The Poisson Distribution

Size: px
Start display at page:

Download "The Poisson Distribution"

Transcription

1 The Poisson Distribution Mary Lindstrom (Adapted from notes provided by Professor Bret Larget) February 5, 2004 Statistics 371 Last modified: February 4, 2004

2 The Poisson Distribution The Poisson distribution arises in many biological contexts. Examples of random variables for which a Poisson distribution might be reasonable include: the number of bacterial colonies in a Petri dish; the number of trees in an area of land; the number of offspring an individual has; the number of nucleotide base substitutions in a gene over a period of time; Statistics 371 1

3 Probability Mass Function The probability mass function of the Poisson distribution with mean µ is Pr{Y = k} = e µ µ k for k = 0, 1, 2,.... k! Where e is a special number in math (like π). It is approximately equal to The Poisson distribution is discrete, like the binomial distribution, but has only a single parameter µ and it has infinitely many possible outcomes. The mean and variance are the same for a Poisson random variable. µ Y = E(Y ) = µ σ 2 = V ar(y ) = µ Statistics 371 2

4 Computing Poisson Probabilities in R The function dpois will compute Poisson probabilities. If µ = 10, we can find Pr{Y = 12} = e ! with the command > dpois(12, 10) [1] > dpois(12, 1000) [1] 0 Or, if we wanted the probabilities that a Poisson random variable with mean 4 would take on the values 8 through 12 we would type: > dpois(8:12, 4) [1] Statistics 371 3

5 Plotting Poisson Probabilities in R > source("prob.r") > par(mfrow = c(2, 1)) > gpois(mu = 2) > gpois(mu = 10) Poisson Distribution mu = 2 Probability Count Probability Poisson Distribution mu = Count Statistics 371 4

6 Poisson approximation to the binomial One way that the Poisson distribution can arise is as an approximation for the binomial distribution when p is small. The approximation is quite good for large enough n. If p is small and n is large then the probability that a binomial(n, p) R.V. is equal to k is approximately the same as the probability that a Poisson R.V. with µ = np is equal to k. Here is an example with p = 0.01 and n = 50. > dbinom(0:4, 50, 0.01) [1] > dpois(0:4, 50 * 0.01) [1] This approximation is most useful when n is large so that the binomial coefficients are very large. Statistics 371 5

7 The Poisson Process The Poisson Process arises naturally under assumptions that are often reasonable. For the following, think of occurrences as being exact times of events or random locations of something. The assumptions are: 1. The chance of two simultaneous occurrences (or occurrences at the same location) is negligible; 2. The expected value of the random number of occurrences in a time interval (or in a region) is proportional to the length of the interval (area of the region). 3. The random number of occurrences in non-overlapping time intervals (regions) are independent. Under these assumptions, the random variable that counts the number of occurrences has a Poisson distribution. Statistics 371 6

8 Generating one Poisson R.V. from another Sometimes we are given a Poisson R.V. for the number of occurrences for one unit of length (area, time) but are interested in another. We can create a second Poisson random variable from the first. If Y 1 is a Poisson random variable with mean µ 1 counting the number of occurrences per unit length (area, time). Then the random variable Y 2 which counts the number of occurrences in an interval of length (area, time) t is Poisson with mean µ 2 = tµ 1. Statistics 371 7

9 Example Suppose that we assume that at a location, a particular species of plant is distributed according to a Poisson process with expected density 0.2 individuals per square meter. In a nine square meter quadrant, what is the probability of no individuals? Solution: The number of individuals in 9 square meters has a Poisson distribution with mean µ = = 1.8. The probability of no individuals in 9 meters is Pr{Y = 0} = e 1.8 (1.8) 0 0! In R, we can compute this as = e 1.8 = > dpois(0, 1.8) [1] Statistics 371 8

10 Example (cont.) Find the probability of three or more individuals in 9 square meters. Solution: Instead of summing the probabilities from 3 to infinity, we can use the complement rule. Pr{Y 3} = 1 Pr{Y 2} = 1 Pr{Y = 0} Pr{Y = 1} Pr{Y = 2} In R, this is found as > 1 - sum(dpois(0:2, 1.8)) [1] Statistics 371 9

11 Consider an experiment to find the concentration of colony forming units (cells that will result in the growth of a colony) in a solution. Assume that it is difficult or impossible to count individual colonies. First create a series of dilutions at the following strengths: 1/2 the strength of the the original solution 1/4 the strength of the the original solution 1/8 the strength of the the original solution 1/16 the strength of the the original solution 1/32 the strength of the the original solution 1/64 the strength of the the original solution 1/128 the strength of the the original solution Statistics

12 Now take 80 plates and plate out 1 milliliter of each solution on to each of 10 growing plates. Wait an appropriate length of time and record the number of plates that have at least one colony growing on it. Our data might look like: Dilution Number of plates out of 10 with no colonies Full strength 0 1/2 strength 1 1/4 strength 3 1/8 strength 6 1/16 strength 8 1/32 strength 8 1/64 strength 9 1/128 strength 10 Statistics

13 How would we estimate the number of colony forming units (CFU) per ml in the original solution? First let s compute the proportion of the plates with no colonies: Plates with no colonies Dilution Number Proportion Full strength /2 strength /4 strength /8 strength /16 strength /32 strength /64 strength /128 strength Statistics

14 Lets start with the Full strength solution. Let s assume: the original solution has µ CFUs per ml the number of CFU s in any individual ml of the original solution is a Poisson distributed random variable with mean µ. Is this reasonable? What are the assumptions required for a R.V. to be Poisson? 1. The chance of two simultaneous occurrences (or occurrences at the same location) is negligible; 2. The expected value of the random number of occurrences in a time interval (or in a region) is proportional to the length of the interval (area of the region). Statistics

15 3. The random number of occurrences in non-overlapping time intervals (regions) are independent. If Y is the number of CFU s in 1 ml of the original solution then we know that Pr{Y = k} = e µ µ k k! for k = 0, 1, 2,.... A plate having no colonies is equivalent to Y = 0. calculate the probability that Y = 0 as Pr{Y = 0} = e µ µ 0 = e µ 0! We can Statistics

16 What about our dilutions? If the number of CFU s in a ml of the original solution is Poisson(µ) then the number of CFU s in 1/d dilution of the original solution will be Poisson(µ/d). Let s expand our table to show the expected proportion of plates with no colonies Statistics

17 Plates with no colonies Expected Dilution Number Proportion Proportion Full strength exp( µ) 1/2 strength exp( µ/2) 1/4 strength exp( µ/4) 1/8 strength exp( µ/8) 1/16 strength exp( µ/16) 1/32 strength exp( µ/32) 1/64 strength exp( µ/64) Notes exp(x) = e x We drop the dilutions which give 0 or 10 plates with zero colonies. This method does not use them. Statistics

18 Now take the log (base e) of the proportions and the expected proportions Plates with no colonies Log Log expected Dilution Number Proportion Proportion 1/2 strength 1 log e (0.10) µ/2 1/4 strength 3 log e (0.30) µ/4 1/8 strength 6 log e (0.60) µ/8 1/16 strength 8 log e (0.80) µ/16 1/32 strength 8 log e (0.80) µ/32 1/64 strength 9 log e (0.90) µ/64 Statistics

19 Multiply through by the dilutions to get Plates with no colonies Sample Theoretical Dilution Number Statistic Value 1/2 strength 1 2 log e (0.10) µ 1/4 strength 3 4 log e (0.30) µ 1/8 strength 6 8 log e (0.60) µ 1/16 strength 8 16 log e (0.80) µ 1/32 strength 8 32 log e (0.80) µ 1/64 strength 9 64 log e (0.90) µ Statistics

20 Doing the math we get Plates with no colonies Sample Theoretical Dilution Number Statistic Value 1/2 strength µ 1/4 strength µ 1/8 strength µ 1/16 strength µ 1/32 strength µ 1/64 strength µ mean 5.2 µ So we might use 5.2 as our estimate of the true but unknown value of µ. Note that there are other ways of analyzing this type of experiment. Statistics

21 We can use R to calculate the expected number of plates with zero colonies assuming µ = 5.2. > dilutions = 2^(0:7) > dilutions [1] > means <- 5.2/dilutions > means [1] > round(dpois(0, means), 2) [1] Statistics

22 So assuming µ = 5.2 our observed and expected proportion of plates with no colonies are Proportion Dilution Observed Expected full strength /2 strength /4 strength /8 strength /16 strength /32 strength /64 strength /128 strength Why don t the observed and expected match? Statistics

The Normal Distribution

The Normal Distribution The Mary Lindstrom (Adapted from notes provided by Professor Bret Larget) February 10, 2004 Statistics 371 Last modified: February 11, 2004 The The (AKA Gaussian Distribution) is our first distribution

More information

Lecture 6. Probability events. Definition 1. The sample space, S, of a. probability experiment is the collection of all

Lecture 6. Probability events. Definition 1. The sample space, S, of a. probability experiment is the collection of all Lecture 6 1 Lecture 6 Probability events Definition 1. The sample space, S, of a probability experiment is the collection of all possible outcomes of an experiment. One such outcome is called a simple

More information

Binomial and Poisson Probability Distributions

Binomial and Poisson Probability Distributions Binomial and Poisson Probability Distributions Esra Akdeniz March 3, 2016 Bernoulli Random Variable Any random variable whose only possible values are 0 or 1 is called a Bernoulli random variable. What

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 4 Basic Probability And Discrete Probability Distributions

Statistics for Managers Using Microsoft Excel/SPSS Chapter 4 Basic Probability And Discrete Probability Distributions Statistics for Managers Using Microsoft Excel/SPSS Chapter 4 Basic Probability And Discrete Probability Distributions 1999 Prentice-Hall, Inc. Chap. 4-1 Chapter Topics Basic Probability Concepts: Sample

More information

Introduction to Statistical Data Analysis Lecture 3: Probability Distributions

Introduction to Statistical Data Analysis Lecture 3: Probability Distributions Introduction to Statistical Data Analysis Lecture 3: Probability Distributions James V. Lambers Department of Mathematics The University of Southern Mississippi James V. Lambers Statistical Data Analysis

More information

CSE 103 Homework 8: Solutions November 30, var(x) = np(1 p) = P r( X ) 0.95 P r( X ) 0.

CSE 103 Homework 8: Solutions November 30, var(x) = np(1 p) = P r( X ) 0.95 P r( X ) 0. () () a. X is a binomial distribution with n = 000, p = /6 b. The expected value, variance, and standard deviation of X is: E(X) = np = 000 = 000 6 var(x) = np( p) = 000 5 6 666 stdev(x) = np( p) = 000

More information

STAT 201 Chapter 5. Probability

STAT 201 Chapter 5. Probability STAT 201 Chapter 5 Probability 1 2 Introduction to Probability Probability The way we quantify uncertainty. Subjective Probability A probability derived from an individual's personal judgment about whether

More information

Lecture 13. Poisson Distribution. Text: A Course in Probability by Weiss 5.5. STAT 225 Introduction to Probability Models February 16, 2014

Lecture 13. Poisson Distribution. Text: A Course in Probability by Weiss 5.5. STAT 225 Introduction to Probability Models February 16, 2014 Lecture 13 Text: A Course in Probability by Weiss 5.5 STAT 225 Introduction to Probability Models February 16, 2014 Whitney Huang Purdue University 13.1 Agenda 1 2 3 13.2 Review So far, we have seen discrete

More information

Chapter 4a Probability Models

Chapter 4a Probability Models Chapter 4a Probability Models 4a.2 Probability models for a variable with a finite number of values 297 4a.1 Introduction Chapters 2 and 3 are concerned with data description (descriptive statistics) where

More information

N = total number of individuals = 8 r = number who had internships ( Class 1 ) = 5 N r = number who had student teaching ( Class 2 ) = 3.

N = total number of individuals = 8 r = number who had internships ( Class 1 ) = 5 N r = number who had student teaching ( Class 2 ) = 3. .105. a In this problem, a hypergeometric distribution applies because the population of individuals is finite and we sample at random without replacement. We have N = total number of individuals = r =

More information

b. ( ) ( ) ( ) ( ) ( ) 5. Independence: Two events (A & B) are independent if one of the conditions listed below is satisfied; ( ) ( ) ( )

b. ( ) ( ) ( ) ( ) ( ) 5. Independence: Two events (A & B) are independent if one of the conditions listed below is satisfied; ( ) ( ) ( ) 1. Set a. b. 2. Definitions a. Random Experiment: An experiment that can result in different outcomes, even though it is performed under the same conditions and in the same manner. b. Sample Space: This

More information

Introduction. Probability and distributions

Introduction. Probability and distributions Introduction. Probability and distributions Joe Felsenstein Genome 560, Spring 2011 Introduction. Probability and distributions p.1/18 Probabilities We will assume you know that Probabilities of mutually

More information

ECE 313 Probability with Engineering Applications Fall 2000

ECE 313 Probability with Engineering Applications Fall 2000 Exponential random variables Exponential random variables arise in studies of waiting times, service times, etc X is called an exponential random variable with parameter λ if its pdf is given by f(u) =

More information

Probability Method in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institute of Technology, Kharagpur

Probability Method in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institute of Technology, Kharagpur Probability Method in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institute of Technology, Kharagpur Lecture No. # 34 Probability Models using Discrete Probability Distributions

More information

6 Introduction to Population Genetics

6 Introduction to Population Genetics 70 Grundlagen der Bioinformatik, SoSe 11, D. Huson, May 19, 2011 6 Introduction to Population Genetics This chapter is based on: J. Hein, M.H. Schierup and C. Wuif, Gene genealogies, variation and evolution,

More information

Topic 9 Examples of Mass Functions and Densities

Topic 9 Examples of Mass Functions and Densities Topic 9 Examples of Mass Functions and Densities Discrete Random Variables 1 / 12 Outline Bernoulli Binomial Negative Binomial Poisson Hypergeometric 2 / 12 Introduction Write f X (x θ) = P θ {X = x} for

More information

Math/Stat 3850 Exam 1

Math/Stat 3850 Exam 1 2/21/18 Name: Math/Stat 3850 Exam 1 There are 10 questions, worth a total of 100 points. You may use R, your calculator, and any written or internet resources on this test, although you are not allowed

More information

6 Introduction to Population Genetics

6 Introduction to Population Genetics Grundlagen der Bioinformatik, SoSe 14, D. Huson, May 18, 2014 67 6 Introduction to Population Genetics This chapter is based on: J. Hein, M.H. Schierup and C. Wuif, Gene genealogies, variation and evolution,

More information

STT 315 Problem Set #3

STT 315 Problem Set #3 1. A student is asked to calculate the probability that x = 3.5 when x is chosen from a normal distribution with the following parameters: mean=3, sd=5. To calculate the answer, he uses this command: >

More information

Topic 3: The Expectation of a Random Variable

Topic 3: The Expectation of a Random Variable Topic 3: The Expectation of a Random Variable Course 003, 2016 Page 0 Expectation of a discrete random variable Definition: The expected value of a discrete random variable exists, and is defined by EX

More information

Lecture 4: Random Variables and Distributions

Lecture 4: Random Variables and Distributions Lecture 4: Random Variables and Distributions Goals Random Variables Overview of discrete and continuous distributions important in genetics/genomics Working with distributions in R Random Variables A

More information

Chapter 4 Continuous Random Variables and Probability Distributions

Chapter 4 Continuous Random Variables and Probability Distributions Chapter 4 Continuous Random Variables and Probability Distributions Part 3: The Exponential Distribution and the Poisson process Section 4.8 The Exponential Distribution 1 / 21 Exponential Distribution

More information

Topic 3: The Expectation of a Random Variable

Topic 3: The Expectation of a Random Variable Topic 3: The Expectation of a Random Variable Course 003, 2017 Page 0 Expectation of a discrete random variable Definition (Expectation of a discrete r.v.): The expected value (also called the expectation

More information

Lecture 8 : The Geometric Distribution

Lecture 8 : The Geometric Distribution 0/ 24 The geometric distribution is a special case of negative binomial, it is the case r = 1. It is so important we give it special treatment. Motivating example Suppose a couple decides to have children

More information

Statistics for Managers Using Microsoft Excel (3 rd Edition)

Statistics for Managers Using Microsoft Excel (3 rd Edition) Statistics for Managers Using Microsoft Excel (3 rd Edition) Chapter 4 Basic Probability and Discrete Probability Distributions 2002 Prentice-Hall, Inc. Chap 4-1 Chapter Topics Basic probability concepts

More information

Mathematical Statistics 1 Math A 6330

Mathematical Statistics 1 Math A 6330 Mathematical Statistics 1 Math A 6330 Chapter 3 Common Families of Distributions Mohamed I. Riffi Department of Mathematics Islamic University of Gaza September 28, 2015 Outline 1 Subjects of Lecture 04

More information

Lecture 5 : The Poisson Distribution

Lecture 5 : The Poisson Distribution Lecture 5 : The Poisson Distribution Jonathan Marchini November 5, 2004 1 Introduction Many experimental situations occur in which we observe the counts of events within a set unit of time, area, volume,

More information

3. DISCRETE PROBABILITY DISTRIBUTIONS

3. DISCRETE PROBABILITY DISTRIBUTIONS 1 3. DISCRETE PROBABILITY DISTRIBUTIONS Probability distributions may be discrete or continuous. This week we examine two discrete distributions commonly used in biology: the binomial and Poisson distributions.

More information

Lecture 1: Probability Fundamentals

Lecture 1: Probability Fundamentals Lecture 1: Probability Fundamentals IB Paper 7: Probability and Statistics Carl Edward Rasmussen Department of Engineering, University of Cambridge January 22nd, 2008 Rasmussen (CUED) Lecture 1: Probability

More information

Probability Distributions Columns (a) through (d)

Probability Distributions Columns (a) through (d) Discrete Probability Distributions Columns (a) through (d) Probability Mass Distribution Description Notes Notation or Density Function --------------------(PMF or PDF)-------------------- (a) (b) (c)

More information

PRACTICE PROBLEMS FOR EXAM 2

PRACTICE PROBLEMS FOR EXAM 2 PRACTICE PROBLEMS FOR EXAM 2 Math 3160Q Fall 2015 Professor Hohn Below is a list of practice questions for Exam 2. Any quiz, homework, or example problem has a chance of being on the exam. For more practice,

More information

Random Variables Example:

Random Variables Example: Random Variables Example: We roll a fair die 6 times. Suppose we are interested in the number of 5 s in the 6 rolls. Let X = number of 5 s. Then X could be 0, 1, 2, 3, 4, 5, 6. X = 0 corresponds to the

More information

STAT509: Discrete Random Variable

STAT509: Discrete Random Variable University of South Carolina September 16, 2014 Motivation So far, we have already known how to calculate probabilities of events. Suppose we toss a fair coin three times, we know that the probability

More information

Poisson regression 1/15

Poisson regression 1/15 Poisson regression 1/15 2/15 Counts data Examples of counts data: Number of hospitalizations over a period of time Number of passengers in a bus station Blood cells number in a blood sample Number of typos

More information

CS5314 Randomized Algorithms. Lecture 5: Discrete Random Variables and Expectation (Conditional Expectation, Geometric RV)

CS5314 Randomized Algorithms. Lecture 5: Discrete Random Variables and Expectation (Conditional Expectation, Geometric RV) CS5314 Randomized Algorithms Lecture 5: Discrete Random Variables and Expectation (Conditional Expectation, Geometric RV) Objectives Introduce Geometric RV We then introduce Conditional Expectation Application:

More information

Random Variables. Definition: A random variable (r.v.) X on the probability space (Ω, F, P) is a mapping

Random Variables. Definition: A random variable (r.v.) X on the probability space (Ω, F, P) is a mapping Random Variables Example: We roll a fair die 6 times. Suppose we are interested in the number of 5 s in the 6 rolls. Let X = number of 5 s. Then X could be 0, 1, 2, 3, 4, 5, 6. X = 0 corresponds to the

More information

CS 237: Probability in Computing

CS 237: Probability in Computing CS 237: Probability in Computing Wayne Snyder Computer Science Department Boston University Lecture 11: Geometric Distribution Poisson Process Poisson Distribution Geometric Distribution The Geometric

More information

errors every 1 hour unless he falls asleep, in which case he just reports the total errors

errors every 1 hour unless he falls asleep, in which case he just reports the total errors I. First Definition of a Poisson Process A. Definition: Poisson process A Poisson Process {X(t), t 0} with intensity λ > 0 is a counting process with the following properties. INDEPENDENT INCREMENTS. For

More information

Chapter 5. Chapter 5 sections

Chapter 5. Chapter 5 sections 1 / 43 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

Math 180B Problem Set 3

Math 180B Problem Set 3 Math 180B Problem Set 3 Problem 1. (Exercise 3.1.2) Solution. By the definition of conditional probabilities we have Pr{X 2 = 1, X 3 = 1 X 1 = 0} = Pr{X 3 = 1 X 2 = 1, X 1 = 0} Pr{X 2 = 1 X 1 = 0} = P

More information

Random Variable. Discrete Random Variable. Continuous Random Variable. Discrete Random Variable. Discrete Probability Distribution

Random Variable. Discrete Random Variable. Continuous Random Variable. Discrete Random Variable. Discrete Probability Distribution Random Variable Theoretical Probability Distribution Random Variable Discrete Probability Distributions A variable that assumes a numerical description for the outcome of a random eperiment (by chance).

More information

Sampling Distribution: Week 6

Sampling Distribution: Week 6 Sampling Distribution: Week 6 Kwonsang Lee University of Pennsylvania kwonlee@wharton.upenn.edu February 27, 2015 Kwonsang Lee STAT111 February 27, 2015 1 / 16 Sampling Distribution: Sample Mean If X 1,

More information

Probability Year 9. Terminology

Probability Year 9. Terminology Probability Year 9 Terminology Probability measures the chance something happens. Formally, we say it measures how likely is the outcome of an event. We write P(result) as a shorthand. An event is some

More information

CS37300 Class Notes. Jennifer Neville, Sebastian Moreno, Bruno Ribeiro

CS37300 Class Notes. Jennifer Neville, Sebastian Moreno, Bruno Ribeiro CS37300 Class Notes Jennifer Neville, Sebastian Moreno, Bruno Ribeiro 2 Background on Probability and Statistics These are basic definitions, concepts, and equations that should have been covered in your

More information

{ } all possible outcomes of the procedure. There are 8 ways this procedure can happen.

{ } all possible outcomes of the procedure. There are 8 ways this procedure can happen. Probability with the 3-Kids Procedure Statistics Procedures and Events Definition A procedure is something that produces an outcome. When a procedure produces an outcome, it s called a trial or a run of

More information

Using Minitab to construct Attribute charts Control Chart

Using Minitab to construct Attribute charts Control Chart Using Minitab to construct Attribute charts Control Chart Attribute Control Chart Attribute control charts are the charts that plot nonconformities (defects) or nonconforming units (defectives). A nonconformity

More information

Problem 1. Problem 2. Problem 3. Problem 4

Problem 1. Problem 2. Problem 3. Problem 4 Problem Let A be the event that the fungus is present, and B the event that the staph-bacteria is present. We have P A = 4, P B = 9, P B A =. We wish to find P AB, to do this we use the multiplication

More information

Lectures on Elementary Probability. William G. Faris

Lectures on Elementary Probability. William G. Faris Lectures on Elementary Probability William G. Faris February 22, 2002 2 Contents 1 Combinatorics 5 1.1 Factorials and binomial coefficients................. 5 1.2 Sampling with replacement.....................

More information

Discrete probability distributions

Discrete probability distributions Discrete probability s BSAD 30 Dave Novak Fall 08 Source: Anderson et al., 05 Quantitative Methods for Business th edition some slides are directly from J. Loucks 03 Cengage Learning Covered so far Chapter

More information

Page Max. Possible Points Total 100

Page Max. Possible Points Total 100 Math 3215 Exam 2 Summer 2014 Instructor: Sal Barone Name: GT username: 1. No books or notes are allowed. 2. You may use ONLY NON-GRAPHING and NON-PROGRAMABLE scientific calculators. All other electronic

More information

No Solution Equations Let s look at the following equation: 2 +3=2 +7

No Solution Equations Let s look at the following equation: 2 +3=2 +7 5.4 Solving Equations with Infinite or No Solutions So far we have looked at equations where there is exactly one solution. It is possible to have more than solution in other types of equations that are

More information

χ 2 (m 1 d) distribution, where d is the number of parameter MLE estimates made.

χ 2 (m 1 d) distribution, where d is the number of parameter MLE estimates made. MATH 2 Goodness of Fit Part 1 Let x 1, x 2,..., x n be a random sample of measurements that have a specified range and distribution. Divide the range of measurements into m bins and let f 1,..., f m denote

More information

P (A) = P (B) = P (C) = P (D) =

P (A) = P (B) = P (C) = P (D) = STAT 145 CHAPTER 12 - PROBABILITY - STUDENT VERSION The probability of a random event, is the proportion of times the event will occur in a large number of repititions. For example, when flipping a coin,

More information

Probability and random variables

Probability and random variables Probability and random variables Events A simple event is the outcome of an experiment. For example, the experiment of tossing a coin twice has four possible outcomes: HH, HT, TH, TT. A compound event

More information

Chapter 5. Means and Variances

Chapter 5. Means and Variances 1 Chapter 5 Means and Variances Our discussion of probability has taken us from a simple classical view of counting successes relative to total outcomes and has brought us to the idea of a probability

More information

Probability Year 10. Terminology

Probability Year 10. Terminology Probability Year 10 Terminology Probability measures the chance something happens. Formally, we say it measures how likely is the outcome of an event. We write P(result) as a shorthand. An event is some

More information

p. 4-1 Random Variables

p. 4-1 Random Variables Random Variables A Motivating Example Experiment: Sample k students without replacement from the population of all n students (labeled as 1, 2,, n, respectively) in our class. = {all combinations} = {{i

More information

Common Discrete Distributions

Common Discrete Distributions Common Discrete Distributions Statistics 104 Autumn 2004 Taken from Statistics 110 Lecture Notes Copyright c 2004 by Mark E. Irwin Common Discrete Distributions There are a wide range of popular discrete

More information

Introduction to Digital Evolution Handout Answers

Introduction to Digital Evolution Handout Answers Introduction to Digital Evolution Handout Answers Note to teacher: The questions in this handout and the suggested answers (in red, below) are meant to guide discussion, not be an assessment. It is recommended

More information

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes.

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. A Probability Primer A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. Are you holding all the cards?? Random Events A random event, E,

More information

Chapter 3: Discrete Random Variable

Chapter 3: Discrete Random Variable Chapter 3: Discrete Random Variable Shiwen Shen University of South Carolina 2017 Summer 1 / 63 Random Variable Definition: A random variable is a function from a sample space S into the real numbers.

More information

Review of Poisson Distributions. Section 3.3 Generalized Linear Models For Count Data. Example (Fatalities From Horse Kicks)

Review of Poisson Distributions. Section 3.3 Generalized Linear Models For Count Data. Example (Fatalities From Horse Kicks) Section 3.3 Generalized Linear Models For Count Data Review of Poisson Distributions Outline Review of Poisson Distributions GLMs for Poisson Response Data Models for Rates Overdispersion and Negative

More information

Stat 5101 Notes: Brand Name Distributions

Stat 5101 Notes: Brand Name Distributions Stat 5101 Notes: Brand Name Distributions Charles J. Geyer February 14, 2003 1 Discrete Uniform Distribution DiscreteUniform(n). Discrete. Rationale Equally likely outcomes. The interval 1, 2,..., n of

More information

Chapter 8: An Introduction to Probability and Statistics

Chapter 8: An Introduction to Probability and Statistics Course S3, 200 07 Chapter 8: An Introduction to Probability and Statistics This material is covered in the book: Erwin Kreyszig, Advanced Engineering Mathematics (9th edition) Chapter 24 (not including

More information

the yellow gene from each of the two parents he wrote Experiments in Plant

the yellow gene from each of the two parents he wrote Experiments in Plant CHAPTER PROBLEM Did Mendel s results from plant hybridization experiments contradict his theory? Gregor Mendel conducted original experiments offspring can have a yellow pod only if it inherits to study

More information

9/6/2016. Section 5.1 Probability. Equally Likely Model. The Division Rule: P(A)=#(A)/#(S) Some Popular Randomizers.

9/6/2016. Section 5.1 Probability. Equally Likely Model. The Division Rule: P(A)=#(A)/#(S) Some Popular Randomizers. Chapter 5: Probability and Discrete Probability Distribution Learn. Probability Binomial Distribution Poisson Distribution Some Popular Randomizers Rolling dice Spinning a wheel Flipping a coin Drawing

More information

7.. SUPPLEMENTARY PROBLEMS FOR CHAPTER Supplementary Problems for Chapter 7 EXERCISE 7. A certain student always arrives the day before the te

7.. SUPPLEMENTARY PROBLEMS FOR CHAPTER Supplementary Problems for Chapter 7 EXERCISE 7. A certain student always arrives the day before the te Modeling the Dynamics of Life: Calculus and for Life Scientists Frederick R. Adler cfrederick R. Adler, 22 Department of Mathematics and Department of Biology, University of Utah, Salt Lake City, Utah

More information

Poisson population distribution X P(

Poisson population distribution X P( Chapter 8 Poisson population distribution P( ) ~ 8.1 Definition of a Poisson distribution, ~ P( ) If the random variable has a Poisson population distribution, i.e., P( ) probability function is given

More information

maximum likelihood Maximum likelihood families nega2ve binomial ordered logit/probit

maximum likelihood Maximum likelihood families nega2ve binomial ordered logit/probit maximum likelihood Maximum likelihood families nega2ve binomial ordered logit/probit The story so far... We have some data We want to predict it, using other data We venture a hypothesis We write that

More information

7.1 What is it and why should we care?

7.1 What is it and why should we care? Chapter 7 Probability In this section, we go over some simple concepts from probability theory. We integrate these with ideas from formal language theory in the next chapter. 7.1 What is it and why should

More information

Chapter 4 Part 3. Sections Poisson Distribution October 2, 2008

Chapter 4 Part 3. Sections Poisson Distribution October 2, 2008 Chapter 4 Part 3 Sections 4.10-4.12 Poisson Distribution October 2, 2008 Goal: To develop an understanding of discrete distributions by considering the binomial (last lecture) and the Poisson distributions.

More information

Lecture 2: Discrete Probability Distributions

Lecture 2: Discrete Probability Distributions Lecture 2: Discrete Probability Distributions IB Paper 7: Probability and Statistics Carl Edward Rasmussen Department of Engineering, University of Cambridge February 1st, 2011 Rasmussen (CUED) Lecture

More information

2. In a clinical trial of certain new treatment, we may be interested in the proportion of patients cured.

2. In a clinical trial of certain new treatment, we may be interested in the proportion of patients cured. Discrete probability distributions January 21, 2013 Debdeep Pati Random Variables 1. Events are not very convenient to use. 2. In a clinical trial of certain new treatment, we may be interested in the

More information

Chapter 2. Discrete Distributions

Chapter 2. Discrete Distributions Chapter. Discrete Distributions Objectives ˆ Basic Concepts & Epectations ˆ Binomial, Poisson, Geometric, Negative Binomial, and Hypergeometric Distributions ˆ Introduction to the Maimum Likelihood Estimation

More information

Math 20 Spring Discrete Probability. Midterm Exam

Math 20 Spring Discrete Probability. Midterm Exam Math 20 Spring 203 Discrete Probability Midterm Exam Thursday April 25, 5:00 7:00 PM Your name (please print): Instructions: This is a closed book, closed notes exam. Use of calculators is not permitted.

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 2 MATH00040 SEMESTER / Probability

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 2 MATH00040 SEMESTER / Probability ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 2 MATH00040 SEMESTER 2 2017/2018 DR. ANTHONY BROWN 5.1. Introduction to Probability. 5. Probability You are probably familiar with the elementary

More information

Introductory Probability

Introductory Probability Introductory Probability Bernoulli Trials and Binomial Probability Distributions Dr. Nguyen nicholas.nguyen@uky.edu Department of Mathematics UK February 04, 2019 Agenda Bernoulli Trials and Probability

More information

CS 237: Probability in Computing

CS 237: Probability in Computing CS 237: Probability in Computing Wayne Snyder Computer Science Department Boston University Lecture 13: Normal Distribution Exponential Distribution Recall that the Normal Distribution is given by an explicit

More information

Special Discrete RV s. Then X = the number of successes is a binomial RV. X ~ Bin(n,p).

Special Discrete RV s. Then X = the number of successes is a binomial RV. X ~ Bin(n,p). Sect 3.4: Binomial RV Special Discrete RV s 1. Assumptions and definition i. Experiment consists of n repeated trials ii. iii. iv. There are only two possible outcomes on each trial: success (S) or failure

More information

Week 2. Review of Probability, Random Variables and Univariate Distributions

Week 2. Review of Probability, Random Variables and Univariate Distributions Week 2 Review of Probability, Random Variables and Univariate Distributions Probability Probability Probability Motivation What use is Probability Theory? Probability models Basis for statistical inference

More information

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #11 Special Distributions-II In the Bernoullian trials that

More information

Chapter 8. Some Approximations to Probability Distributions: Limit Theorems

Chapter 8. Some Approximations to Probability Distributions: Limit Theorems Chapter 8. Some Approximations to Probability Distributions: Limit Theorems Sections 8.2 -- 8.3: Convergence in Probability and in Distribution Jiaping Wang Department of Mathematical Science 04/22/2013,

More information

Discrete Probability Distributions

Discrete Probability Distributions Chapter 4 Discrete Probability Distributions 4.1 Random variable A random variable is a function that assigns values to different events in a sample space. Example 4.1.1. Consider the experiment of rolling

More information

15 Discrete Distributions

15 Discrete Distributions Lecture Note 6 Special Distributions (Discrete and Continuous) MIT 4.30 Spring 006 Herman Bennett 5 Discrete Distributions We have already seen the binomial distribution and the uniform distribution. 5.

More information

Probability and Conditional Probability

Probability and Conditional Probability Probability and Conditional Probability Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison September 27 29, 2011 Probability 1 / 33 Parasitic Fish Case Study Example 9.3

More information

Solving and Graphing Inequalities

Solving and Graphing Inequalities Solving and Graphing Inequalities Graphing Simple Inequalities: x > 3 When finding the solution for an equation we get one answer for x. (There is only one number that satisfies the equation.) For 3x 5

More information

Probability theory and inference statistics! Dr. Paola Grosso! SNE research group!! (preferred!)!!

Probability theory and inference statistics! Dr. Paola Grosso! SNE research group!!  (preferred!)!! Probability theory and inference statistics Dr. Paola Grosso SNE research group p.grosso@uva.nl paola.grosso@os3.nl (preferred) Roadmap Lecture 1: Monday Sep. 22nd Collecting data Presenting data Descriptive

More information

S n = x + X 1 + X X n.

S n = x + X 1 + X X n. 0 Lecture 0 0. Gambler Ruin Problem Let X be a payoff if a coin toss game such that P(X = ) = P(X = ) = /2. Suppose you start with x dollars and play the game n times. Let X,X 2,...,X n be payoffs in each

More information

Probability Distributions: Continuous

Probability Distributions: Continuous Probability Distributions: Continuous INFO-2301: Quantitative Reasoning 2 Michael Paul and Jordan Boyd-Graber FEBRUARY 28, 2017 INFO-2301: Quantitative Reasoning 2 Paul and Boyd-Graber Probability Distributions:

More information

Physics 6720 Introduction to Statistics April 4, 2017

Physics 6720 Introduction to Statistics April 4, 2017 Physics 6720 Introduction to Statistics April 4, 2017 1 Statistics of Counting Often an experiment yields a result that can be classified according to a set of discrete events, giving rise to an integer

More information

A strategy for modelling count data which may have extra zeros

A strategy for modelling count data which may have extra zeros A strategy for modelling count data which may have extra zeros Alan Welsh Centre for Mathematics and its Applications Australian National University The Data Response is the number of Leadbeater s possum

More information

Probability Rules. MATH 130, Elements of Statistics I. J. Robert Buchanan. Fall Department of Mathematics

Probability Rules. MATH 130, Elements of Statistics I. J. Robert Buchanan. Fall Department of Mathematics Probability Rules MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2018 Introduction Probability is a measure of the likelihood of the occurrence of a certain behavior

More information

STAT 509 Section 3.4: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s.

STAT 509 Section 3.4: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s. STAT 509 Section 3.4: Continuous Distributions Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s. A continuous random variable is one for which the outcome

More information

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models Fatih Cavdur fatihcavdur@uludag.edu.tr March 20, 2012 Introduction Introduction The world of the model-builder

More information

Exam 1 Review (Notes 1-8)

Exam 1 Review (Notes 1-8) 1 / 17 Exam 1 Review (Notes 1-8) Shiwen Shen Department of Statistics University of South Carolina Elementary Statistics for the Biological and Life Sciences (STAT 205) Basic Concepts 2 / 17 Type of studies:

More information

green green green/green green green yellow green/yellow green yellow green yellow/green green yellow yellow yellow/yellow yellow

green green green/green green green yellow green/yellow green yellow green yellow/green green yellow yellow yellow/yellow yellow CHAPTER PROBLEM Did Mendel s results from plant hybridization experiments contradict his theory? Gregor Mendel conducted original experiments to study the genetic traits of pea plants. In 1865 he wrote

More information

STAT 414: Introduction to Probability Theory

STAT 414: Introduction to Probability Theory STAT 414: Introduction to Probability Theory Spring 2016; Homework Assignments Latest updated on April 29, 2016 HW1 (Due on Jan. 21) Chapter 1 Problems 1, 8, 9, 10, 11, 18, 19, 26, 28, 30 Theoretical Exercises

More information

Discrete Random Variables

Discrete Random Variables CPSC 53 Systems Modeling and Simulation Discrete Random Variables Dr. Anirban Mahanti Department of Computer Science University of Calgary mahanti@cpsc.ucalgary.ca Random Variables A random variable is

More information

Lecture 20. Poisson Processes. Text: A Course in Probability by Weiss STAT 225 Introduction to Probability Models March 26, 2014

Lecture 20. Poisson Processes. Text: A Course in Probability by Weiss STAT 225 Introduction to Probability Models March 26, 2014 Lecture 20 Text: A Course in Probability by Weiss 12.1 STAT 225 Introduction to Probability Models March 26, 2014 Whitney Huang Purdue University 20.1 Agenda 1 2 20.2 For a specified event that occurs

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables We have a probability space (S, Pr). A random variable is a function X : S V (X ) for some set V (X ). In this discussion, we must have V (X ) is the real numbers X induces a

More information