# Fluids Applications of Fluid Dynamics

Size: px
Start display at page:

Transcription

1 Fluids Applications of Fluid Dynamics Lana Sheridan De Anza College April 16, 2018

2 Last time fluid dynamics the continuity equation Bernoulli s equation

3 Overview Torricelli s law applications of Bernoulli s equation

4 Bernoulli s Equation and the Continuity Equation A law discovered by the 18th-century Swiss scientist, Daniel Bernoulli. Bernoulli s Principle As the speed of a fluid s flow increases, the pressure in the fluid decreases. The Continuity equation: A 1 v 1 = A 2 v 2 Bernoulli s Equation: P ρv 2 + ρgh = const is constant along a streamline in the fluid.

5 Torricelli s Law from Bernoulli s Equation Bernoulli s equation can also be used to predict the velocity of streams of water from holes in a container at different depths.

6 Torricelli s Law from Bernoulli s Equation The liquid at point 2 is at rest, at a height y 2 and pressure P. At point 1 is leaves with a velocity v 1, at a height y 1 and pressure P 0. blow more strongly and watch the increased pressure difin its side at a distance he atmosphere, and its air above the liquid is id as it leaves the hole er. When the hole is pressure P at the top speed. If the pressure extinguisher must be 1 Point 2 is the surface of the liquid. P y 2 h A 2 A 1 Point 1 is the exit point of the hole. S v 1 P y 0 1 Figure (Example 14.9) A liquid leaves a hole in a tank at speed v 1. ρv2 2 + ρgy 2 + P 2 ρv ρgy 1 + P 0 = 1 2 0

7 Torricelli s Law from Bernoulli s Equation in its side at a distance he atmosphere, and its air above the liquid is id as it leaves the hole Point 2 is the surface of the liquid. P h A 2 A 1 Point 1 is the exit point of the hole. er. When the hole is pressure P at the top speed. If the pressure extinguisher must be y 2 S v 1 P y 0 1 Figure (Example 14.9) 1A liquid leaves a hole in a tank at 2speed ρv ρgy v P 0 = ρgy 2 + P Rearranging, and using y = h 2 h 1, 2(P P 0 ) v 1 = + 2gh ρ

8 Torricelli s Law from Bernoulli s Equation Notice that if the container is open to the air (P = P 0 ), then the speed of each jet is v = 2gh where h is the depth of the hole below the surface.

9 Implications of Bernoulli s Principle Bernoulli s principle also explains why in a tornado, hurricane, or other extreme weather with high speed winds, windows blow outward on closed buildings.

10 Implications of Bernoulli s Principle Bernoulli s principle also explains why in a tornado, hurricane, or other extreme weather with high speed winds, windows blow outward on closed buildings. The high windspeed outside the building corresponds to low pressure. The pressure inside remains higher, and the pressure difference can break the windows. It can also blow off the roof! It makes sense to allow air a bit of air to flow in or out of a building in extreme weather, so that the pressure equalizes.

11 Implications of Bernoulli s Principle Bernoulli s principle can help explain why airplanes can fly. Air travels faster over the top of the wing, reducing pressure there. That means the air beneath the wing pushes upward on the wing more strongly than the air on the top of the wing pushes down. This is called lift. 1 Diagram from HyperPhysics.

12 Air Flow over a Wing In fact, the air flows over the wing much faster than under it: not just because it travels a longer distance than over the top. This is the result of circulation of air around the wing. 1 Diagram by John S. Denker, av8n.com.

13 Air Flow over the Top of the Wing: Bound Vortex A starting vortex trails the wing. The bound vortex appears over the wing. Those two vortices counter rotate because angular momentum is conserved. The bound vortex is important to establish the high velocity of the air over the top of the wing. 1 Image by Ludwig Prandtl, 1934, using water channel & aluminum particles.

14 Wingtip Vortecies Other vortices also form at the ends of the wingtips. 1 Photo by NASA Langley Research Center.

15 Vortices around an Airplane 1 Diagram by John S. Denker, av8n.com.

16 Airflow at different Angles of Attack 1 Diagram by John S. Denker, av8n.com.

17 Implications of Bernoulli s Principle A stall occurs when turbulence behind the wing leads to a sudden loss of lift. The streamlines over the wing detach from the wing surface. This happens when the plane climbs too rapidly and can be dangerous. 1 Photo by user Jaganath, Wikipedia.

18 Implications of Bernoulli s Principle Spoilers on cars reduce lift and promote laminar flow. 1 Photo from

19 Implications of Bernoulli s Principle Wings on racing cars are inverted airfoils that produce downforce at the expense of increased drag. This downforce increases the maximum possible static friction force turns can be taken at higher speed. 1 Photo from

20 Implications of Bernoulli s Principle A curveball pitch in baseball also makes use of Bernoulli s principle. The ball rotates as it moves through the air. Its rotation pulls the air around the ball, so the air moving over one side of the ball moves faster. This causes the ball to deviate from a parabolic trajectory. 1 Diagram by user Gang65, Wikipedia.

21 Summary Torricelli s law applications of Bernoulli s equation Test! tomorrow, in class. (Uncollected) Homework Serway & Jewett: study for the test

### Notes for Lecture 2 Fluids Buoyancy Fluid Dynamics Bernoulli s Equation

Notes for Lecture 2 Fluids Buoyancy Fluid Dynamics Bernoulli s Equation Lana Sheridan De Anza College April 12, 2017 Last time introduction to static fluids pressure and depth Pascal s principle measurements

### Conceptual Physics Matter Liquids Gases

Conceptual Physics Matter Liquids Gases Lana Sheridan De Anza College July 19, 2016 Last time the atom history of our understanding of the atom solids density Overview elasticity liquids pressure buoyancy

### Fluids. Fluids in Motion or Fluid Dynamics

Fluids Fluids in Motion or Fluid Dynamics Resources: Serway - Chapter 9: 9.7-9.8 Physics B Lesson 3: Fluid Flow Continuity Physics B Lesson 4: Bernoulli's Equation MIT - 8: Hydrostatics, Archimedes' Principle,

### f= flow rate (m 3 /s) A = cross-sectional area of the pipe (m 2 ) v= flow speed (m/s)

Fluid Mechanics Flow Rate and Continuity Equation If you have a pipe that is flowing a liquid you will have a flow rate. The flow rate is the volume of fluid that passes any particular point per unit of

### Chapter 14. Lecture 1 Fluid Mechanics. Dr. Armen Kocharian

Chapter 14 Lecture 1 Fluid Mechanics Dr. Armen Kocharian States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas unconfined Has neither a definite

### Lecture 30 (Walker: ) Fluid Dynamics April 15, 2009

Physics 111 Lecture 30 (Walker: 15.6-7) Fluid Dynamics April 15, 2009 Midterm #2 - Monday April 20 Chap. 7,Chap. 8 (not 8.5) Chap. 9 (not 9.6, 9.8) Chap. 10, Chap. 11 (not 11.8-9) Chap. 13 (not 13.6-8)

### Bernoulli s Equation

Bernoulli s Equation Bởi: OpenStaxCollege When a fluid flows into a narrower channel, its speed increases. That means its kinetic energy also increases. Where does that change in kinetic energy come from?

### Chapter 14. Fluid Mechanics

Chapter 14 Fluid Mechanics States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas unconfined Has neither a definite volume nor shape All of these

### 12-3 Bernoulli's Equation

OpenStax-CNX module: m50897 1 12-3 Bernoulli's Equation OpenStax Tutor Based on Bernoulli's Equation by OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution

### SPC Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30

SPC 307 - Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30 1. The maximum velocity at which an aircraft can cruise occurs when the thrust available with the engines operating with the

### Fluid Dynamics. Equation of continuity Bernoulli s Equation Bernoulli s Application Viscosity Poiseuilles law Stokes law Reynolds Number

Fluid Dynamics Equation of continuity Bernoulli s Equation Bernoulli s Application Viscosity Poiseuilles law Stokes law Reynolds Number Fluids in Motion steady or laminar flow, if each particle of the

### Nicholas J. Giordano. Chapter 10 Fluids

Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 10 Fluids Fluids A fluid may be either a liquid or a gas Some characteristics of a fluid Flows from one place to another Shape varies according

### 10/9/2017 LET S PERFORM 4 EXPERIMENTS: UNIT 1 FLUID STATICS AND DYNAMICS CHAPTER 11 FLUIDS IN MOTION SNORING BERNOULLI'S PRINCIPLE

1/9/17 AP PHYSICS LET S PERFORM 4 EXPERIMENTS: 1. Cans on a string. UNIT 1 FLUID STATICS AND DYNAMICS CHAPTER 11 FLUIDS IN MOTION. Blowing a piece of paper. 3. Index card & straw. 4. Ping Pong ball and

### FLUID FLOW IDEAL FLUID BERNOULLI'S PRINCIPLE

VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW IDEAL FLUID BERNOULLI'S PRINCIPLE? How can a plane fly? How does a perfume spray work? What is the venturi effect? Why does a

### Lecture 27 (Walker: ) Fluid Dynamics Nov. 9, 2009

Physics 111 Lecture 27 (Walker: 15.5-7) Fluid Dynamics Nov. 9, 2009 Midterm #2 - Monday Nov. 16 Chap. 7,Chap. 8 (not 8.5) Chap. 9 (not 9.6, 9.8) Chap. 10, Chap. 11 (not 11.8-9) Chap. 13 (not 13.6-8) Chap.

### Chapter 11 - Fluids in Motion. Sections 7-9

Chapter - Fluids in Motion Sections 7-9 Fluid Motion The lower falls at Yellowstone National Park: the water at the top of the falls passes through a narrow slot, causing the velocity to increase at that

### Kinematics Kinematic Equations and Falling Objects

Kinematics Kinematic Equations and Falling Objects Lana Sheridan De Anza College Sept 28, 2017 Last time kinematic quantities relating graphs Overview derivation of kinematics equations using kinematics

### Fluids II (Fluids in motion)

hys0 Lectures 6-7 Fluids II (Fluids in motion) Key points: Bernoulli s Equation oiseuille s Law Ref: 0-8,9,0,,. age 0-8 Fluids in Motion; Flow Rate and the Equation of Continuity If the flow of a fluid

### Kinematics Kinematic Equations and Falling Objects

Kinematics Kinematic Equations and Falling Objects Lana Sheridan De Anza College Sept 28, 2017 Last time kinematic quantities relating graphs Overview derivation of kinematics equations using kinematics

### 3 Fluids and Motion. Critical Thinking

CHAPTER 3 3 Fluids and Motion SECTION Forces in Fluids BEFORE YOU READ After you read this section, you should be able to answer these questions: How does fluid speed affect pressure? How do lift, thrust,

### Study fluid dynamics. Understanding Bernoulli s Equation.

Chapter Objectives Study fluid dynamics. Understanding Bernoulli s Equation. Chapter Outline 1. Fluid Flow. Bernoulli s Equation 3. Viscosity and Turbulence 1. Fluid Flow An ideal fluid is a fluid that

### Chapter 11. Fluids. continued

Chapter 11 Fluids continued 11.2 Pressure Pressure is the amount of force acting on an area: Example 2 The Force on a Swimmer P = F A SI unit: N/m 2 (1 Pa = 1 N/m 2 ) Suppose the pressure acting on the

### Given the water behaves as shown above, which direction will the cylinder rotate?

water stream fixed but free to rotate Given the water behaves as shown above, which direction will the cylinder rotate? ) Clockwise 2) Counter-clockwise 3) Not enough information F y U 0 U F x V=0 V=0

### Recap: Static Fluids

Recap: Static Fluids Archimedes principal states that the buoyant force acting on an object is equal to the weight of fluid displaced. If the average density of object is greater than density of fluid

### Physics 111. Thursday, November 11, 2004

ics Thursday, ember 11, 2004 Ch 15: Fluids Pascal s Principle Archimede s Principle Fluid Flows Continuity Equation Bernoulli s Equation Toricelli s Theorem Announcements Wednesday, 8-9 pm in NSC 118/119

### Fluid Mechanics. The atmosphere is a fluid!

Fluid Mechanics The atmosphere is a fluid! Some definitions A fluid is any substance which can flow Liquids, gases, and plasmas Fluid statics studies fluids in equilibrium Density, pressure, buoyancy Fluid

### The E80 Wind Tunnel Experiment the experience will blow you away. by Professor Duron Spring 2012

The E80 Wind Tunnel Experiment the experience will blow you away by Professor Duron Spring 2012 Objectives To familiarize the student with the basic operation and instrumentation of the HMC wind tunnel

### Dynamics Applying Newton s Laws The Drag Equation

Dynamics Applying Newton s Laws The Drag Equation Lana Sheridan De Anza College Feb 8, 2019 Last time introduced resistive forces model 1: Stokes drag Overview model 2: the Drag Equation finish resistive

### In steady flow the velocity of the fluid particles at any point is constant as time passes.

Chapter 10 Fluids Fluids in Motion In steady flow the velocity of the fluid particles at any point is constant as time passes. Unsteady flow exists whenever the velocity of the fluid particles at a point

### June 9, Phosphate Conference Clearwater Convention June Abstract:

PUMP CONSULTING & TRAINING LLC Joseph R. Askew 1811 Stonecrest Ct. Lakeland, Fl. 33813 863-644-3118-Office Phone 863-899-9896-Cell Phone E-mail: pmpcnslt@tampabay.rr.com Objectivity in pump selection,

### Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law = F 1 = F 2 2 = F 2 A 2

Lecture 24: Archimedes Principle and Bernoulli s Law 1 Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law Example 15.1 The hydraulic lift A hydraulic lift consists of a small diameter piston of radius

### Department of Energy Sciences, LTH

Department of Energy Sciences, LTH MMV11 Fluid Mechanics LABORATION 1 Flow Around Bodies OBJECTIVES (1) To understand how body shape and surface finish influence the flow-related forces () To understand

### m V DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: SI Unit of Mass Density: kg/m 3

Chapter 11 Fluids 11.1 Mass Density DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: ρ m V SI Unit of Mass Density: kg/m 3 11.1 Mass Density

### Aerodynamics. Basic Aerodynamics. Continuity equation (mass conserved) Some thermodynamics. Energy equation (energy conserved)

Flow with no friction (inviscid) Aerodynamics Basic Aerodynamics Continuity equation (mass conserved) Flow with friction (viscous) Momentum equation (F = ma) 1. Euler s equation 2. Bernoulli s equation

### Chapter 15: Fluids. Mass Density = Volume. note : Fluids: substances which flow

Fluids: substances which flow Chapter 5: Fluids Liquids: take the shape of their container but have a definite volume Gases: take the shape and volume of their container Density m ρ = V Mass Density =

### Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay

Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture No. # 35 Boundary Layer Theory and Applications Welcome back to the video course on fluid

### FLUID MECHANICS. Atmosphere, Ocean. Aerodynamics. Energy conversion. Transport of heat/other. Numerous industrial processes

SG2214 Anders Dahlkild Luca Brandt FLUID MECHANICS : SG2214 Course requirements (7.5 cr.) INL 1 (3 cr.) 3 sets of home work problems (for 10 p. on written exam) 1 laboration TEN1 (4.5 cr.) 1 written exam

### Dynamics Applying Newton s Laws Introducing Energy

Dynamics Applying Newton s Laws Introducing Energy Lana Sheridan De Anza College Oct 23, 2017 Last time introduced resistive forces model 1: Stokes drag Overview finish resistive forces energy work Model

### Projectile Motion Horizontal Distance

Projectile Motion Horizontal Distance Biomechanical Model Projec1le Mo1on Horizontal Distance Projectile Horizontal Distance Time in the Air Projectile Motion Principle Linear Conservation of Momentum

### TOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces-Archimedes Principle

Lecture 6 Fluids TOPICS Density Pressure Variation of Pressure with Depth Pressure Measurements Buoyant Forces-Archimedes Principle Surface Tension ( External source ) Viscosity ( External source ) Equation

### Physics 201 Chapter 13 Lecture 1

Physics 201 Chapter 13 Lecture 1 Fluid Statics Pascal s Principle Archimedes Principle (Buoyancy) Fluid Dynamics Continuity Equation Bernoulli Equation 11/30/2009 Physics 201, UW-Madison 1 Fluids Density

### Chapter 9: Solids and Fluids

Chapter 9: Solids and Fluids State of matters: Solid, Liquid, Gas and Plasma. Solids Has definite volume and shape Can be crystalline or amorphous Molecules are held in specific locations by electrical

### FLUID MECHANICS. ! Atmosphere, Ocean. ! Aerodynamics. ! Energy conversion. ! Transport of heat/other. ! Numerous industrial processes

SG2214 Anders Dahlkild Luca Brandt FLUID MECHANICS : SG2214 Course requirements (7.5 cr.)! INL 1 (3 cr.)! 3 sets of home work problems (for 10 p. on written exam)! 1 laboration! TEN1 (4.5 cr.)! 1 written

### Chapter 9. Solids and Fluids 9.3 DENSITY AND PRESSURE

9.3 DENSITY AND PRESSURE Chapter 9 Solids and Fluids The density of an object having uniform composition is defined as its mass M divided by its volume V: M V [9.6] SI unit: kilogram per meter cubed (kg/m

### Introduction to Mechanics Kinematics Equations

Introduction to Mechanics Kinematics Equations Lana Sheridan De Anza College Jan, 018 Last time more practice with graphs introduced the kinematics equations Overview rest of the kinematics equations derivations

### Chapter 12. Fluid Mechanics. A. The density ρ of a substance of uniform composition is defined as its mass M divided by its volume V.

Chapter 12 Fluid Mechanics 12.1 Density A. The density ρ of a substance of uniform composition is defined as its mass M divided by its volume V. That is,! = M V The density of water at 4 o C is 1000 kg/m

### LECTURE 4 FLUID FLOW & SURFACE TENSION. Lecture Instructor: Kazumi Tolich

LECTURE 4 FLUID FLOW & SURFACE TENSION Lecture Instructor: Kazumi Tolich Lecture 4 2 Reading chapter 15.6 to 15.9 Continuity equation Bernoulli s equation n Torricelli s law Viscosity Surface tension Equation

### Department of Mechanical Engineering

Department of Mechanical Engineering AMEE401 / AUTO400 Aerodynamics Instructor: Marios M. Fyrillas Email: eng.fm@fit.ac.cy HOMEWORK ASSIGNMENT #2 QUESTION 1 Clearly there are two mechanisms responsible

### Physics 3 Summer 1990 Lab 7 - Hydrodynamics

Physics 3 Summer 1990 Lab 7 - Hydrodynamics Theory Consider an ideal liquid, one which is incompressible and which has no internal friction, flowing through pipe of varying cross section as shown in figure

### Fluids, Thermodynamics, Waves, and Optics Fluids

Fluids, Thermodynamics, Waves, and Optics Fluids Lana Sheridan De Anza College April 10, 2018 Overview static fluids pressure liquid pressure Pascal s law Elastic Properties of Solids We are considering

### Chapter 13. liquids. gases. 1) Fluids exert pressure. a) because they're made up of matter with forces applied between (I.M.F.)

\ Chapter 13 Fluids 1) Fluids exert pressure a) because they're made up of matter with forces applied between (I.M.F.) liquids gases b) they are made of matter in constant motion colliding with other matter

### Introduction to Aerospace Engineering

4. Basic Fluid (Aero) Dynamics Introduction to Aerospace Engineering Here, we will try and look at a few basic ideas from the complicated field of fluid dynamics. The general area includes studies of incompressible,

### Physics 207 Lecture 18

Physics 07, Lecture 8, Nov. 6 MidTerm Mean 58.4 (64.6) Median 58 St. Dev. 6 (9) High 94 Low 9 Nominal curve: (conservative) 80-00 A 6-79 B or A/B 34-6 C or B/C 9-33 marginal 9-8 D Physics 07: Lecture 8,

### Introduction to Mechanics Range of a Projectile Trajectory Equation More Examples

Introduction to Mechanics Range of a Projectile Trajectory Equation More Examples Lana Sheridan De Anza College Oct 25, 2017 Last time max height of a projectile time-of-flight of a projectile range of

### Physics 220: Classical Mechanics

Lecture /33 Phys 0 Physics 0: Classical Mechanics Lecture: MWF 8:40 am 9:40 am (Phys 4) Michael Meier mdmeier@purdue.edu Office: Phys Room 38 Help Room: Phys Room schedule on course webpage Office Hours:

### Introduction to Atmospheric Flight. Dr. Guven Aerospace Engineer (P.hD)

Introduction to Atmospheric Flight Dr. Guven Aerospace Engineer (P.hD) What is Atmospheric Flight? There are many different ways in which Aerospace engineering is associated with atmospheric flight concepts.

### FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 4. ELEMENTARY FLUID DYNAMICS -THE BERNOULLI EQUATION

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

### Useful concepts associated with the Bernoulli equation. Dynamic

Useful concets associated with the Bernoulli equation - Static, Stagnation, and Dynamic Pressures Bernoulli eq. along a streamline + ρ v + γ z = constant (Unit of Pressure Static (Thermodynamic Dynamic

### 1. Fluid Dynamics Around Airfoils

1. Fluid Dynamics Around Airfoils Two-dimensional flow around a streamlined shape Foces on an airfoil Distribution of pressue coefficient over an airfoil The variation of the lift coefficient with the

### Pressure in a fluid P P P P

Fluids Gases (compressible) and liquids (incompressible) density of gases can change dramatically, while that of liquids much less so Gels, colloids, liquid crystals are all odd-ball states of matter We

### Lecture 8 Equilibrium and Elasticity

Lecture 8 Equilibrium and Elasticity July 19 EQUILIBRIUM AND ELASTICITY CHAPTER 12 Give a sharp blow one end of a stick on the table. Find center of percussion. Baseball bat center of percussion Equilibrium

### Physics 123 Unit #1 Review

Physics 123 Unit #1 Review I. Definitions & Facts Density Specific gravity (= material / water) Pressure Atmosphere, bar, Pascal Barometer Streamline, laminar flow Turbulence Gauge pressure II. Mathematics

### Aerodynamics at the Particle Level C. A. Crummer. Preface

Aerodynamics at the Particle Level C. A. Crummer Preface The purpose of this work is to examine the causes of fluid behavior. While the standard approach to fluid dynamics, which is founded on the fluid

### Syllabus for AE3610, Aerodynamics I

Syllabus for AE3610, Aerodynamics I Current Catalog Data: AE 3610 Aerodynamics I Credit: 4 hours A study of incompressible aerodynamics of flight vehicles with emphasis on combined application of theory

### A B = AB cos θ = 100. = 6t. a(t) = d2 r(t) a(t = 2) = 12 ĵ

1. A ball is thrown vertically upward from the Earth s surface and falls back to Earth. Which of the graphs below best symbolizes its speed v(t) as a function of time, neglecting air resistance: The answer

### Chapter 9. Solids and Fluids

Chapter 9 Solids and Fluids States of Matter Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Atoms or molecules are held in specific locations By electrical forces Vibrate about

### DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS MOTIVATION Introductory Video Giancoli Lesson 0-8 to 0-0 0-8: Fluids In Motion; Flow Rate And Equation Of Continuity 0-9: Bernoulli s equation 0-0:

### Fluids, Thermodynamics, Waves, and Optics Overview of Course Fluids

Fluids, Thermodynamics, Waves, and Optics Overview of Course Fluids Lana Sheridan De Anza College April 10, 2017 Overview of the Course There are 4 main sections to this course. Topics fluids thermodynamics

### Introduction to Fluid Flow

Introduction to Fluid Flow Learning Outcomes After this lecture you should be able to Explain viscosity and how it changes with temperature Write the continuity equation Define laminar and turbulent flow

### (3) BIOMECHANICS of LOCOMOTION through FLUIDS

(3) BIOMECHANICS of LOCOMOTION through FLUIDS Questions: - Explain the biomechanics of different modes of locomotion through fluids (undulation, rowing, hydrofoils, jet propulsion). - How does size influence

### 11/4/2003 PHY Lecture 16 1

Announcements 1. Exams will be returned at the end of class. You may rework the exam for up to 1 extra credit points. Turn in your old exam and your new work (clearly indicated). Due 11/11/3. You may sign

### CHEN 3200 Fluid Mechanics Spring Homework 3 solutions

Homework 3 solutions 1. An artery with an inner diameter of 15 mm contains blood flowing at a rate of 5000 ml/min. Further along the artery, arterial plaque has partially clogged the artery, reducing the

### Water is sloshing back and forth between two infinite vertical walls separated by a distance L: h(x,t) Water L

ME9a. SOLUTIONS. Nov., 29. Due Nov. 7 PROBLEM 2 Water is sloshing back and forth between two infinite vertical walls separated by a distance L: y Surface Water L h(x,t x Tank The flow is assumed to be

### Chapter 6. Force and Motion-II (Friction, Drag, Circular Motion)

Chapter 6 Force and Motion-II (Friction, Drag, Circular Motion) 6.2 Frictional Force: Motion of a crate with applied forces There is no attempt at sliding. Thus, no friction and no motion. NO FRICTION

### CEE 3310 Control Volume Analysis, Oct. 7, D Steady State Head Form of the Energy Equation P. P 2g + z h f + h p h s.

CEE 3310 Control Volume Analysis, Oct. 7, 2015 81 3.21 Review 1-D Steady State Head Form of the Energy Equation ( ) ( ) 2g + z = 2g + z h f + h p h s out where h f is the friction head loss (which combines

### Introductory Physics PHYS101

Introductory Physics PHYS101 Dr Richard H. Cyburt Office Hours Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu TRF 9:30-11:00am

### MECHANICAL PROPERTIES OF FLUIDS

CHAPTER-10 MECHANICAL PROPERTIES OF FLUIDS QUESTIONS 1 marks questions 1. What are fluids? 2. How are fluids different from solids? 3. Define thrust of a liquid. 4. Define liquid pressure. 5. Is pressure

### Chapter 9. Solids and Fluids. States of Matter. Solid. Liquid. Gas

Chapter 9 States of Matter Solids and Fluids Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Molecules are held in specific locations By electrical forces Vibrate about equilibrium

### Numerical study of battle damaged two-dimensional wings

Advances in Fluid Mechanics IX 141 Numerical study of battle damaged two-dimensional wings S. Djellal, T. Azzam, M. Djellab & K. Lakkaichi Fluid Mechanics Laboratory Polytechnical School Bordj El Bahri,

### ASTR 320: Solutions to Problem Set 3

ASTR 30: Solutions to Problem Set 3 Problem : The Venturi Meter The venturi meter is used to measure the flow speed in a pipe. An example is shown in Fig., where the venturi meter (indicated by the dashed

### Chapter 9. Solids and Fluids

Chapter 9 Solids and Fluids States of Matter Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Molecules are held in specific locations By electrical forces Vibrate about equilibrium

### Example of Use of Multiple Demonstrations and/or Hands on Activities: Bernoulli s Principle

Example of Use of Multiple Demonstrations and/or Hands on Activities: Bernoulli s Prciple Michael R. Vitale Center for School Development, Inc. Nancy R. Romance Region V Area Center for Educational Enhancement,

### Phy 212: General Physics II. Daniel Bernoulli ( )

Phy 1: General Physics II Chapter 14: Fluids Lecture Notes Daniel Bernoulli (1700-178) Swiss merchant, doctor & mathematician Worked on: Vibrating strings Ocean tides Kinetic theory Demonstrated that as

### LESSON Understanding. Bernoulli s principle. Bernoulli s principle. Activities to show Bernoulli s Principle

idang sains dan matematik LESSON 3.6 - pplication ernoulli Principal LESSON 3.6 - Understanding ernoulli s principle. ernoulli s principle. ernoulli s principle states that The pressure of a moving liquid

### PROPERTIES OF BULK MATTER

PROPERTIES OF BULK MATTER CONCEPTUAL PROBLEMS Q-01 What flows faster than honey. Why? Ans According to poiseuille s formula, the volume V of a liquid flowing per second through a horizontal narrow tube

### Thermodynamics Heat Capacity Phase Changes

Thermodynamics Heat Capacity Phase Changes Lana Sheridan De Anza College April 24, 2018 Last time finish applying the ideal gas equation thermal energy introduced heat capacity Overview heat capacity phase

### Dynamics Applying Newton s Laws Air Resistance

Dynamics Applying Newton s Laws Air Resistance Lana Sheridan De Anza College Feb 2, 2015 Last Time accelerated frames and rotation Overview resistive forces two models for resistive forces terminal velocities

### Chapter 9. Solids and Fluids. 1. Introduction. 2. Fluids at Rest. 3. Fluid Motion

Chapter 9 Solids and Fluids 1. Introduction 2. Fluids at Rest 3. Fluid Motion 1 States of Matter Solid Liquid Gas Plasma 2 Density and Specific Gravity What is Density? How do I calculate it? What are

### Reminder: HW #10 due Thursday, Dec 2, 11:59 p.m. (last HW that contributes to the final grade)

Reminder: HW #0 due Thursday, Dec, :59 p.m. (last HW that contributes to the final grade) Recitation Quiz # tomorrow (last Recitation Quiz) Formula Sheet for Final Exam posted on Bb Last Time: Pressure

### S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100

Total No. of Questions 12] [Total No. of Printed Pages 8 Seat No. [4262]-113 S.E. (Mech.) (First Sem.) EXAMINATION, 2012 (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum

### τ du In his lecture we shall look at how the forces due to momentum changes on the fluid and viscous forces compare and what changes take place.

4. Real fluids The flow of real fluids exhibits viscous effect, that is they tend to stick to solid surfaces and have stresses within their body. You might remember from earlier in the course Newtons law

### Dynamics Applying Newton s Laws Air Resistance

Dynamics Applying Newton s Laws Air Resistance Lana Sheridan De Anza College Oct 20, 2017 Last Time accelerated frames and rotation Overview resistive forces two models for resistive forces terminal velocities

### PHYSICS General Physics 1, Fall 2007

University of Michigan Deep Blue deepblue.lib.umich.edu 2007-09 PHYSICS 140 - General Physics 1, Fall 2007 Evrard, Gus Evrard, G. (2009, January 26). General Physics 1. Retrieved from Open.Michigan - Educational

### Physics Courseware Physics I

Definition of pressure: Force P = Area Physics Courseware Physics I Bernoulli Hydrostatics equation: PB PA = ρgh 1 1 Bernoulli s equation: P 1 + ρv1 + ρgh1 = P + ρv + ρgh Problem 1.- In a carburetor (schematically

### 11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an

Chapter 11 Fluids 11.1 Mass Density Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an important factor that determines its behavior

### Lecture-4. Flow Past Immersed Bodies

Lecture-4 Flow Past Immersed Bodies Learning objectives After completing this lecture, you should be able to: Identify and discuss the features of external flow Explain the fundamental characteristics

### Airfoils and Wings. Eugene M. Cliff

Airfoils and Wings Eugene M. Cliff 1 Introduction The primary purpose of these notes is to supplement the text material related to aerodynamic forces. We are mainly interested in the forces on wings and