & Experimental Aerodynamics. Lecture 7 Galloping. T. Andrianne Aeroelasticity & Experimental Aerodynamics (AERO0032-1) Lecture 7 Galloping T. Andrianne 2015-2016 Dimensional analysis (from L6) Motion of a linear structure in a subsonic, steady flow Described by :

More information

Blade Element Momentum Theory

Blade Element Momentum Theory Blade Element Theory has a number of assumptions. The biggest (and worst) assumption is that the inflow is uniform. In reality, the inflow is non-uniform. It may be shown that uniform inflow yields the

More information

Theoretical Aerodynamic analysis of six airfoils for use on small wind turbines

Theoretical Aerodynamic analysis of six airfoils for use on small wind turbines Proceedings of the 1st International Conference on Emerging Trends in Energy Conservation - ETEC Tehran, Tehran, Iran, 20-21 November 2011 Theoretical Aerodynamic analysis of six airfoils for use on small

More information

ASTR 320: Solutions to Problem Set 3

ASTR 320: Solutions to Problem Set 3 ASTR 30: Solutions to Problem Set 3 Problem : The Venturi Meter The venturi meter is used to measure the flow speed in a pipe. An example is shown in Fig., where the venturi meter (indicated by the dashed

More information

Application of larger wings to create more lift force in aeroplane Lokendra Bhati 1,Rajat Malviya 2 1 B.E.in mechanical engineering, I.I.ST.

Application of larger wings to create more lift force in aeroplane Lokendra Bhati 1,Rajat Malviya 2 1 B.E.in mechanical engineering, I.I.ST. Application of larger wings to create more lift force in aeroplane Lokendra Bhati 1,Rajat Malviya 2 1 B.E.in mechanical engineering, I.I.ST. Indore, India 2 B.E.in mechanical engineering, I.I.ST. Indore,

More information

GyroRotor program : user manual

GyroRotor program : user manual GyroRotor program : user manual Jean Fourcade January 18, 2016 1 1 Introduction This document is the user manual of the GyroRotor program and will provide you with description of

More information

Study. Aerodynamics. Small UAV. AVL Software

Study. Aerodynamics. Small UAV. AVL Software Study of the Aerodynamics of a Small UAV using AVL Software Prepared For: Prof. Luis Bernal Prepared By: Paul Dorman April 24, 2006 Table of Contents Introduction.1 Aerodynamic Data...2 Flight Assessment..

More information

GATE Aerospace Paper with Solutions and Answer Keys

GATE Aerospace Paper with Solutions and Answer Keys GATE Aerospace - 2016 Paper with Solutions and Answer Keys ( prepared by GATE Aerospace Forum ) Disclaimer : This file can't gurantee the exactness of the Keys or Solutions as per IITs/IISc. Its the best

More information

Aircraft Flight Dynamics Robert Stengel MAE 331, Princeton University, 2018

Aircraft Flight Dynamics Robert Stengel MAE 331, Princeton University, 2018 Aircraft Flight Dynamics Robert Stengel MAE 331, Princeton University, 2018 Course Overview Introduction to Flight Dynamics Math Preliminaries Copyright 2018 by Robert Stengel. All rights reserved. For

More information

PART ONE Parameters for Performance Calculations

PART ONE Parameters for Performance Calculations PART ONE Parameters for Performance Calculations As an amateur designer/builder of homebuilt aircraft, you are chief aerodynamicist, structural engineer, dynamicist, mechanic, artist and draftsman all

More information

AE 245 homework #3 solutions

AE 245 homework #3 solutions AE 245 homework #3 olution Tim Smith 4 February 2000 1 Problem1 Conider a low peed airplane with weight of 3100 lb and wing urface area of 300 ft 2. It i powered by a piton engine that deliver a maximum

More information

Performance. 5. More Aerodynamic Considerations

Performance. 5. More Aerodynamic Considerations Performance 5. More Aerodynamic Considerations There is an alternative way of looking at aerodynamic flow problems that is useful for understanding certain phenomena. Rather than tracking a particle of

More information

Written in August 2017 during my holiday in Bulgaria, Sunny Coast

Written in August 2017 during my holiday in Bulgaria, Sunny Coast Electric ucted Fan Theory This paper describes a simple theory of a ducted fan. It is assumed that the reader knows what it is an electric ducted fan (EF), how it works, and what it is good for. When I

More information

Lift and power requirements of hovering flight in Drosophila virilis

Lift and power requirements of hovering flight in Drosophila virilis The Journal of Experimental Biology 5, 37 () Printed in Great Britain The ompany of Biologists Limited JEB6 3 Lift and power requirements of hovering flight in Drosophila virilis Mao Sun* and Jian Tang

More information

Example of Aircraft Climb and Maneuvering Performance. Dr. Antonio A. Trani Professor

Example of Aircraft Climb and Maneuvering Performance. Dr. Antonio A. Trani Professor Example of Aircraft Climb and Maneuvering Performance CEE 5614 Analysis of Air Transportation Systems Dr. Antonio A. Trani Professor Example - Aircraft Climb Performance Aircraft maneuvering performance

More information

Department of Mechanical Engineering

Department of Mechanical Engineering Department of Mechanical Engineering AMEE401 / AUTO400 Aerodynamics Instructor: Marios M. Fyrillas Email: eng.fm@fit.ac.cy HOMEWORK ASSIGNMENT #2 QUESTION 1 Clearly there are two mechanisms responsible

More information

What is flight dynamics? AE540: Flight Dynamics and Control I. What is flight control? Is the study of aircraft motion and its characteristics.

What is flight dynamics? AE540: Flight Dynamics and Control I. What is flight control? Is the study of aircraft motion and its characteristics. KING FAHD UNIVERSITY Department of Aerospace Engineering AE540: Flight Dynamics and Control I Instructor Dr. Ayman Hamdy Kassem What is flight dynamics? Is the study of aircraft motion and its characteristics.

More information

An Investigation of the Attainable Efficiency of Flight at Mach One or Just Beyond

An Investigation of the Attainable Efficiency of Flight at Mach One or Just Beyond An Investigation of the Attainable Efficiency of Flight at Mach One or Just Beyond Antony Jameson Department of Aeronautics and Astronautics AIAA Aerospace Sciences Meeting, Reno, NV AIAA Paper 2007-0037

More information

Analysis and Control of Aircraft Longitudinal Dynamics with Large Flight Envelopes

Analysis and Control of Aircraft Longitudinal Dynamics with Large Flight Envelopes JOURNAL OF L A TEX CLASS FILES, VOL. 14, NO. 8, AUGUST 215 1 Analysis and Control of Aircraft Longitudinal Dynamics with Large Flight Envelopes Daniele Pucci arxiv:168.255v2 [cs.sy] 16 Jun 217 Abstract

More information

Dynamic trajectory control of gliders

Dynamic trajectory control of gliders Dynamic trajectory control of gliders Rui DILãO and João FONSECA Institut des Hautes Études Scientifiques 35, route de Chartres 91440 Bures-sur-Yvette (France) Avril 2013 IHES/M/13/09 Dynamic trajectory

More information

The physics and mathematics of javelin throwing

The physics and mathematics of javelin throwing The physics and mathematics of javelin throwing Professor Les Hatton CISM, University of Kingston May 24, 2005 Abstract Javelin flight is strictly governed by the laws of aerodynamics but there remain

More information

AERODYNAMIC CHARACTERIZATION OF A CANARD GUIDED ARTILLERY PROJECTILE

AERODYNAMIC CHARACTERIZATION OF A CANARD GUIDED ARTILLERY PROJECTILE 45th AIAA Aerospace Sciences Meeting and Exhibit 8-11 January 27, Reno, Nevada AIAA 27-672 AERODYNAMIC CHARACTERIZATION OF A CANARD GUIDED ARTILLERY PROJECTILE Wei-Jen Su 1, Curtis Wilson 2, Tony Farina

More information

Dynamic trajectory control of gliders

Dynamic trajectory control of gliders Proceedings of the EuroGNC 2013, 2nd CEAS Specialist Conference on Guidance, Navigation & Control, Delft University of Technology, Delft, The Netherlands, April 10-12, 2013 ThCT1.3 Dynamic trajectory control

More information

Fluids Applications of Fluid Dynamics

Fluids Applications of Fluid Dynamics Fluids Applications of Fluid Dynamics Lana Sheridan De Anza College April 16, 2018 Last time fluid dynamics the continuity equation Bernoulli s equation Overview Torricelli s law applications of Bernoulli

More information

Mestrado Integrado em Engenharia Mecânica Aerodynamics 1 st Semester 2012/13

Mestrado Integrado em Engenharia Mecânica Aerodynamics 1 st Semester 2012/13 Mestrado Integrado em Engenharia Mecânica Aerodynamics 1 st Semester 212/13 Exam 2ª época, 2 February 213 Name : Time : 8: Number: Duration : 3 hours 1 st Part : No textbooks/notes allowed 2 nd Part :

More information

AOE Problem Sheet 9 (ans) The problems on this sheet deal with an aircraft with the following properties:

AOE Problem Sheet 9 (ans) The problems on this sheet deal with an aircraft with the following properties: AOE Problem Sheet 9 (ans) The problems on this sheet deal with an aircraft with the following properties: W = 600,000 lbs T_max~=~180,000 lbs S = 5128 ft 2 = 0.017 K = 0.042 = 2.2 TSFC = 0.85 (lbs/hr)/lb

More information

Dynamic Modeling of Fixed-Wing UAVs

Dynamic Modeling of Fixed-Wing UAVs Autonomous Systems Laboratory Dynamic Modeling of Fixed-Wing UAVs (Fixed-Wing Unmanned Aerial Vehicles) A. Noth, S. Bouabdallah and R. Siegwart Version.0 1/006 1 Introduction Dynamic modeling is an important

More information

Aircraft Stability and Performance 2nd Year, Aerospace Engineering

Aircraft Stability and Performance 2nd Year, Aerospace Engineering Aircraft Stability and Performance 2nd Year, Aerospace Engineering Dr. M. Turner March 6, 207 Aims of Lecture Part. To examine ways aircraft turn 2. To derive expressions for correctly banked turns 3.

More information

Masters in Mechanical Engineering Aerodynamics 1 st Semester 2015/16

Masters in Mechanical Engineering Aerodynamics 1 st Semester 2015/16 Masters in Mechanical Engineering Aerodynamics st Semester 05/6 Exam st season, 8 January 06 Name : Time : 8:30 Number: Duration : 3 hours st Part : No textbooks/notes allowed nd Part : Textbooks allowed

More information

Massachusetts Institute of Technology Department of Aeronautics and Astronautics Cambridge, MA 02139

Massachusetts Institute of Technology Department of Aeronautics and Astronautics Cambridge, MA 02139 Massachusetts Institute of Technology Department of Aeronautics and Astronautics Cambridge, MA 02139 16.01/16.02 Unified Engineering I, II Fall 2003 Problem Set 6 Name: Due Date:10/14/03 C14 C15 C16 U2

More information

Aircraft Flight Dynamics!

Aircraft Flight Dynamics! Aircraft Flight Dynamics Robert Stengel MAE 331, Princeton University, 2016 Course Overview Introduction to Flight Dynamics Math Preliminaries Copyright 2016 by Robert Stengel. All rights reserved. For

More information

PHYS207 Exam 1 20 January, 2016

PHYS207 Exam 1 20 January, 2016 PHYS207 Exam 1 20 January, 2016 Work out the problems on the front and back of each page in a clear and logical manner. Please show all your work! Answers without supporting work or justification will

More information

Aerodynamic Performance 1. Figure 1: Flowfield of a Wind Turbine and Actuator disc. Table 1: Properties of the actuator disk.

Aerodynamic Performance 1. Figure 1: Flowfield of a Wind Turbine and Actuator disc. Table 1: Properties of the actuator disk. Aerodynamic Performance 1 1 Momentum Theory Figure 1: Flowfield of a Wind Turbine and Actuator disc. Table 1: Properties of the actuator disk. 1. The flow is perfect fluid, steady, and incompressible.

More information

Rocket Science 102 : Energy Analysis, Available vs Required

Rocket Science 102 : Energy Analysis, Available vs Required Rocket Science 102 : Energy Analysis, Available vs Required ΔV Not in Taylor 1 Available Ignoring Aerodynamic Drag. The available Delta V for a Given rocket burn/propellant load is ( ) V = g I ln 1+ P

More information

except assume the parachute has diameter of 3.5 meters and calculate how long it takes to stop. (Must solve differential equation)

except assume the parachute has diameter of 3.5 meters and calculate how long it takes to stop. (Must solve differential equation) Homework 5 Due date: Thursday, Mar. 3 hapter 7 Problems 1. 7.88. 7.9 except assume the parachute has diameter of 3.5 meters and calculate how long it takes to stop. (Must solve differential equation) 3.

More information

Compressible Potential Flow: The Full Potential Equation. Copyright 2009 Narayanan Komerath

Compressible Potential Flow: The Full Potential Equation. Copyright 2009 Narayanan Komerath Compressible Potential Flow: The Full Potential Equation 1 Introduction Recall that for incompressible flow conditions, velocity is not large enough to cause density changes, so density is known. Thus

More information

Lecture-4. Flow Past Immersed Bodies

Lecture-4. Flow Past Immersed Bodies Lecture-4 Flow Past Immersed Bodies Learning objectives After completing this lecture, you should be able to: Identify and discuss the features of external flow Explain the fundamental characteristics

More information

General Remarks and Instructions

General Remarks and Instructions Delft University of Technology Faculty of Aerospace Engineering 1 st Year Examination: AE1201 Aerospace Design and System Engineering Elements I Date: 25 August 2010, Time: 9.00, Duration: 3 hrs. General

More information

5.5 Deeper Properties of Continuous Functions

5.5 Deeper Properties of Continuous Functions 5.5. DEEPER PROPERTIES OF CONTINUOUS FUNCTIONS 195 5.5 Deeper Properties of Continuous Functions 5.5.1 Intermediate Value Theorem and Consequences When one studies a function, one is usually interested

More information

Aircraft Design I Tail loads

Aircraft Design I Tail loads Horizontal tail loads Aircraft Design I Tail loads What is the source of loads? How to compute it? What cases should be taken under consideration? Tail small wing but strongly deflected Linearized pressure

More information

April 15, 2011 Sample Quiz and Exam Questions D. A. Caughey Page 1 of 9

April 15, 2011 Sample Quiz and Exam Questions D. A. Caughey Page 1 of 9 April 15, 2011 Sample Quiz Exam Questions D. A. Caughey Page 1 of 9 These pages include virtually all Quiz, Midterm, Final Examination questions I have used in M&AE 5070 over the years. Note that some

More information