errors every 1 hour unless he falls asleep, in which case he just reports the total errors

Size: px
Start display at page:

Download "errors every 1 hour unless he falls asleep, in which case he just reports the total errors"

Transcription

1 I. First Definition of a Poisson Process A. Definition: Poisson process A Poisson Process {X(t), t 0} with intensity λ > 0 is a counting process with the following properties. INDEPENDENT INCREMENTS. For all t 0 = 0 < t < t < < t n, then X(t ) X(t 0 ), X(t ) X(t ),..., X(t n ) X(t n ) are independent random variables.. STATIONARY INCREMENTS with Poisson Distribution. For all s 0, t > 0, X(s + t) X(s) Poisson(λt). 3. X(0) = 0 B. Claim:. E [X(t)] = λt. Var [X(t)] = λt C. Verifying that a process is Poisson: verify three conditions of definition. Relatively easy. Can be verified with knowledge of process.. Difficult to verify Poisson distribution. 3. Easy. Counting begins at time t = 0. II. Example: You run a high-throughput center. Every hour, you run a control to make sure their is no excess of errors. Suppose the regular (acceptable) error rate is error per control run (so error per every hour). Your tech records the number of errors every hour unless he falls asleep, in which case he just reports the total errors accumulated when he wakes up. Suppose, your tech reports the following errors 9:00-9:30 0 9:30-0:00 3 0:00 - :00 7 What is the probability of observing such data if the true error rate is error per every hour? ( ( ) ) ( ( ) ) P (data) = P X = 0 P X = 3 P (X() = 7) [ ( e 0.5 = e 0.5 3! = e 3 [ 4 7! 3! ) 3 ] [e ] 7 7! ]

2 III. Second Definition of Poisson Process A. Definition: o(h) If f(h) is o(h), then lim h 0 f(h) h = 0. Little-o notation means that the function f(h) approaches 0 faster than h itself approaches 0. Examples. f(x) = x is o(h).. f(x) = x is not o(h). 3. If f(x) and g(x) are o(h), then f(x) + g(x) is o(h). 4. If f(x) is o(h), then cf(x) is o(h). 5. Therefore, all linear combinations of little-o functions are little-o. B. Definition : Poisson Process with rate λ.. The process has independent and stationary increments.. P [X(h) = ] = λh + o(h) 3. P [X(h) ] = o(h) 4. X(0) = 0 C. Theorem: The two definitions given are equivalent. (Proof not given.) D. Verification that a process is Poisson is now a bit easier. One need not confirm that the Poisson distribution applies, rather only that in any small interval the probability of event is linearly proportional to the rate and interval length and the probability of more than one event in a small interval is negligible. IV. Nonhomogeneous Poisson Process A. A nonhomogeneous Poisson Process is one in which the rate λ(t) is not constant throughout time t. In this case, the increments ( t ) X(t) X(s) Poisson λ(u)du and P (X(t + h) X(t) = ) = λ(t)h + o(h). Increments are still independent for any non-overlapping intervals, but they are no longer stationary. s

3 B. Technique to convert nonhomogeneous to homogeneous Poisson Process Nonhomogeneous Poisson process are useful but really pose very little problem because one can convert a nonhomogeneous process to a homogeneous process. To do this, we define a new way of measuring time. In this new time scale, denoted by s, the process is homogeneous. The conversion from regular time t to modified time s is accomplished through s = Λ(t) = t 0 λ(u)du, where λ(u) is the rate of the nonhomogeneous process. Then, the new process in the new time is Y (s) = X(t) and it {Y (s), s 0} is time homogeneous with rate. V. Law of Rare Events The law of rare events provides a way to connect the Poisson process assumptions to real-life. It also provides a means of showing that definition implies the Poisson distribution. A. Law of Rare Events The law of rare events describes the situation when there are many, many opportunities for an event to happen, but the probability of the event happening at any one of those opportunities is very small (think car accident at a busy intersection). A mathematical scenario is the binomial random variable X Bin(n, p) as n and p 0. If these limits occur with Np = µ constant, then in the limit. P (X = k) Poisson(µ) B. Law of Rare Events Connection to Poisson Process The Law of Rare events is connected to the Poisson process as follows. Imagine partitioning the time interval (0, t] into subintervals of length h. The number of arrivals in each subinterval is independent (by property ). The probability of a single event in any interval is λh + o(h) λh for small h (by property ). There will either be 0 or event in each subinterval as h 0 (by property 3). Let the number of intervals n = t/h as h 0. Then np = t λh = λt is constant so h the Poisson approximation with mean λt applies. 3

4 C. Law of Rare Events with Varying Probability Consider the Binomial distribution again, but suppose that the probability of success on the ith trial is p i, then if ξ i represents the outcome of the ith trial ( for success, 0 for failure), Y = ξ + ξ + + ξ n is the number of successes in the first n trials. We have P (Y = k) = ξ + +ξ n=k It turns out (proved in the book) that P (Y = k) µk e µ k! i p ξ i i ( p i) ξ i. n p i, where µ = i= p i. So again, we conclude that the probability of k successes can be approximated by a Poisson distribution, this time with mean equal to the sum of the probabilities. The approximation becomes very good as the p i 0, showing that the right-hand side goes to 0, bounding the difference between the approximation and the true probability of k successes very tightly. For nonhomogeneous Poisson processes, the probability of an arrival in time interval (u, u + h] is approximately λ(u)h and the mean of the approximating Poisson is i= λ(0)h + λ(t )h + + λ(t n )h t 0 λ(u)du, where 0 < t < t < < t n < t is a partition of the interval (0, t] into subintervals of length h and the limit is as h 0. VI. Cox Processes A. Definition: Consider a possibly nonhomogeneous Poisson-like process {X(t), t 0} where the time-variable rate {λ(t), t 0} is itself a stochastic process. Then, the resulting process X(t) is called a Cox process. B. The Cox Process does not necessarily have stationary increments nor independent increments. Hence, it is not a Poisson Process, but is a generalization of the Poisson Process. C. Motivation: The Poisson process examples we considered before can be viewed as Cox processes. For example, the number of people who have entered a store could be viewed as a Poisson process if there are many random factors that lead to a random, nonhomogeneous rate {λ(t), t 0}. 4

5 D. Example: Consider a Poisson-like process {X(t), t 0}, where the rate θ is a random variable with pdf f(θ). Then, the conditional process X(t) = x θ = λ is a regular Poisson process with rate λ, so P (X(t) = x θ = λ) are from the Poisson distribution. The unconditional distribution is P (X(t) = x) = 0 (θt) x e θt f(θ)dθ. x! In other words, this Cox process has some stationary, but non-poisson distribution for the increments. E. Simpler Example: Consider even a simpler example where the random rate variable is discrete-state stochastic process, so f(θ) is a pmf. A real-life example of this Cox process would be the number of failures of a component when the failed components are replaced with new components drawn from a bin with n different types of components, each with different lifelengths. The nth component makes up p n proportion of the components in the bin. We will examine the properties of the wait time until the first failure given the component was randomly drawn from the bin. Let F (t) be the cdf of this failure time distribution. Then, n F (t) = p j e λjt. Now, consider the failure rate r(t) = j= j= p jλ j e λ jt j= p je λ jt. Let λ i = min(λ,..., λ n ), then multiply top and bottom by e λ it to obtain r(t) = j= p jλ j e (λ j λ i )t j= p je (λ j λ i )t Now, take the limit as t, so = p iλ i + j i p jλ j e (λ j λ i )t p i + j i p jλ j e (λ j λ i )t. lim r(t) = p iλ i = λ i. t p i 5

6 We conclude that as the component ages, the failure rate converges to that of the component type with the smallest failure rate. In other words, if a component has survived so long, then it is very likely to be a component of the longest lasting type. We have only just touched on what one could do to analyze this process, considering only the time to first failure. VII. Important random times in a Poisson Process A. Definition: waiting time/arrival time of a Poisson Process Let W i be the waiting time for the ith event. It is simply the time of the ith occurrence of the event the Poisson Process is tracking. We define W 0 = 0. B. Definition: sojourn time/interarrival time of a Poisson Process Let S i = W i+ W i be the time between two arrivals of the event. S i is called the sojourn time. 6

The exponential distribution and the Poisson process

The exponential distribution and the Poisson process The exponential distribution and the Poisson process 1-1 Exponential Distribution: Basic Facts PDF f(t) = { λe λt, t 0 0, t < 0 CDF Pr{T t) = 0 t λe λu du = 1 e λt (t 0) Mean E[T] = 1 λ Variance Var[T]

More information

3. Poisson Processes (12/09/12, see Adult and Baby Ross)

3. Poisson Processes (12/09/12, see Adult and Baby Ross) 3. Poisson Processes (12/09/12, see Adult and Baby Ross) Exponential Distribution Poisson Processes Poisson and Exponential Relationship Generalizations 1 Exponential Distribution Definition: The continuous

More information

IEOR 6711: Stochastic Models I, Fall 2003, Professor Whitt. Solutions to Final Exam: Thursday, December 18.

IEOR 6711: Stochastic Models I, Fall 2003, Professor Whitt. Solutions to Final Exam: Thursday, December 18. IEOR 6711: Stochastic Models I, Fall 23, Professor Whitt Solutions to Final Exam: Thursday, December 18. Below are six questions with several parts. Do as much as you can. Show your work. 1. Two-Pump Gas

More information

Random Variables Example:

Random Variables Example: Random Variables Example: We roll a fair die 6 times. Suppose we are interested in the number of 5 s in the 6 rolls. Let X = number of 5 s. Then X could be 0, 1, 2, 3, 4, 5, 6. X = 0 corresponds to the

More information

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes.

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. A Probability Primer A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. Are you holding all the cards?? Random Events A random event, E,

More information

Lecture 3. Discrete Random Variables

Lecture 3. Discrete Random Variables Math 408 - Mathematical Statistics Lecture 3. Discrete Random Variables January 23, 2013 Konstantin Zuev (USC) Math 408, Lecture 3 January 23, 2013 1 / 14 Agenda Random Variable: Motivation and Definition

More information

3.4. The Binomial Probability Distribution

3.4. The Binomial Probability Distribution 3.4. The Binomial Probability Distribution Objectives. Binomial experiment. Binomial random variable. Using binomial tables. Mean and variance of binomial distribution. 3.4.1. Four Conditions that determined

More information

Continuous-time Markov Chains

Continuous-time Markov Chains Continuous-time Markov Chains Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ October 23, 2017

More information

Exponential Distribution and Poisson Process

Exponential Distribution and Poisson Process Exponential Distribution and Poisson Process Stochastic Processes - Lecture Notes Fatih Cavdur to accompany Introduction to Probability Models by Sheldon M. Ross Fall 215 Outline Introduction Exponential

More information

Poisson Processes. Particles arriving over time at a particle detector. Several ways to describe most common model.

Poisson Processes. Particles arriving over time at a particle detector. Several ways to describe most common model. Poisson Processes Particles arriving over time at a particle detector. Several ways to describe most common model. Approach 1: a) numbers of particles arriving in an interval has Poisson distribution,

More information

Optional Stopping Theorem Let X be a martingale and T be a stopping time such

Optional Stopping Theorem Let X be a martingale and T be a stopping time such Plan Counting, Renewal, and Point Processes 0. Finish FDR Example 1. The Basic Renewal Process 2. The Poisson Process Revisited 3. Variants and Extensions 4. Point Processes Reading: G&S: 7.1 7.3, 7.10

More information

Lecture 4a: Continuous-Time Markov Chain Models

Lecture 4a: Continuous-Time Markov Chain Models Lecture 4a: Continuous-Time Markov Chain Models Continuous-time Markov chains are stochastic processes whose time is continuous, t [0, ), but the random variables are discrete. Prominent examples of continuous-time

More information

Binomial and Poisson Probability Distributions

Binomial and Poisson Probability Distributions Binomial and Poisson Probability Distributions Esra Akdeniz March 3, 2016 Bernoulli Random Variable Any random variable whose only possible values are 0 or 1 is called a Bernoulli random variable. What

More information

Probability Distributions Columns (a) through (d)

Probability Distributions Columns (a) through (d) Discrete Probability Distributions Columns (a) through (d) Probability Mass Distribution Description Notes Notation or Density Function --------------------(PMF or PDF)-------------------- (a) (b) (c)

More information

Poisson Processes. Stochastic Processes. Feb UC3M

Poisson Processes. Stochastic Processes. Feb UC3M Poisson Processes Stochastic Processes UC3M Feb. 2012 Exponential random variables A random variable T has exponential distribution with rate λ > 0 if its probability density function can been written

More information

Special Discrete RV s. Then X = the number of successes is a binomial RV. X ~ Bin(n,p).

Special Discrete RV s. Then X = the number of successes is a binomial RV. X ~ Bin(n,p). Sect 3.4: Binomial RV Special Discrete RV s 1. Assumptions and definition i. Experiment consists of n repeated trials ii. iii. iv. There are only two possible outcomes on each trial: success (S) or failure

More information

Random Variables. Definition: A random variable (r.v.) X on the probability space (Ω, F, P) is a mapping

Random Variables. Definition: A random variable (r.v.) X on the probability space (Ω, F, P) is a mapping Random Variables Example: We roll a fair die 6 times. Suppose we are interested in the number of 5 s in the 6 rolls. Let X = number of 5 s. Then X could be 0, 1, 2, 3, 4, 5, 6. X = 0 corresponds to the

More information

Northwestern University Department of Electrical Engineering and Computer Science

Northwestern University Department of Electrical Engineering and Computer Science Northwestern University Department of Electrical Engineering and Computer Science EECS 454: Modeling and Analysis of Communication Networks Spring 2008 Probability Review As discussed in Lecture 1, probability

More information

PoissonprocessandderivationofBellmanequations

PoissonprocessandderivationofBellmanequations APPENDIX B PoissonprocessandderivationofBellmanequations 1 Poisson process Let us first define the exponential distribution Definition B1 A continuous random variable X is said to have an exponential distribution

More information

Figure 10.1: Recording when the event E occurs

Figure 10.1: Recording when the event E occurs 10 Poisson Processes Let T R be an interval. A family of random variables {X(t) ; t T} is called a continuous time stochastic process. We often consider T = [0, 1] and T = [0, ). As X(t) is a random variable

More information

Topic 3: The Expectation of a Random Variable

Topic 3: The Expectation of a Random Variable Topic 3: The Expectation of a Random Variable Course 003, 2016 Page 0 Expectation of a discrete random variable Definition: The expected value of a discrete random variable exists, and is defined by EX

More information

3 Continuous Random Variables

3 Continuous Random Variables Jinguo Lian Math437 Notes January 15, 016 3 Continuous Random Variables Remember that discrete random variables can take only a countable number of possible values. On the other hand, a continuous random

More information

Random variables. DS GA 1002 Probability and Statistics for Data Science.

Random variables. DS GA 1002 Probability and Statistics for Data Science. Random variables DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Motivation Random variables model numerical quantities

More information

Discrete Random Variables

Discrete Random Variables CPSC 53 Systems Modeling and Simulation Discrete Random Variables Dr. Anirban Mahanti Department of Computer Science University of Calgary mahanti@cpsc.ucalgary.ca Random Variables A random variable is

More information

ST 371 (V): Families of Discrete Distributions

ST 371 (V): Families of Discrete Distributions ST 371 (V): Families of Discrete Distributions Certain experiments and associated random variables can be grouped into families, where all random variables in the family share a certain structure and a

More information

Arrivals and waiting times

Arrivals and waiting times Chapter 20 Arrivals and waiting times The arrival times of events in a Poisson process will be continuous random variables. In particular, the time between two successive events, say event n 1 and event

More information

CAS Exam MAS-1. Howard Mahler. Stochastic Models

CAS Exam MAS-1. Howard Mahler. Stochastic Models CAS Exam MAS-1 Howard Mahler Stochastic Models 2019 Stochastic Models, HCM 12/31/18, Page 1 The slides are in the same order as the sections of my study guide. Section # Section Name 1 Introduction 2 Exponential

More information

Stationary independent increments. 1. Random changes of the form X t+h X t fixed h > 0 are called increments of the process.

Stationary independent increments. 1. Random changes of the form X t+h X t fixed h > 0 are called increments of the process. Stationary independent increments 1. Random changes of the form X t+h X t fixed h > 0 are called increments of the process. 2. If each set of increments, corresponding to non-overlapping collection of

More information

3 Modeling Process Quality

3 Modeling Process Quality 3 Modeling Process Quality 3.1 Introduction Section 3.1 contains basic numerical and graphical methods. familiar with these methods. It is assumed the student is Goal: Review several discrete and continuous

More information

Modelling the risk process

Modelling the risk process Modelling the risk process Krzysztof Burnecki Hugo Steinhaus Center Wroc law University of Technology www.im.pwr.wroc.pl/ hugo Modelling the risk process 1 Risk process If (Ω, F, P) is a probability space

More information

Discrete Distributions

Discrete Distributions Chapter 2 Discrete Distributions 2.1 Random Variables of the Discrete Type An outcome space S is difficult to study if the elements of S are not numbers. However, we can associate each element/outcome

More information

Topic 9 Examples of Mass Functions and Densities

Topic 9 Examples of Mass Functions and Densities Topic 9 Examples of Mass Functions and Densities Discrete Random Variables 1 / 12 Outline Bernoulli Binomial Negative Binomial Poisson Hypergeometric 2 / 12 Introduction Write f X (x θ) = P θ {X = x} for

More information

Optimization and Simulation

Optimization and Simulation Optimization and Simulation Simulating events: the Michel Bierlaire Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne

More information

STAT2201. Analysis of Engineering & Scientific Data. Unit 3

STAT2201. Analysis of Engineering & Scientific Data. Unit 3 STAT2201 Analysis of Engineering & Scientific Data Unit 3 Slava Vaisman The University of Queensland School of Mathematics and Physics What we learned in Unit 2 (1) We defined a sample space of a random

More information

Supratim Ray

Supratim Ray Supratim Ray sray@cns.iisc.ernet.in Biophysics of Action Potentials Passive Properties neuron as an electrical circuit Passive Signaling cable theory Active properties generation of action potential Techniques

More information

BINOMIAL DISTRIBUTION

BINOMIAL DISTRIBUTION BINOMIAL DISTRIBUTION The binomial distribution is a particular type of discrete pmf. It describes random variables which satisfy the following conditions: 1 You perform n identical experiments (called

More information

Binomial random variable

Binomial random variable Binomial random variable Toss a coin with prob p of Heads n times X: # Heads in n tosses X is a Binomial random variable with parameter n,p. X is Bin(n, p) An X that counts the number of successes in many

More information

Expectations. Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or

Expectations. Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or Expectations Expectations Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or µ X, is E(X ) = µ X = x D x p(x) Expectations

More information

Math/Stat 352 Lecture 8

Math/Stat 352 Lecture 8 Math/Stat 352 Lecture 8 Sections 4.3 and 4.4 Commonly Used Distributions: Poisson, hypergeometric, geometric, and negative binomial. 1 The Poisson Distribution Poisson random variable counts the number

More information

E[X n ]= dn dt n M X(t). ). What is the mgf? Solution. Found this the other day in the Kernel matching exercise: 1 M X (t) =

E[X n ]= dn dt n M X(t). ). What is the mgf? Solution. Found this the other day in the Kernel matching exercise: 1 M X (t) = Chapter 7 Generating functions Definition 7.. Let X be a random variable. The moment generating function is given by M X (t) =E[e tx ], provided that the expectation exists for t in some neighborhood of

More information

Continuous case Discrete case General case. Hazard functions. Patrick Breheny. August 27. Patrick Breheny Survival Data Analysis (BIOS 7210) 1/21

Continuous case Discrete case General case. Hazard functions. Patrick Breheny. August 27. Patrick Breheny Survival Data Analysis (BIOS 7210) 1/21 Hazard functions Patrick Breheny August 27 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/21 Introduction Continuous case Let T be a nonnegative random variable representing the time to an event

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Chapter 10. Poisson processes. Section 10.5. Nonhomogenous Poisson processes Extract from: Arcones Fall 2009 Edition, available at http://www.actexmadriver.com/ 1/14 Nonhomogenous Poisson processes Definition

More information

Guidelines for Solving Probability Problems

Guidelines for Solving Probability Problems Guidelines for Solving Probability Problems CS 1538: Introduction to Simulation 1 Steps for Problem Solving Suggested steps for approaching a problem: 1. Identify the distribution What distribution does

More information

Continuous time Markov chains

Continuous time Markov chains Continuous time Markov chains Alejandro Ribeiro Dept. of Electrical and Systems Engineering University of Pennsylvania aribeiro@seas.upenn.edu http://www.seas.upenn.edu/users/~aribeiro/ October 16, 2017

More information

Sample Spaces, Random Variables

Sample Spaces, Random Variables Sample Spaces, Random Variables Moulinath Banerjee University of Michigan August 3, 22 Probabilities In talking about probabilities, the fundamental object is Ω, the sample space. (elements) in Ω are denoted

More information

Continuous Probability Spaces

Continuous Probability Spaces Continuous Probability Spaces Ω is not countable. Outcomes can be any real number or part of an interval of R, e.g. heights, weights and lifetimes. Can not assign probabilities to each outcome and add

More information

Part I Stochastic variables and Markov chains

Part I Stochastic variables and Markov chains Part I Stochastic variables and Markov chains Random variables describe the behaviour of a phenomenon independent of any specific sample space Distribution function (cdf, cumulative distribution function)

More information

Random Variable And Probability Distribution. Is defined as a real valued function defined on the sample space S. We denote it as X, Y, Z,

Random Variable And Probability Distribution. Is defined as a real valued function defined on the sample space S. We denote it as X, Y, Z, Random Variable And Probability Distribution Introduction Random Variable ( r.v. ) Is defined as a real valued function defined on the sample space S. We denote it as X, Y, Z, T, and denote the assumed

More information

EE126: Probability and Random Processes

EE126: Probability and Random Processes EE126: Probability and Random Processes Lecture 18: Poisson Process Abhay Parekh UC Berkeley March 17, 2011 1 1 Review 2 Poisson Process 2 Bernoulli Process An arrival process comprised of a sequence of

More information

Notes on Continuous Random Variables

Notes on Continuous Random Variables Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

More information

ECE353: Probability and Random Processes. Lecture 18 - Stochastic Processes

ECE353: Probability and Random Processes. Lecture 18 - Stochastic Processes ECE353: Probability and Random Processes Lecture 18 - Stochastic Processes Xiao Fu School of Electrical Engineering and Computer Science Oregon State University E-mail: xiao.fu@oregonstate.edu From RV

More information

EDRP lecture 7. Poisson process. Pawe J. Szab owski

EDRP lecture 7. Poisson process. Pawe J. Szab owski EDRP lecture 7. Poisson process. Pawe J. Szab owski 2007 Counting process Random process fn t ; t 0g is called a counting process, if N t is equal total number of events that have happened up to moment

More information

S n = x + X 1 + X X n.

S n = x + X 1 + X X n. 0 Lecture 0 0. Gambler Ruin Problem Let X be a payoff if a coin toss game such that P(X = ) = P(X = ) = /2. Suppose you start with x dollars and play the game n times. Let X,X 2,...,X n be payoffs in each

More information

Lecture 20. Poisson Processes. Text: A Course in Probability by Weiss STAT 225 Introduction to Probability Models March 26, 2014

Lecture 20. Poisson Processes. Text: A Course in Probability by Weiss STAT 225 Introduction to Probability Models March 26, 2014 Lecture 20 Text: A Course in Probability by Weiss 12.1 STAT 225 Introduction to Probability Models March 26, 2014 Whitney Huang Purdue University 20.1 Agenda 1 2 20.2 For a specified event that occurs

More information

Relationship between probability set function and random variable - 2 -

Relationship between probability set function and random variable - 2 - 2.0 Random Variables A rat is selected at random from a cage and its sex is determined. The set of possible outcomes is female and male. Thus outcome space is S = {female, male} = {F, M}. If we let X be

More information

Things to remember when learning probability distributions:

Things to remember when learning probability distributions: SPECIAL DISTRIBUTIONS Some distributions are special because they are useful They include: Poisson, exponential, Normal (Gaussian), Gamma, geometric, negative binomial, Binomial and hypergeometric distributions

More information

n px p x (1 p) n x. p x n(n 1)... (n x + 1) x!

n px p x (1 p) n x. p x n(n 1)... (n x + 1) x! Lectures 3-4 jacques@ucsd.edu 7. Classical discrete distributions D. The Poisson Distribution. If a coin with heads probability p is flipped independently n times, then the number of heads is Bin(n, p)

More information

37.3. The Poisson Distribution. Introduction. Prerequisites. Learning Outcomes

37.3. The Poisson Distribution. Introduction. Prerequisites. Learning Outcomes The Poisson Distribution 37.3 Introduction In this Section we introduce a probability model which can be used when the outcome of an experiment is a random variable taking on positive integer values and

More information

Summer School in Statistics for Astronomers & Physicists June 5-10, 2005

Summer School in Statistics for Astronomers & Physicists June 5-10, 2005 Summer School in Statistics for Astronomers & Physicists June 5-10, 2005 Session on Statistical Inference for Astronomers Poisson Processes and Gaussian Processes Donald Richards Department of Statistics

More information

Brief Review of Probability

Brief Review of Probability Maura Department of Economics and Finance Università Tor Vergata Outline 1 Distribution Functions Quantiles and Modes of a Distribution 2 Example 3 Example 4 Distributions Outline Distribution Functions

More information

STAT331 Lebesgue-Stieltjes Integrals, Martingales, Counting Processes

STAT331 Lebesgue-Stieltjes Integrals, Martingales, Counting Processes STAT331 Lebesgue-Stieltjes Integrals, Martingales, Counting Processes This section introduces Lebesgue-Stieltjes integrals, and defines two important stochastic processes: a martingale process and a counting

More information

EE/CpE 345. Modeling and Simulation. Fall Class 5 September 30, 2002

EE/CpE 345. Modeling and Simulation. Fall Class 5 September 30, 2002 EE/CpE 345 Modeling and Simulation Class 5 September 30, 2002 Statistical Models in Simulation Real World phenomena of interest Sample phenomena select distribution Probabilistic, not deterministic Model

More information

Pump failure data. Pump Failures Time

Pump failure data. Pump Failures Time Outline 1. Poisson distribution 2. Tests of hypothesis for a single Poisson mean 3. Comparing multiple Poisson means 4. Likelihood equivalence with exponential model Pump failure data Pump 1 2 3 4 5 Failures

More information

EE126: Probability and Random Processes

EE126: Probability and Random Processes EE126: Probability and Random Processes Lecture 19: Poisson Process Abhay Parekh UC Berkeley March 31, 2011 1 1 Logistics 2 Review 3 Poisson Processes 2 Logistics 3 Poisson Process A continuous version

More information

Lecture 2: Discrete Probability Distributions

Lecture 2: Discrete Probability Distributions Lecture 2: Discrete Probability Distributions IB Paper 7: Probability and Statistics Carl Edward Rasmussen Department of Engineering, University of Cambridge February 1st, 2011 Rasmussen (CUED) Lecture

More information

CDA5530: Performance Models of Computers and Networks. Chapter 3: Review of Practical

CDA5530: Performance Models of Computers and Networks. Chapter 3: Review of Practical CDA5530: Performance Models of Computers and Networks Chapter 3: Review of Practical Stochastic Processes Definition Stochastic ti process X = {X(t), t T} is a collection of random variables (rvs); one

More information

Continuous-Time Markov Chain

Continuous-Time Markov Chain Continuous-Time Markov Chain Consider the process {X(t),t 0} with state space {0, 1, 2,...}. The process {X(t),t 0} is a continuous-time Markov chain if for all s, t 0 and nonnegative integers i, j, x(u),

More information

Chapter 10. Chapter 10. Multinomial Experiments and. Multinomial Experiments and Contingency Tables. Contingency Tables.

Chapter 10. Chapter 10. Multinomial Experiments and. Multinomial Experiments and Contingency Tables. Contingency Tables. Chapter 10 Multinomial Experiments and Contingency Tables 1 Chapter 10 Multinomial Experiments and Contingency Tables 10-1 1 Overview 10-2 2 Multinomial Experiments: of-fitfit 10-3 3 Contingency Tables:

More information

Chapter 8: An Introduction to Probability and Statistics

Chapter 8: An Introduction to Probability and Statistics Course S3, 200 07 Chapter 8: An Introduction to Probability and Statistics This material is covered in the book: Erwin Kreyszig, Advanced Engineering Mathematics (9th edition) Chapter 24 (not including

More information

Chapter 3, 4 Random Variables ENCS Probability and Stochastic Processes. Concordia University

Chapter 3, 4 Random Variables ENCS Probability and Stochastic Processes. Concordia University Chapter 3, 4 Random Variables ENCS6161 - Probability and Stochastic Processes Concordia University ENCS6161 p.1/47 The Notion of a Random Variable A random variable X is a function that assigns a real

More information

POISSON PROCESSES 1. THE LAW OF SMALL NUMBERS

POISSON PROCESSES 1. THE LAW OF SMALL NUMBERS POISSON PROCESSES 1. THE LAW OF SMALL NUMBERS 1.1. The Rutherford-Chadwick-Ellis Experiment. About 90 years ago Ernest Rutherford and his collaborators at the Cavendish Laboratory in Cambridge conducted

More information

Topic 3 - Discrete distributions

Topic 3 - Discrete distributions Topic 3 - Discrete distributions Basics of discrete distributions Mean and variance of a discrete distribution Binomial distribution Poisson distribution and process 1 A random variable is a function which

More information

11-2 Multinomial Experiment

11-2 Multinomial Experiment Chapter 11 Multinomial Experiments and Contingency Tables 1 Chapter 11 Multinomial Experiments and Contingency Tables 11-11 Overview 11-2 Multinomial Experiments: Goodness-of-fitfit 11-3 Contingency Tables:

More information

Chapter 1 Statistical Reasoning Why statistics? Section 1.1 Basics of Probability Theory

Chapter 1 Statistical Reasoning Why statistics? Section 1.1 Basics of Probability Theory Chapter 1 Statistical Reasoning Why statistics? Uncertainty of nature (weather, earth movement, etc. ) Uncertainty in observation/sampling/measurement Variability of human operation/error imperfection

More information

Lecture 1: Brief Review on Stochastic Processes

Lecture 1: Brief Review on Stochastic Processes Lecture 1: Brief Review on Stochastic Processes A stochastic process is a collection of random variables {X t (s) : t T, s S}, where T is some index set and S is the common sample space of the random variables.

More information

1 Delayed Renewal Processes: Exploiting Laplace Transforms

1 Delayed Renewal Processes: Exploiting Laplace Transforms IEOR 6711: Stochastic Models I Professor Whitt, Tuesday, October 22, 213 Renewal Theory: Proof of Blackwell s theorem 1 Delayed Renewal Processes: Exploiting Laplace Transforms The proof of Blackwell s

More information

EXAM IN COURSE TMA4265 STOCHASTIC PROCESSES Wednesday 7. August, 2013 Time: 9:00 13:00

EXAM IN COURSE TMA4265 STOCHASTIC PROCESSES Wednesday 7. August, 2013 Time: 9:00 13:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Page 1 of 7 English Contact: Håkon Tjelmeland 48 22 18 96 EXAM IN COURSE TMA4265 STOCHASTIC PROCESSES Wednesday 7. August, 2013

More information

15 Discrete Distributions

15 Discrete Distributions Lecture Note 6 Special Distributions (Discrete and Continuous) MIT 4.30 Spring 006 Herman Bennett 5 Discrete Distributions We have already seen the binomial distribution and the uniform distribution. 5.

More information

Random variables and transform methods

Random variables and transform methods Chapter Random variables and transform methods. Discrete random variables Suppose X is a random variable whose range is {,,..., } and set p k = P (X = k) for k =,,..., so that its mean and variance are

More information

SUMMARIZING MEASURED DATA. Gaia Maselli

SUMMARIZING MEASURED DATA. Gaia Maselli SUMMARIZING MEASURED DATA Gaia Maselli maselli@di.uniroma1.it Computer Network Performance 2 Overview Basic concepts Summarizing measured data Summarizing data by a single number Summarizing variability

More information

DS-GA 1002 Lecture notes 2 Fall Random variables

DS-GA 1002 Lecture notes 2 Fall Random variables DS-GA 12 Lecture notes 2 Fall 216 1 Introduction Random variables Random variables are a fundamental tool in probabilistic modeling. They allow us to model numerical quantities that are uncertain: the

More information

EDUCATION AND EXAMINATION COMMITTEE OF THE SOCIETY OF ACTUARIES ACTUARIAL MODELS LIFE CONTINGENCIES SEGMENT POISSON PROCESSES

EDUCATION AND EXAMINATION COMMITTEE OF THE SOCIETY OF ACTUARIES ACTUARIAL MODELS LIFE CONTINGENCIES SEGMENT POISSON PROCESSES EDUCATION AND EXAMINATION COMMITTEE OF THE SOCIETY OF ACTUARIES ACTUARIAL MODELS LIFE CONTINGENCIES SEGMENT POISSON PROCESSES (and mixture distributions) by James W. Daniel Copyright 2007 by James W. Daniel;

More information

16:330:543 Communication Networks I Midterm Exam November 7, 2005

16:330:543 Communication Networks I Midterm Exam November 7, 2005 l l l l l l l l 1 3 np n = ρ 1 ρ = λ µ λ. n= T = E[N] = 1 λ µ λ = 1 µ 1. 16:33:543 Communication Networks I Midterm Exam November 7, 5 You have 16 minutes to complete this four problem exam. If you know

More information

Section 7.3: Continuous RV Applications

Section 7.3: Continuous RV Applications Section 7.3: Continuous RV Applications Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5 Discrete-Event Simulation: A First Course Section 7.3: Continuous RV Applications

More information

Chapter 6: Random Processes 1

Chapter 6: Random Processes 1 Chapter 6: Random Processes 1 Yunghsiang S. Han Graduate Institute of Communication Engineering, National Taipei University Taiwan E-mail: yshan@mail.ntpu.edu.tw 1 Modified from the lecture notes by Prof.

More information

STAT509: Discrete Random Variable

STAT509: Discrete Random Variable University of South Carolina September 16, 2014 Motivation So far, we have already known how to calculate probabilities of events. Suppose we toss a fair coin three times, we know that the probability

More information

ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables

ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Random Variable Discrete Random

More information

Known probability distributions

Known probability distributions Known probability distributions Engineers frequently wor with data that can be modeled as one of several nown probability distributions. Being able to model the data allows us to: model real systems design

More information

MITOCW MITRES6_012S18_L23-05_300k

MITOCW MITRES6_012S18_L23-05_300k MITOCW MITRES6_012S18_L23-05_300k We will now go through a beautiful example, in which we approach the same question in a number of different ways and see that by reasoning based on the intuitive properties

More information

Reading Material for Students

Reading Material for Students Reading Material for Students Arnab Adhikari Indian Institute of Management Calcutta, Joka, Kolkata 714, India, arnaba1@email.iimcal.ac.in Indranil Biswas Indian Institute of Management Lucknow, Prabandh

More information

HW7 Solutions. f(x) = 0 otherwise. 0 otherwise. The density function looks like this: = 20 if x [10, 90) if x [90, 100]

HW7 Solutions. f(x) = 0 otherwise. 0 otherwise. The density function looks like this: = 20 if x [10, 90) if x [90, 100] HW7 Solutions. 5 pts.) James Bond James Bond, my favorite hero, has again jumped off a plane. The plane is traveling from from base A to base B, distance km apart. Now suppose the plane takes off from

More information

Chapter 5. Chapter 5 sections

Chapter 5. Chapter 5 sections 1 / 43 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

Chapter 2. Poisson Processes. Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan

Chapter 2. Poisson Processes. Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan Chapter 2. Poisson Processes Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan Outline Introduction to Poisson Processes Definition of arrival process Definition

More information

SOLUTIONS IEOR 3106: Second Midterm Exam, Chapters 5-6, November 8, 2012

SOLUTIONS IEOR 3106: Second Midterm Exam, Chapters 5-6, November 8, 2012 SOLUTIONS IEOR 3106: Second Midterm Exam, Chapters 5-6, November 8, 2012 This exam is closed book. YOU NEED TO SHOW YOUR WORK. Honor Code: Students are expected to behave honorably, following the accepted

More information

Analysis of Engineering and Scientific Data. Semester

Analysis of Engineering and Scientific Data. Semester Analysis of Engineering and Scientific Data Semester 1 2019 Sabrina Streipert s.streipert@uq.edu.au Example: Draw a random number from the interval of real numbers [1, 3]. Let X represent the number. Each

More information

UNIT 5:Random number generation And Variation Generation

UNIT 5:Random number generation And Variation Generation UNIT 5:Random number generation And Variation Generation RANDOM-NUMBER GENERATION Random numbers are a necessary basic ingredient in the simulation of almost all discrete systems. Most computer languages

More information

Chapter 4 Continuous Random Variables and Probability Distributions

Chapter 4 Continuous Random Variables and Probability Distributions Chapter 4 Continuous Random Variables and Probability Distributions Part 3: The Exponential Distribution and the Poisson process Section 4.8 The Exponential Distribution 1 / 21 Exponential Distribution

More information

Session-Based Queueing Systems

Session-Based Queueing Systems Session-Based Queueing Systems Modelling, Simulation, and Approximation Jeroen Horters Supervisor VU: Sandjai Bhulai Executive Summary Companies often offer services that require multiple steps on the

More information

Since D has an exponential distribution, E[D] = 0.09 years. Since {A(t) : t 0} is a Poisson process with rate λ = 10, 000, A(0.

Since D has an exponential distribution, E[D] = 0.09 years. Since {A(t) : t 0} is a Poisson process with rate λ = 10, 000, A(0. IEOR 46: Introduction to Operations Research: Stochastic Models Chapters 5-6 in Ross, Thursday, April, 4:5-5:35pm SOLUTIONS to Second Midterm Exam, Spring 9, Open Book: but only the Ross textbook, the

More information

Q = (c) Assuming that Ricoh has been working continuously for 7 days, what is the probability that it will remain working at least 8 more days?

Q = (c) Assuming that Ricoh has been working continuously for 7 days, what is the probability that it will remain working at least 8 more days? IEOR 4106: Introduction to Operations Research: Stochastic Models Spring 2005, Professor Whitt, Second Midterm Exam Chapters 5-6 in Ross, Thursday, March 31, 11:00am-1:00pm Open Book: but only the Ross

More information