{ } all possible outcomes of the procedure. There are 8 ways this procedure can happen.

Size: px
Start display at page:

Download "{ } all possible outcomes of the procedure. There are 8 ways this procedure can happen."

Transcription

1 Probability with the 3-Kids Procedure Statistics Procedures and Events Definition A procedure is something that produces an outcome. When a procedure produces an outcome, it s called a trial or a run of the procedure. Example Here s a procedure: Have three children and record their genders in order of birth. Let s call this the 3-Kids procedure. In one trial of the 3-Kids procedure, there s an outcome of bgb (boy-girl-boy). In another trial you can get gbb. The set of all possible outcomes for a procedure is the procedure s sample space. The sample space for the 3-Kids procedure is bbb, bbg, bgb, bgg, gbb, gbg, ggb, ggg since this is the set of all possible outcomes of the procedure. There are ways this procedure can happen. An event is a subset of the sample space containing outcomes that are said to result in the event. An outcome that results in an event is a way the event happened. Here s an event that can happen as a result of the 3-Kids procedure. bgg, gbg, ggb. A = Having exactly two girls = How many ways can A happen? Three. And another event. B = The oldest is a girl = {,,, } gbb gbg ggb ggg. Does the outcome of gbg result in B happening? Certainly. A single outcome considered as an event is called a simple event. Let event C = Having all boys = { bbb }. Since there s only one way for this event to happen, we call it a simple event The complement of event A consists of all the ways that A doesn t happen. It's written as A and pronounced A complement. In our case, A = not getting exactly two girls = bbb, bbg, bgb, gbb, ggg and can happen 5 ways.

2 A compound event is an event that s made up of other events. (A and B) = all the ways that result in both A and B happening at the same time. (A or B) = all the ways that result in either A or B or both happening. The compound event (A and B) = Having exactly two girls gbg, ggb. There are only and the oldest is a girl (too) = ways this can happen. The compound event (A or B) = Having exactly two girls or bgg, gbb, gbg, ggb, ggg. having the oldest be a girl. = There s 5 ways this can happen. Probability P( A ) = The probability that the event A will occur (when running the procedure). In the 3-Kids example, P( A ) = The probability that there will be exactly two girls. To compute the (theoretical) probability of an event A happening: Count the number of ways A can happen, and divide by the total number of ways the procedure can happen. P A # of ways A can happen =. # of ways procedure can happen The # of ways the procedure can happen is the size of the sample space. By counting in the 3-Kids sample space, we know there are 3 ways event A can happen. The size of the sample space is, so 3 P( A ) =. Similarly, 4 P( B ) = = and P( C ) =. We also have the probability of compound events, 5 P( Aand B ) = = and P( Aor B ) =. 4 The probability of the complement of an event is one minus the probability of the event. PA = PA. Using the formula what s the probability of not having exactly two girls? 3 5 PA = PA = =.

3 Two events are disjoint if there is no way they can both happen at the same time (in the same run of the procedure). If A and B are Aand B disjoint, then the compound event cannot happen. So P( Aand B ) = 0. If two events are not disjoint, then we say they overlap. If A and B overlap, then P Aand B > 0. The 3-Kids events A and C are disjoint because there s no way to A = "have exactly two girls" and C = "all boys" at the same time. P Aand C = 0. So Events A and B overlap since there are two ways to A = "have exactly two girls" and B = "the oldest be a girl". The overlap is gbg, ggb and (A and B) = P( Aand B ) = =. 4 Addition Rule Overlapping Events The probability of the compound event (A or B) can be computed with ( or ) = + ( and ) P A B P A P B P A B Disjoint Events If A and B are disjoint, then so the Addition Rule becomes ( or ) = + P A B P A P B P Aand B = 0, Addition Rule Overlapping Events Events A and B overlap. We already know 5 P( Aor B ) = from counting in the sample space. But also using the formula we have ( or ) = + ( and ) P A B P A P B P A B = + = Disjoint Events Events A and C are disjoint. So, 3 P( Aor C) = P( A) + P( C) = + = Independent and Two events are independent if the probability of one event is not affected by the occurrence of the other. If two events are not independent, we say they are dependent. The event B="oldest being a girl" does not affect the chances of the D="youngest being a boy". So, B and D are independent events. The chances of B = the oldest being a girl improve once we know that A = having exactly two girls has happened. So, B and A are dependent events.

4 Conditional Probability To deal with dependent events, we use conditional probability. P( B A ) reads the probability of B given A and is the probability of B happening given that A has happened. If events A and B are dependent, then A P B This says that A happening has an effect on the probability of B happening. Conditional Probability We know that the probability of the oldest being a girl is P( B ) =. But computing P B A we count only within A = { bgg, gbg, ggb } and see that B can happen ways { gbg, ggb} out of the 3 ways that A can happen. So, P( B A ) =. Hence, 3 the chances of B happening do improve when you know A has already happened. A and B A P B are dependent events since If events A and B are independent, then A = P B This says the probability of B happening is the same whether A happens or not. How to Compute A, count the number of To compute ways that B can happen out of the ways that A can happen. Divide that by the number of ways A can happen. You could say that the event A becomes a new sample space out of which you compute the probability of B. D = the youngest is a boy and B = the oldest being a girl are independent events. So, we should find that P D B = P D. Since D = { bbb, bgb, gbb, ggb }, 4 P( D ) = = Let s show B has no affect on the chances of D by showing P( D B ) = as well. To P D B, count among the ways compute that B = { gbb, gbg, ggb, ggg} can happen to see that D can happen in ways gbb, ggb out of the possible 4, so P( D B ) = =. 4 Therefore, P( D B) P( D) are independent. = and the events

5 Multiplication Rule The probability of the compound event (A and B) can be computed with the formula ( and ) = P A B P A P B A If the events are independent, then A = P B and the Multiplication Rule simplifies to multiplying the separate probabilities ( and ) = P A B P A P B Multiplication Rule Using the multiplication rule to calculate P Aand B you d get, 3 P( Aand B) = P( A) P( B A) = = 3 4 With the independent events B and D, we d have P( Band D) = P( B) P( D) = = 4 This indicates there are only ways that (B and D) can happen. Those ways are (B and ggb, gbb D) = Conditional Probability - Formula The conditional probability P( B A ) may be computed with this formula P B A P B = ( and A) P( A) (This works because the # of ways B can happen out of the ways that A can happen is really the same as the # of ways A and B can happen together. ) Conditional Probability - Formula P B A and P D B P( B and A) 4 = = =. P( A) 3 3 P( Dand B) 4 = = = P( B)

Section 13.3 Probability

Section 13.3 Probability 288 Section 13.3 Probability Probability is a measure of how likely an event will occur. When the weather forecaster says that there will be a 50% chance of rain this afternoon, the probability that it

More information

Producing data Toward statistical inference. Section 3.3

Producing data Toward statistical inference. Section 3.3 Producing data Toward statistical inference Section 3.3 Toward statistical inference Idea: Use sampling to understand statistical inference Statistical inference is when a conclusion about a population

More information

Chapter5 Probability.

Chapter5 Probability. Chapter5 Probability. Introduction. We will consider random experiments with chance outcomes. Events are outcomes that may or may not occur. Notation: Capital letters like E will denote events Probability

More information

Chapter 4 Probability

Chapter 4 Probability 4-1 Review and Preview Chapter 4 Probability 4-2 Basic Concepts of Probability 4-3 Addition Rule 4-4 Multiplication Rule: Basics 4-5 Multiplication Rule: Complements and Conditional Probability 4-6 Counting

More information

ACMS Statistics for Life Sciences. Chapter 9: Introducing Probability

ACMS Statistics for Life Sciences. Chapter 9: Introducing Probability ACMS 20340 Statistics for Life Sciences Chapter 9: Introducing Probability Why Consider Probability? We re doing statistics here. Why should we bother with probability? As we will see, probability plays

More information

ECE 340 Probabilistic Methods in Engineering M/W 3-4:15. Lecture 2: Random Experiments. Prof. Vince Calhoun

ECE 340 Probabilistic Methods in Engineering M/W 3-4:15. Lecture 2: Random Experiments. Prof. Vince Calhoun ECE 340 Probabilistic Methods in Engineering M/W 3-4:15 Lecture 2: Random Experiments Prof. Vince Calhoun Reading This class: Section 2.1-2.2 Next class: Section 2.3-2.4 Homework: Assignment 1: From the

More information

13.1 The Basics of Probability Theory

13.1 The Basics of Probability Theory 13.1 The Basics of Probability Theory An experiment is a controlled operation that yields a set of results. The possible results of an experiment are called its outcomes. The set of outcomes are the sample

More information

CS 441 Discrete Mathematics for CS Lecture 20. Probabilities. CS 441 Discrete mathematics for CS. Probabilities

CS 441 Discrete Mathematics for CS Lecture 20. Probabilities. CS 441 Discrete mathematics for CS. Probabilities CS 441 Discrete Mathematics for CS Lecture 20 Probabilities Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square CS 441 Discrete mathematics for CS Probabilities Three axioms of the probability theory:

More information

Chapter 13, Probability from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University, and is

Chapter 13, Probability from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University, and is Chapter 13, Probability from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University, and is available on the Connexions website. It is used under a

More information

Chapter Summary. 7.1 Discrete Probability 7.2 Probability Theory 7.3 Bayes Theorem 7.4 Expected value and Variance

Chapter Summary. 7.1 Discrete Probability 7.2 Probability Theory 7.3 Bayes Theorem 7.4 Expected value and Variance Chapter 7 Chapter Summary 7.1 Discrete Probability 7.2 Probability Theory 7.3 Bayes Theorem 7.4 Expected value and Variance Section 7.1 Introduction Probability theory dates back to 1526 when the Italian

More information

Key Concept. Properties. February 23, S6.4_3 Sampling Distributions and Estimators

Key Concept. Properties. February 23, S6.4_3 Sampling Distributions and Estimators MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 6 Normal Probability Distributions 6 1 Review and Preview 6 2 The Standard Normal Distribution 6 3 Applications of Normal

More information

When to use Bayes Rule. Bayes Rule for two choices. Bayes Rule for multiple choices. Will Murray s Probability, VI. Bayes Rule 1. VI.

When to use Bayes Rule. Bayes Rule for two choices. Bayes Rule for multiple choices. Will Murray s Probability, VI. Bayes Rule 1. VI. Will Murray s Probability, VI. Bayes Rule VI. Bayes Rule When to use Bayes Rule Your sample space must be a disjoint union of events: S B B 2 B n Then you have one event A that overlaps the others. Given

More information

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1 Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 4-1 Overview 4-2 Fundamentals 4-3 Addition Rule Chapter 4 Probability 4-4 Multiplication Rule:

More information

Chapter 1 Axioms of Probability. Wen-Guey Tzeng Computer Science Department National Chiao University

Chapter 1 Axioms of Probability. Wen-Guey Tzeng Computer Science Department National Chiao University Chapter 1 Axioms of Probability Wen-Guey Tzeng Computer Science Department National Chiao University What is probability? A branch of mathematics that deals with calculating the likelihood of a given event

More information

Chapter 1 Axioms of Probability. Wen-Guey Tzeng Computer Science Department National Chiao University

Chapter 1 Axioms of Probability. Wen-Guey Tzeng Computer Science Department National Chiao University Chapter 1 Axioms of Probability Wen-Guey Tzeng Computer Science Department National Chiao University Introduction Luca Paccioli(1445-1514), Studies of chances of events Niccolo Tartaglia(1499-1557) Girolamo

More information

Lecture Slides. Elementary Statistics Eleventh Edition. by Mario F. Triola. and the Triola Statistics Series 4.1-1

Lecture Slides. Elementary Statistics Eleventh Edition. by Mario F. Triola. and the Triola Statistics Series 4.1-1 Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by Mario F. Triola 4.1-1 4-1 Review and Preview Chapter 4 Probability 4-2 Basic Concepts of Probability 4-3 Addition

More information

P(A) = Definitions. Overview. P - denotes a probability. A, B, and C - denote specific events. P (A) - Chapter 3 Probability

P(A) = Definitions. Overview. P - denotes a probability. A, B, and C - denote specific events. P (A) - Chapter 3 Probability Chapter 3 Probability Slide 1 Slide 2 3-1 Overview 3-2 Fundamentals 3-3 Addition Rule 3-4 Multiplication Rule: Basics 3-5 Multiplication Rule: Complements and Conditional Probability 3-6 Probabilities

More information

Solution: Solution: Solution:

Solution: Solution: Solution: Chapter 5: Exponential and Logarithmic Functions a. The exponential growth function is y = f(t) = ab t, where a = 2000 because the initial population is 2000 squirrels The annual growth rate is 3% per

More information

Topic 4 Probability. Terminology. Sample Space and Event

Topic 4 Probability. Terminology. Sample Space and Event Topic 4 Probability The Sample Space is the collection of all possible outcomes Experimental outcome An outcome from a sample space with one characteristic Event May involve two or more outcomes simultaneously

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL Y G Bk b $ 6 G Y 7 B B B B - BB -BY- B Bk B Qk Q k Q k B g (- -- k Bk G Bk k q B - - - - - $ gb q g bg g g b b q )( 6 B 7 B B k 6 g k 6 B b Y k b - b b k b b b g ( \ bg Y b b k b /% /% b k b b g Y Y k

More information

Chap 4 Probability p227 The probability of any outcome in a random phenomenon is the proportion of times the outcome would occur in a long series of

Chap 4 Probability p227 The probability of any outcome in a random phenomenon is the proportion of times the outcome would occur in a long series of Chap 4 Probability p227 The probability of any outcome in a random phenomenon is the proportion of times the outcome would occur in a long series of repetitions. (p229) That is, probability is a long-term

More information

Review Basic Probability Concept

Review Basic Probability Concept Economic Risk and Decision Analysis for Oil and Gas Industry CE81.9008 School of Engineering and Technology Asian Institute of Technology January Semester Presented by Dr. Thitisak Boonpramote Department

More information

CS 361: Probability & Statistics

CS 361: Probability & Statistics September 12, 2017 CS 361: Probability & Statistics Correlation Summary of what we proved We wanted a way of predicting y from x We chose to think in standard coordinates and to use a linear predictor

More information

Unit 7 Probability M2 13.1,2,4, 5,6

Unit 7 Probability M2 13.1,2,4, 5,6 + Unit 7 Probability M2 13.1,2,4, 5,6 7.1 Probability n Obj.: I will be able to determine the experimental and theoretical probabilities of an event, or its complement, occurring. n Vocabulary o Outcome

More information

7.1 What is it and why should we care?

7.1 What is it and why should we care? Chapter 7 Probability In this section, we go over some simple concepts from probability theory. We integrate these with ideas from formal language theory in the next chapter. 7.1 What is it and why should

More information

STA Module 4 Probability Concepts. Rev.F08 1

STA Module 4 Probability Concepts. Rev.F08 1 STA 2023 Module 4 Probability Concepts Rev.F08 1 Learning Objectives Upon completing this module, you should be able to: 1. Compute probabilities for experiments having equally likely outcomes. 2. Interpret

More information

Chapter 14. From Randomness to Probability. Copyright 2012, 2008, 2005 Pearson Education, Inc.

Chapter 14. From Randomness to Probability. Copyright 2012, 2008, 2005 Pearson Education, Inc. Chapter 14 From Randomness to Probability Copyright 2012, 2008, 2005 Pearson Education, Inc. Dealing with Random Phenomena A random phenomenon is a situation in which we know what outcomes could happen,

More information

Random processes. Lecture 17: Probability, Part 1. Probability. Law of large numbers

Random processes. Lecture 17: Probability, Part 1. Probability. Law of large numbers Random processes Lecture 17: Probability, Part 1 Statistics 10 Colin Rundel March 26, 2012 A random process is a situation in which we know what outcomes could happen, but we don t know which particular

More information

Probability deals with modeling of random phenomena (phenomena or experiments whose outcomes may vary)

Probability deals with modeling of random phenomena (phenomena or experiments whose outcomes may vary) Chapter 14 From Randomness to Probability How to measure a likelihood of an event? How likely is it to answer correctly one out of two true-false questions on a quiz? Is it more, less, or equally likely

More information

I - Probability. What is Probability? the chance of an event occuring. 1classical probability. 2empirical probability. 3subjective probability

I - Probability. What is Probability? the chance of an event occuring. 1classical probability. 2empirical probability. 3subjective probability What is Probability? the chance of an event occuring eg 1classical probability 2empirical probability 3subjective probability Section 2 - Probability (1) Probability - Terminology random (probability)

More information

Chapter 15. Probability Rules! Copyright 2012, 2008, 2005 Pearson Education, Inc.

Chapter 15. Probability Rules! Copyright 2012, 2008, 2005 Pearson Education, Inc. Chapter 15 Probability Rules! Copyright 2012, 2008, 2005 Pearson Education, Inc. The General Addition Rule When two events A and B are disjoint, we can use the addition rule for disjoint events from Chapter

More information

Solution Of Class 10 th CBSE SA-II Board (Set-1)Mathematics

Solution Of Class 10 th CBSE SA-II Board (Set-1)Mathematics L.K. Gupta (Mathematic Classes) www.poineermathematics.com. MOBILE: 98155771, 461771 Solution Of Class 10 th CBSE SA-II Board (Set-1)Mathematics 1. (k 1) k = (k + 1) (k 1) k 1 k = k + 1 k + 1 k 1 = k.

More information

The probability of an event is viewed as a numerical measure of the chance that the event will occur.

The probability of an event is viewed as a numerical measure of the chance that the event will occur. Chapter 5 This chapter introduces probability to quantify randomness. Section 5.1: How Can Probability Quantify Randomness? The probability of an event is viewed as a numerical measure of the chance that

More information

Announcements. Lecture 5: Probability. Dangling threads from last week: Mean vs. median. Dangling threads from last week: Sampling bias

Announcements. Lecture 5: Probability. Dangling threads from last week: Mean vs. median. Dangling threads from last week: Sampling bias Recap Announcements Lecture 5: Statistics 101 Mine Çetinkaya-Rundel September 13, 2011 HW1 due TA hours Thursday - Sunday 4pm - 9pm at Old Chem 211A If you added the class last week please make sure to

More information

1 Preliminaries Sample Space and Events Interpretation of Probability... 13

1 Preliminaries Sample Space and Events Interpretation of Probability... 13 Summer 2017 UAkron Dept. of Stats [3470 : 461/561] Applied Statistics Ch 2: Probability Contents 1 Preliminaries 3 1.1 Sample Space and Events...........................................................

More information

MAT Mathematics in Today's World

MAT Mathematics in Today's World MAT 1000 Mathematics in Today's World Last Time We discussed the four rules that govern probabilities: 1. Probabilities are numbers between 0 and 1 2. The probability an event does not occur is 1 minus

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 2 MATH00040 SEMESTER / Probability

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 2 MATH00040 SEMESTER / Probability ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 2 MATH00040 SEMESTER 2 2017/2018 DR. ANTHONY BROWN 5.1. Introduction to Probability. 5. Probability You are probably familiar with the elementary

More information

Statistics 251: Statistical Methods

Statistics 251: Statistical Methods Statistics 251: Statistical Methods Probability Module 3 2018 file:///volumes/users/r/renaes/documents/classes/lectures/251301/renae/markdown/master%20versions/module3.html#1 1/33 Terminology probability:

More information

Hypothesis Testing with Z and T

Hypothesis Testing with Z and T Chapter Eight Hypothesis Testing with Z and T Introduction to Hypothesis Testing P Values Critical Values Within-Participants Designs Between-Participants Designs Hypothesis Testing An alternate hypothesis

More information

Useful for Multiplication Rule: When two events, A and B, are independent, P(A and B) = P(A) P(B).

Useful for Multiplication Rule: When two events, A and B, are independent, P(A and B) = P(A) P(B). Probability Independence Last time: Two events are indpt if knowing that one did or did not happen tells you nothing about whether the other will or will not. It doesn't change the probability. Example:

More information

Chapter 3 Probability Chapter 3 Probability 3-1 Overview 3-2 Fundamentals 3-3 Addition Rule 3-4 Multiplication Rule: Basics

Chapter 3 Probability Chapter 3 Probability 3-1 Overview 3-2 Fundamentals 3-3 Addition Rule 3-4 Multiplication Rule: Basics Chapter 3 Probability 1 3-1 Overview 3-2 Fundamentals 3-3 Addition Rule Chapter 3 Probability 3-4 Multiplication Rule: Basics 2 Overview Objectives develop sound understanding of probability values used

More information

AMS7: WEEK 2. CLASS 2

AMS7: WEEK 2. CLASS 2 AMS7: WEEK 2. CLASS 2 Introduction to Probability. Probability Rules. Independence and Conditional Probability. Bayes Theorem. Risk and Odds Ratio Friday April 10, 2015 Probability: Introduction Probability:

More information

Discrete Structures for Computer Science

Discrete Structures for Computer Science Discrete Structures for Computer Science William Garrison bill@cs.pitt.edu 6311 Sennott Square Lecture #24: Probability Theory Based on materials developed by Dr. Adam Lee Not all events are equally likely

More information

Chapter 4. Probability

Chapter 4. Probability Chapter 4. Probability Chapter Problem: Are polygraph instruments effective as lie detector? Table 4-1 Results from Experiments with Polygraph Instruments Did the Subject Actually Lie? No (Did Not Lie)

More information

ISyE 6739 Test 1 Solutions Summer 2017

ISyE 6739 Test 1 Solutions Summer 2017 1 NAME ISyE 6739 Test 1 Solutions Summer 217 This is a take-home test. But please limit the total work time to less than about 3 hours. 1. Suppose that and P(It rains today It s cold outside).9 P(It rains

More information

Probability- describes the pattern of chance outcomes

Probability- describes the pattern of chance outcomes Chapter 6 Probability the study of randomness Probability- describes the pattern of chance outcomes Chance behavior is unpredictable in the short run, but has a regular and predictable pattern in the long

More information

STP 226 ELEMENTARY STATISTICS

STP 226 ELEMENTARY STATISTICS STP 226 ELEMENTARY STATISTICS CHAPTER 5 Probability Theory - science of uncertainty 5.1 Probability Basics Equal-Likelihood Model Suppose an experiment has N possible outcomes, all equally likely. Then

More information

CSS 211: Statistical Methods I

CSS 211: Statistical Methods I CSS 211: Statistical Methods I Zhaoxian Zhou School of Computing University of Southern Mississippi Zhaoxian.Zhou@usm.edu January 11, 2018 Zhaoxian Zhou (USM) CSS 211 January 11, 2018 1 / 227 Overview

More information

UNIT 5 ~ Probability: What Are the Chances? 1

UNIT 5 ~ Probability: What Are the Chances? 1 UNIT 5 ~ Probability: What Are the Chances? 1 6.1: Simulation Simulation: The of chance behavior, based on a that accurately reflects the phenomenon under consideration. (ex 1) Suppose we are interested

More information

Chapter 7 Wednesday, May 26th

Chapter 7 Wednesday, May 26th Chapter 7 Wednesday, May 26 th Random event A random event is an event that the outcome is unpredictable. Example: There are 45 students in this class. What is the probability that if I select one student,

More information

Sections OPIM 303, Managerial Statistics H Guy Williams, 2006

Sections OPIM 303, Managerial Statistics H Guy Williams, 2006 Sections 3.1 3.5 The three major properties which describe a set of data: Central Tendency Variation Shape OPIM 303 Lecture 3 Page 1 Most sets of data show a distinct tendency to group or cluster around

More information

STAT 201 Chapter 5. Probability

STAT 201 Chapter 5. Probability STAT 201 Chapter 5 Probability 1 2 Introduction to Probability Probability The way we quantify uncertainty. Subjective Probability A probability derived from an individual's personal judgment about whether

More information

MODULE NO.22: Probability

MODULE NO.22: Probability SUBJECT Paper No. and Title Module No. and Title Module Tag PAPER No.13: DNA Forensics MODULE No.22: Probability FSC_P13_M22 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Laws of Probability

More information

Presentation on Theo e ry r y o f P r P o r bab a il i i l t i y

Presentation on Theo e ry r y o f P r P o r bab a il i i l t i y Presentation on Theory of Probability Meaning of Probability: Chance of occurrence of any event In practical life we come across situation where the result are uncertain Theory of probability was originated

More information

The Practice of Statistics Third Edition

The Practice of Statistics Third Edition The Practice of Statistics Third Edition Chapter 6: Probability and Simulation: The Study of Randomness Copyright 2008 by W. H. Freeman & Company Probability Rules True probability can only be found by

More information

Lecture Lecture 5

Lecture Lecture 5 Lecture 4 --- Lecture 5 A. Basic Concepts (4.1-4.2) 1. Experiment: A process of observing a phenomenon that has variation in its outcome. Examples: (E1). Rolling a die, (E2). Drawing a card form a shuffled

More information

Math C067 Independence and Repeated Trials.

Math C067 Independence and Repeated Trials. Math C067 Independence and Repeated Trials. Richard Beigel February 7, 006 Socks. Bill s sock drawer contains 10 red socks, 0 green socks, and 30 blue socks. If Bill removes two socks from his drawer at

More information

Math 140 Introductory Statistics

Math 140 Introductory Statistics Math 140 Introductory Statistics 5.1 Models of random behavior Outcome: Result or answer obtained from a chance process. Event: Collection of outcomes. Probability: Number between 0 and 1 (0% and 100%).

More information

Chapter 6. Probability

Chapter 6. Probability Chapter 6 robability Suppose two six-sided die is rolled and they both land on sixes. Or a coin is flipped and it lands on heads. Or record the color of the next 20 cars to pass an intersection. These

More information

Chapter 6: Probability The Study of Randomness

Chapter 6: Probability The Study of Randomness Chapter 6: Probability The Study of Randomness 6.1 The Idea of Probability 6.2 Probability Models 6.3 General Probability Rules 1 Simple Question: If tossing a coin, what is the probability of the coin

More information

tossing a coin selecting a card from a deck measuring the commuting time on a particular morning

tossing a coin selecting a card from a deck measuring the commuting time on a particular morning 2 Probability Experiment An experiment or random variable is any activity whose outcome is unknown or random upfront: tossing a coin selecting a card from a deck measuring the commuting time on a particular

More information

Semester 2 Final Exam Review Guide for AMS I

Semester 2 Final Exam Review Guide for AMS I Name: Semester 2 Final Exam Review Guide for AMS I Unit 4: Exponential Properties & Functions Lesson 1 Exponent Properties & Simplifying Radicals Products of Powers: when two powers with the same base

More information

Elements of probability theory

Elements of probability theory The role of probability theory in statistics We collect data so as to provide evidentiary support for answers we give to our many questions about the world (and in our particular case, about the business

More information

Fundamentals of Probability CE 311S

Fundamentals of Probability CE 311S Fundamentals of Probability CE 311S OUTLINE Review Elementary set theory Probability fundamentals: outcomes, sample spaces, events Outline ELEMENTARY SET THEORY Basic probability concepts can be cast in

More information

Theoretical Probability (pp. 1 of 6)

Theoretical Probability (pp. 1 of 6) Theoretical Probability (pp. 1 of 6) WHAT ARE THE CHANCES? Objectives: Investigate characteristics and laws of probability. Materials: Coin, six-sided die, four-color spinner divided into equal sections

More information

4 Lecture 4 Notes: Introduction to Probability. Probability Rules. Independence and Conditional Probability. Bayes Theorem. Risk and Odds Ratio

4 Lecture 4 Notes: Introduction to Probability. Probability Rules. Independence and Conditional Probability. Bayes Theorem. Risk and Odds Ratio 4 Lecture 4 Notes: Introduction to Probability. Probability Rules. Independence and Conditional Probability. Bayes Theorem. Risk and Odds Ratio Wrong is right. Thelonious Monk 4.1 Three Definitions of

More information

Discrete Math Midterm 2014

Discrete Math Midterm 2014 Discrete Math Midterm 01 Name Student # Note: The numbers used in the question varied from exam to exam, so your exam might have a different numerical answer than the one given below. 1. (3 pts Sixteen

More information

Toss 1. Fig.1. 2 Heads 2 Tails Heads/Tails (H, H) (T, T) (H, T) Fig.2

Toss 1. Fig.1. 2 Heads 2 Tails Heads/Tails (H, H) (T, T) (H, T) Fig.2 1 Basic Probabilities The probabilities that we ll be learning about build from the set theory that we learned last class, only this time, the sets are specifically sets of events. What are events? Roughly,

More information

Business Statistics. Lecture 3: Random Variables and the Normal Distribution

Business Statistics. Lecture 3: Random Variables and the Normal Distribution Business Statistics Lecture 3: Random Variables and the Normal Distribution 1 Goals for this Lecture A little bit of probability Random variables The normal distribution 2 Probability vs. Statistics Probability:

More information

1 Introduction. Introduction to Scientific Research and Biostatistics Unversity of Zadar Winter,

1 Introduction. Introduction to Scientific Research and Biostatistics Unversity of Zadar Winter, 1 Introduction Introduction to Scientific Research and Biostatistics Unversity of Zadar Winter, 2012-2013 1 Contact Information Instructor: Stewart T. Schultz email: sschultz@unizd.hr phone: 200-653 Teaching

More information

Conditional Probability

Conditional Probability Chapter 3 Conditional Probability 3.1 Definition of conditional probability In spite of our misgivings, let us persist with the frequency definition of probability. Consider an experiment conducted N times

More information

Notes 1 Autumn Sample space, events. S is the number of elements in the set S.)

Notes 1 Autumn Sample space, events. S is the number of elements in the set S.) MAS 108 Probability I Notes 1 Autumn 2005 Sample space, events The general setting is: We perform an experiment which can have a number of different outcomes. The sample space is the set of all possible

More information

UNIT Explain about the partition of a sampling space theorem?

UNIT Explain about the partition of a sampling space theorem? UNIT -1 1. Explain about the partition of a sampling space theorem? PARTITIONS OF A SAMPLE SPACE The events B1, B2. B K represent a partition of the sample space 'S" if (a) So, when the experiment E is

More information

9/6/2016. Section 5.1 Probability. Equally Likely Model. The Division Rule: P(A)=#(A)/#(S) Some Popular Randomizers.

9/6/2016. Section 5.1 Probability. Equally Likely Model. The Division Rule: P(A)=#(A)/#(S) Some Popular Randomizers. Chapter 5: Probability and Discrete Probability Distribution Learn. Probability Binomial Distribution Poisson Distribution Some Popular Randomizers Rolling dice Spinning a wheel Flipping a coin Drawing

More information

Chapter 2. Conditional Probability and Independence. 2.1 Conditional Probability

Chapter 2. Conditional Probability and Independence. 2.1 Conditional Probability Chapter 2 Conditional Probability and Independence 2.1 Conditional Probability Probability assigns a likelihood to results of experiments that have not yet been conducted. Suppose that the experiment has

More information

Notes Week 2 Chapter 3 Probability WEEK 2 page 1

Notes Week 2 Chapter 3 Probability WEEK 2 page 1 Notes Week 2 Chapter 3 Probability WEEK 2 page 1 The sample space of an experiment, sometimes denoted S or in probability theory, is the set that consists of all possible elementary outcomes of that experiment

More information

Conditional Probability (cont...) 10/06/2005

Conditional Probability (cont...) 10/06/2005 Conditional Probability (cont...) 10/06/2005 Independent Events Two events E and F are independent if both E and F have positive probability and if P (E F ) = P (E), and P (F E) = P (F ). 1 Theorem. If

More information

Announcements. Topics: To Do:

Announcements. Topics: To Do: Announcements Topics: In the Probability and Statistics module: - Sections 1 + 2: Introduction to Stochastic Models - Section 3: Basics of Probability Theory - Section 4: Conditional Probability; Law of

More information

exp(v j=) k exp(v k =)

exp(v j=) k exp(v k =) Economics 250c Dynamic Discrete Choice, continued This lecture will continue the presentation of dynamic discrete choice problems with extreme value errors. We will discuss: 1. Ebenstein s model of sex

More information

Chapter 15. General Probability Rules /42

Chapter 15. General Probability Rules /42 Chapter 15 General Probability Rules 1 Homework p361 2, 3, 4, 10, 11, 12, 30, 36, 38, 40, 42 2 3 Objective Students use the general addition and multiplication rules to find probabilities of random events.

More information

CHAPTER I DEFINITION OF STATISTICS. Descriptive Statistics consists of the collection, organization, summation and presentation of data.

CHAPTER I DEFINITION OF STATISTICS. Descriptive Statistics consists of the collection, organization, summation and presentation of data. CHAPTER I DEFINITION OF STATISTICS Statistics is the science of conducting studies to collect, organize, summarize, analyze and draw conclusions from data. 1.1 Descriptive and Inferential Statistics A

More information

Lecture 6. Probability events. Definition 1. The sample space, S, of a. probability experiment is the collection of all

Lecture 6. Probability events. Definition 1. The sample space, S, of a. probability experiment is the collection of all Lecture 6 1 Lecture 6 Probability events Definition 1. The sample space, S, of a probability experiment is the collection of all possible outcomes of an experiment. One such outcome is called a simple

More information

13.4 Probabilities of Compound Events.notebook May 29, I can calculate probabilities of compound events.

13.4 Probabilities of Compound Events.notebook May 29, I can calculate probabilities of compound events. 13.4 Date: LT: I can calculate probabilities of compound events. nbp.13 Compound event = Combining two or more events, using the word and or the word or. or = Mutually exclusive events = Overlapping events

More information

1 Review of Probability

1 Review of Probability Review of Probability Denition : Probability Space The probability space, also called the sample space, is a set which contains ALL the possible outcomes We usually label this with a Ω or an S (Ω is the

More information

Introduction to probability

Introduction to probability Introduction to probability 4.1 The Basics of Probability Probability The chance that a particular event will occur The probability value will be in the range 0 to 1 Experiment A process that produces

More information

Bibliography. The Drunkard s Walk: How Randomness Rules Our Lives by Leonard Mlodinow. Duelling Idiots and Other Probability Puzzlers by Paul J.

Bibliography. The Drunkard s Walk: How Randomness Rules Our Lives by Leonard Mlodinow. Duelling Idiots and Other Probability Puzzlers by Paul J. Bibliography The Drunkard s Walk: How Randomness Rules Our Lives by Leonard Mlodinow Duelling Idiots and Other Probability Puzzlers by Paul J. Nahin The History of mathematics by David M. Burton Is God

More information

Conformations of Reaction Products: Polymers and Organic Phenyl/Vinyl Linkages

Conformations of Reaction Products: Polymers and Organic Phenyl/Vinyl Linkages Conformations of Reaction Products: Polymers and Organic Phenyl/Vinyl Linkages Erin Shammel Baker, Jennifer Gidden, Glenn Bartholomew, Guillermo Bazan, and Michael T. Bowers (UCSB) James Scrivens and Anthony

More information

Sets. A set is a collection of objects without repeats. The size or cardinality of a set S is denoted S and is the number of elements in the set.

Sets. A set is a collection of objects without repeats. The size or cardinality of a set S is denoted S and is the number of elements in the set. Sets A set is a collection of objects without repeats. The size or cardinality of a set S is denoted S and is the number of elements in the set. If A and B are sets, then the set of ordered pairs each

More information

Lecture 1. ABC of Probability

Lecture 1. ABC of Probability Math 408 - Mathematical Statistics Lecture 1. ABC of Probability January 16, 2013 Konstantin Zuev (USC) Math 408, Lecture 1 January 16, 2013 1 / 9 Agenda Sample Spaces Realizations, Events Axioms of Probability

More information

Math 243 Section 3.1 Introduction to Probability Lab

Math 243 Section 3.1 Introduction to Probability Lab Math 243 Section 3.1 Introduction to Probability Lab Overview Why Study Probability? Outcomes, Events, Sample Space, Trials Probabilities and Complements (not) Theoretical vs. Empirical Probability The

More information

Baye s theorem. Baye s Theorem Let E and F be two possible events of an experiment, then P (F ) P (E F ) P (F ) P (E F ) + P (F ) P (E F ).

Baye s theorem. Baye s Theorem Let E and F be two possible events of an experiment, then P (F ) P (E F ) P (F ) P (E F ) + P (F ) P (E F ). Baye s Theorem Assume that you know the probability that a child will be born with blond hair given that both his parents have blond hair. You might also be interested in knowing the probability that a

More information

3.2 Probability Rules

3.2 Probability Rules 3.2 Probability Rules The idea of probability rests on the fact that chance behavior is predictable in the long run. In the last section, we used simulation to imitate chance behavior. Do we always need

More information

4. Probability of an event A for equally likely outcomes:

4. Probability of an event A for equally likely outcomes: University of California, Los Angeles Department of Statistics Statistics 110A Instructor: Nicolas Christou Probability Probability: A measure of the chance that something will occur. 1. Random experiment:

More information

Biostatistics: Correlations

Biostatistics: Correlations Biostatistics: s One of the most common errors we find in the press is the confusion between correlation and causation in scientific and health-related studies. In theory, these are easy to distinguish

More information

Lecture 1. Chapter 1. (Part I) Material Covered in This Lecture: Chapter 1, Chapter 2 ( ). 1. What is Statistics?

Lecture 1. Chapter 1. (Part I) Material Covered in This Lecture: Chapter 1, Chapter 2 ( ). 1. What is Statistics? Lecture 1 (Part I) Material Covered in This Lecture: Chapter 1, Chapter 2 (2.1 --- 2.6). Chapter 1 1. What is Statistics? 2. Two definitions. (1). Population (2). Sample 3. The objective of statistics.

More information

Probabilistic models

Probabilistic models Probabilistic models Kolmogorov (Andrei Nikolaevich, 1903 1987) put forward an axiomatic system for probability theory. Foundations of the Calculus of Probabilities, published in 1933, immediately became

More information

1 Introduction. Statistics and Bioinformatics Unversity of Zadar Winter,

1 Introduction. Statistics and Bioinformatics Unversity of Zadar Winter, 1 Introduction Statistics and Bioinformatics Unversity of Zadar Winter, 2011-2012 1 Contact Information Instructor: Stewart T. Schultz email: sschultz@unizd.hr phone: 200-653 Teaching Assistants: Melita

More information

Ch 14 Randomness and Probability

Ch 14 Randomness and Probability Ch 14 Randomness and Probability We ll begin a new part: randomness and probability. This part contain 4 chapters: 14-17. Why we need to learn this part? Probability is not a portion of statistics. Instead

More information

Probability: Part 1 Naima Hammoud

Probability: Part 1 Naima Hammoud Probability: Part 1 Naima ammoud Feb 7, 2017 Motivation ossing a coin Rolling a die Outcomes: eads or ails Outcomes: 1, 2, 3, 4, 5 or 6 Defining Probability If I toss a coin, there is a 50% chance I will

More information