Packing posets in a family of subsets

Size: px
Start display at page:

Download "Packing posets in a family of subsets"

Transcription

1 Andrew P. Dove Jerrold R. Griggs University of South Carolina Columbia, SC October 5, 2013

2 B n is the inclusion poset of all subsets of {1, 2,..., n}. Definition (La(n, P)) The quantity La(n, P) is the maximum size of a family F B n that contains no copy of poset P.

3 B n is the inclusion poset of all subsets of {1, 2,..., n}. Definition (La(n, P)) The quantity La(n, P) is the maximum size of a family F B n that contains no copy of poset P. This may be generalized: Definition (La(n, {P i })) The quantity La(n, {P i }) is the maximum size of a family F B n that contains no copy of any poset P i {P i }.

4 Starting Point What is La(n, {V, Λ})?

5 Starting Point What is La(n, {V, Λ})? Theorem (Katona, Tarján (1983)) ( ) n 1 La(n, {V, Λ}) = 2 n 1 2.

6 Starting Point What is La(n, {V, Λ})? Theorem (Katona, Tarján (1983)) ( ) n 1 La(n, {V, Λ}) = 2 n 1 2. A family with neither a V nor a Λ is a family constructed from pairwise unrelated copies of B 0 and B 1.

7 Starting Point What is La(n, {V, Λ})? Theorem (Katona, Tarján (1983)) ( ) n 1 La(n, {V, Λ}) = 2 n 1 2. A family with neither a V nor a Λ is a family constructed from pairwise unrelated copies of B 0 and B 1. So same question: what is the size of the largest family in B n that is constructed from pairwise unrelated copies of B 0 and B 1?

8 Definition (Pa(n, {P i })) The quantity Pa(n, {P i }) is the maximum size of a family F B n, where each connected component is a copy of a poset from the collection {P i }.

9 Definition (Pa(n, {P i })) The quantity Pa(n, {P i }) is the maximum size of a family F B n, where each connected component is a copy of a poset from the collection {P i }. La(n, {Q j }) = Pa(n, {P i }), where {P i } is all connected posets which do not contain a copy of any Q j {Q j }. The Pa(n, {P i }) problem is a generalization of the La(n, {Q j }) problem.

10 Definition (Pa(n, {P i })) The quantity Pa(n, {P i }) is the maximum size of a family F B n, where each connected component is a copy of a poset from the collection {P i }. La(n, {Q j }) = Pa(n, {P i }), where {P i } is all connected posets which do not contain a copy of any Q j {Q j }. The Pa(n, {P i }) problem is a generalization of the La(n, {Q j }) problem. Now La(n, {V, Λ}) = Pa(n, {B 0, B 1 }).

11 Old Examples with New Notation What is Pa(n, P) for a general poset P?

12 Old Examples with New Notation What is Pa(n, P) for a general poset P? Theorem (Sperner (1928)) ( ) n Pa(n, B 0 ) is n 2.

13 Old Examples with New Notation What is Pa(n, P) for a general poset P? Theorem (Sperner (1928)) ( ) n Pa(n, B 0 ) is n 2. Theorem (Griggs, Stahl, Trotter (1984)) Where P k is the chain ( (or path) ) on k + 1 elements, n k Pa(n, P k ) is (k + 1) n k 2 k + 1 ( ) n 2 k n 2.

14 Old Examples with New Notation What is Pa(n, P) for a general poset P? Theorem (Sperner (1928)) ( ) n Pa(n, B 0 ) is n 2. Theorem (Griggs, Stahl, Trotter (1984)) Where P k is the chain ( (or path) ) on k + 1 elements, n k Pa(n, P k ) is (k + 1) n k 2 k + 1 ( ) n 2 k n 2. As n goes to infinity, maybe Pa(n, P) is asymptotically a constant multiple of ( ) n n 2.

15 Convex Closure Definition (convex closure) For a family F B n, F := {S B n A S B for some A, B F}.

16 Convex Closure Definition (convex closure) For a family F B n, F := {S B n A S B for some A, B F}. Definition (convex family) A family F B n is called convex if F = F.

17 Convex Closure Definition (convex closure) For a family F B n, F := {S B n A S B for some A, B F}. Definition (convex family) A family F B n is called convex if F = F. Definition (c(p)) The value c(p) is the size of the smallest convex family containing a copy of P.

18 Convex Closure Definition (convex closure) For a family F B n, F := {S B n A S B for some A, B F}. Definition (convex family) A family F B n is called convex if F = F. Definition (c(p)) The value c(p) is the size of the smallest convex family containing a copy of P. Theorem (D., G. (2013), and independently Katona, Nagy (2013)) ( ) As n goes to infinity, Pa(n, P) P n c(p) n 2.

19 Upper Bound of Pa(n, P) P c(p) n n 2 No full chain in B n may meet more than one closure of a copy of P.

20 Upper Bound of Pa(n, P) P c(p) n n 2 No full chain in B n may meet more than one closure of a copy of P. If each closure of a copy of P meets at least x full chains, then Pa(n, P) x n!; P Pa(n, P) P n! x.

21 Upper Bound of Pa(n, P) P c(p) n n 2 No full chain in B n may meet more than one closure of a copy of P. If each closure of a copy of P meets at least x full chains, then Pa(n, P) x n!; P Pa(n, P) P n! x. Need to show the closure of a copy of P meets at least c(p) n/2! n/2! full chains asymptotically.

22 Upper Bound of Pa(n, P) P c(p) n n 2 Let a(n, m) denote the largest integer such that any family F B n, F = m, meets at least a(n, m) full chains.

23 Upper Bound of Pa(n, P) P c(p) n n 2 Let a(n, m) denote the largest integer such that any family F B n, F = m, meets at least a(n, m) full chains. Lemma As n goes to infinity, a(n, m) m n/2! n/2!.

24 Upper Bound of Pa(n, P) P c(p) n n 2 Let a(n, m) denote the largest integer such that any family F B n, F = m, meets at least a(n, m) full chains. Lemma As n goes to infinity, a(n, m) m n/2! n/2!. Proof of Lemma: Inclusion/Exclusion: Let F B n be a family of size m that meets a(n, m) full chains. Let b({a 1,..., A k }) be the number of full chains in B n that meet all of the sets in {A 1,..., A k }. a(n, m) A F b({a}) A 1,A 2 F b({a 1, A 2 }).

25 Upper Bound of Pa(n, P) P c(p) n n 2 Proof continued: a(n, m) b({a}) A F b({a 1, A 2 }) A 1,A 2 F

26 Upper Bound of Pa(n, P) P c(p) n n 2 Proof continued: a(n, m) b({a}) b({a 1, A 2 }) A F A 1,A 2 F ( b({a}) ) b({a, A 1 }) A F A 1 F n A n 2 2 A 1

27 Upper Bound of Pa(n, P) P c(p) n n 2 Proof continued: a(n, m) b({a}) b({a 1, A 2 }) A F A 1,A 2 F ( b({a}) ) b({a, A 1 }) A F A 1 F n A n 2 2 A 1 = ( b({a}) 1 ) b({a, A 1 }) b({a}) A F A 1 F n A n 2 2 A 1

28 Upper Bound of Pa(n, P) P c(p) n n 2 Proof continued: a(n, m) b({a}) b({a 1, A 2 }) A F A 1,A 2 F ( b({a}) ) b({a, A 1 }) A F A 1 F n A n 2 2 A 1 = ( b({a}) 1 ) b({a, A 1 }) b({a}) A F A F b({a}) ( 1 2m n A 1 F n A n 2 2 A 1 ) A F b({a}) m n/2! n/2!.

29 Lower Bound of Pa(n, P) P c(p) ( ) Example: Pa(n, V) V n c(v) n 2 = ( n n 2 n n 2 ) via construction.

30 Lower Bound of Pa(n, P) P c(p) ( ) Example: Pa(n, V) V n c(v) n 2 = ( n n 2 n n 2 ) via construction. n+1 2 A1 A2 B123 B124 C12345 C A 1, 2 / A B12 1, 2, 3, 4 / B C1234 1, 2, 3, 4, 5, 6 / C

31 Lower Bound of Pa(n, P) P c(p) ( ) Example: Pa(n, V) V n c(v) n 2 = ( n n 2 n n 2 ) via construction. n+1 2 A1 A2 B123 B124 C12345 C Pa(n, V) V A 1, 2 / A B12 1, 2, 3, 4 / B C1234 1, 2, 3, 4, 5, 6 / C [ ( ) ( ) ( ) ] n 2 n 4 n 6 n n n

32 Lower Bound of Pa(n, P) P c(p) ( ) Example: Pa(n, V) V n c(v) n 2 = ( n n 2 n n 2 ) via construction. n+1 2 A1 A2 B123 B124 C12345 C Pa(n, V) V V A 1, 2 / A B12 1, 2, 3, 4 / B C1234 1, 2, 3, 4, 5, 6 / C [ ( ) ( ) ( ) ] n 2 n 4 n 6 n n n [ ( ) 1 n 2 2 n ( ) n 2 4 n ( ) ] n 2 6 n = V ( ) [ ] n 1 4 n

33 Lower Bound of Pa(n, P) P c(p) n n 2 In general, we construct an F n B n, where as n goes to infinity, ( (2 k c(p)) j )( ) n F n P (2 k ) j+1 n j=0 2 = P 1 [ ]( ) 1 n 2 k 1 2k c(p) n 2 k 2 = P c(p) ( ) n n 2.

34 Other Results Definition (Pa (n, {P i })) The quantity Pa (n, {P i }) is the maximum size of a family F B n, where each connected component is an induced copy of a poset from the collection {P i }.

35 Other Results Definition (Pa (n, {P i })) The quantity Pa (n, {P i }) is the maximum size of a family F B n, where each connected component is an induced copy of a poset from the collection {P i }. Definition (c (P)) The value c (P) is the size of the smallest convex family containing an induced copy of P.

36 Other Results Definition (Pa (n, {P i })) The quantity Pa (n, {P i }) is the maximum size of a family F B n, where each connected component is an induced copy of a poset from the collection {P i }. Definition (c (P)) The value c (P) is the size of the smallest convex family containing an induced copy of P. Theorem (D., G. (2013), and independently Katona, Nagy (2013)) ( ) As n goes to infinity, Pa (n, P) P n c (P) n 2.

37 Other Results For a finite collection of posets: Theorem (D., G. (2013)) As n goes to infinity, ( ) ( ) Pa(n, {P 1, P 2,..., P k }) max Pi n 1 i k c(p i ) n 2. Theorem (D., G. (2013)) As n goes to infinity, ( ) ( ) Pa (n, {P 1, P 2,..., P k }) max Pi n 1 i k c (P i ) n 2.

38 Future Work Finding La(n, {P i }), even asymptotically.

39 Future Work Finding La(n, {P i }), even asymptotically. Finding Pa(n, {P i }) asymptotically for an infinite collection of posets.

40 Future Work Finding La(n, {P i }), even asymptotically. Finding Pa(n, {P i }) asymptotically for an infinite collection of posets. Finding exact values of Pa(n, P).

41 Future Work Finding La(n, {P i }), even asymptotically. Finding Pa(n, {P i }) asymptotically for an infinite collection of posets. Finding exact values of Pa(n, P). Finding an algorithm that quickly finds c(p), or even the complexity of such an algorithm.

Packing Posets in the Boolean Lattice

Packing Posets in the Boolean Lattice page.1... Packing Posets in the Boolean Lattice Andrew P. Dove Jerrold R. Griggs University of South Carolina Columbia, SC USA SIAM-DM14 Conference Minneapolis page.2 Andrew Dove page.3 Andrew Dove Jerry

More information

On families of subsets with a forbidden subposet

On families of subsets with a forbidden subposet On families of subsets with a forbidden subposet Linyuan Lu lu@math.sc.edu. University of South Carolina Joined work with Jerry Griggs On families of subsets with a forbidden subposet p./ Poset A poset

More information

Poset-free Families of Sets

Poset-free Families of Sets Poset-free Families of Sets... Jerrold R. Griggs Wei-Tian Li Linyuan Lu Department of Mathematics University of South Carolina Columbia, SC USA Combinatorics and Posets Minisymposium SIAM-DM12 Halifax,

More information

Building Diamond-free Posets

Building Diamond-free Posets Aaron AMS Southeastern Sectional October 5, 2013 Joint with Éva Czabarka, Travis Johnston, and László Székely The Diamond Conjecture is False Aaron AMS Southeastern Sectional October 5, 2013 Joint with

More information

Massachusetts Institute of Technology 6.042J/18.062J, Fall 02: Mathematics for Computer Science Professor Albert Meyer and Dr.

Massachusetts Institute of Technology 6.042J/18.062J, Fall 02: Mathematics for Computer Science Professor Albert Meyer and Dr. Massachusetts Institute of Technology 6.042J/18.062J, Fall 02: Mathematics for Computer Science Professor Albert Meyer and Dr. Radhika Nagpal Quiz 1 Appendix Appendix Contents 1 Induction 2 2 Relations

More information

Properties of the Integers

Properties of the Integers Properties of the Integers The set of all integers is the set and the subset of Z given by Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }, N = {0, 1, 2, 3, 4, }, is the set of nonnegative integers (also called

More information

a + b = b + a and a b = b a. (a + b) + c = a + (b + c) and (a b) c = a (b c). a (b + c) = a b + a c and (a + b) c = a c + b c.

a + b = b + a and a b = b a. (a + b) + c = a + (b + c) and (a b) c = a (b c). a (b + c) = a b + a c and (a + b) c = a c + b c. Properties of the Integers The set of all integers is the set and the subset of Z given by Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }, N = {0, 1, 2, 3, 4, }, is the set of nonnegative integers (also called

More information

Lecture 8: Equivalence Relations

Lecture 8: Equivalence Relations Lecture 8: Equivalence Relations 1 Equivalence Relations Next interesting relation we will study is equivalence relation. Definition 1.1 (Equivalence Relation). Let A be a set and let be a relation on

More information

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska LECTURE 3 CHAPTER 1 SETS, RELATIONS, and LANGUAGES 6. Closures and Algorithms 7. Alphabets and Languages 8. Finite Representation

More information

Relations. Relations. Definition. Let A and B be sets.

Relations. Relations. Definition. Let A and B be sets. Relations Relations. Definition. Let A and B be sets. A relation R from A to B is a subset R A B. If a A and b B, we write a R b if (a, b) R, and a /R b if (a, b) / R. A relation from A to A is called

More information

Almost Cross-Intersecting and Almost Cross-Sperner Pairs offamilies of Sets

Almost Cross-Intersecting and Almost Cross-Sperner Pairs offamilies of Sets Almost Cross-Intersecting and Almost Cross-Sperner Pairs offamilies of Sets Dániel Gerbner a Nathan Lemons b Cory Palmer a Balázs Patkós a, Vajk Szécsi b a Hungarian Academy of Sciences, Alfréd Rényi Institute

More information

ABOUT THE CLASS AND NOTES ON SET THEORY

ABOUT THE CLASS AND NOTES ON SET THEORY ABOUT THE CLASS AND NOTES ON SET THEORY About the Class Evaluation. Final grade will be based 25%, 25%, 25%, 25%, on homework, midterm 1, midterm 2, final exam. Exam dates. Midterm 1: Oct 4. Midterm 2:

More information

Supersaturation in the Boolean lattice

Supersaturation in the Boolean lattice Supersaturation in the Boolean lattice Andrew P. Dove Jerrold R. Griggs Ross J. Kang Jean-Sébastien Sereni March 18, 013 Abstract We prove a supersaturation-type extension of both Sperner s Theorem 198

More information

On Antichains in Product Posets

On Antichains in Product Posets On Antichains in Product Posets Sergei L. Bezrukov Department of Math and Computer Science University of Wisconsin - Superior Superior, WI 54880, USA sb@mcs.uwsuper.edu Ian T. Roberts School of Engineering

More information

On the Distribution of Sums of Vectors in General Position

On the Distribution of Sums of Vectors in General Position draft date: October 30, 1997 On the Distribution of Sums of Vectors in General Position Jerrold R. Griggs 1 Department of Mathematics University of South Carolina Columbia, SC 29208 USA email: griggs@math.sc.edu

More information

The Saturation Number of Induced Subposets of the Boolean Lattice

The Saturation Number of Induced Subposets of the Boolean Lattice The Saturation Number of Induced Subposets of the Boolean Lattice Michael Ferrara a, Bill Kay b, Lucas Kramer c,1, Ryan R. Martin d, Benjamin Reiniger e, Heather C. Smith f,, Eric Sullivan a a Department

More information

The 123 Theorem and its extensions

The 123 Theorem and its extensions The 123 Theorem and its extensions Noga Alon and Raphael Yuster Department of Mathematics Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv, Israel Abstract It is shown

More information

Mathematics for Economists

Mathematics for Economists Mathematics for Economists Victor Filipe Sao Paulo School of Economics FGV Metric Spaces: Basic Definitions Victor Filipe (EESP/FGV) Mathematics for Economists Jan.-Feb. 2017 1 / 34 Definitions and Examples

More information

ENUMERATIVE COMBINATORICS OF POSETS

ENUMERATIVE COMBINATORICS OF POSETS ENUMERATIVE COMBINATORICS OF POSETS A Thesis Presented to The Academic Faculty by Christina C. Carroll In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Department of

More information

Equivalence relations

Equivalence relations Equivalence relations R A A is an equivalence relation if R is 1. reflexive (a, a) R 2. symmetric, and (a, b) R (b, a) R 3. transitive. (a, b), (b, c) R (a, c) R Example: Let S be a relation on people

More information

Report 1 The Axiom of Choice

Report 1 The Axiom of Choice Report 1 The Axiom of Choice By Li Yu This report is a collection of the material I presented in the first round presentation of the course MATH 2002. The report focuses on the principle of recursive definition,

More information

Section Summary. Relations and Functions Properties of Relations. Combining Relations

Section Summary. Relations and Functions Properties of Relations. Combining Relations Chapter 9 Chapter Summary Relations and Their Properties n-ary Relations and Their Applications (not currently included in overheads) Representing Relations Closures of Relations (not currently included

More information

arxiv:math/ v1 [math.co] 10 Nov 1998

arxiv:math/ v1 [math.co] 10 Nov 1998 A self-dual poset on objects counted by the Catalan numbers arxiv:math/9811067v1 [math.co] 10 Nov 1998 Miklós Bóna School of Mathematics Institute for Advanced Study Princeton, NJ 08540 April 11, 2017

More information

Symmetric chain decompositions of partially ordered sets

Symmetric chain decompositions of partially ordered sets Symmetric chain decompositions of partially ordered sets A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Ondrej Zjevik IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

More information

COMP 182 Algorithmic Thinking. Relations. Luay Nakhleh Computer Science Rice University

COMP 182 Algorithmic Thinking. Relations. Luay Nakhleh Computer Science Rice University COMP 182 Algorithmic Thinking Relations Luay Nakhleh Computer Science Rice University Chapter 9, Section 1-6 Reading Material When we defined the Sorting Problem, we stated that to sort the list, the elements

More information

EQUIVALENCE RELATIONS (NOTES FOR STUDENTS) 1. RELATIONS

EQUIVALENCE RELATIONS (NOTES FOR STUDENTS) 1. RELATIONS EQUIVALENCE RELATIONS (NOTES FOR STUDENTS) LIOR SILBERMAN Version 1.0 compiled September 9, 2015. 1.1. List of examples. 1. RELATIONS Equality of real numbers: for some x,y R we have x = y. For other pairs

More information

1. A poset P has no chain on five elements and no antichain on five elements. Determine, with proof, the largest possible number of elements in P.

1. A poset P has no chain on five elements and no antichain on five elements. Determine, with proof, the largest possible number of elements in P. 1. A poset P has no chain on five elements and no antichain on five elements. Determine, with proof, the largest possible number of elements in P. By Mirsky s Theorem, since P has no chain on five elements,

More information

Definition: A binary relation R from a set A to a set B is a subset R A B. Example:

Definition: A binary relation R from a set A to a set B is a subset R A B. Example: Chapter 9 1 Binary Relations Definition: A binary relation R from a set A to a set B is a subset R A B. Example: Let A = {0,1,2} and B = {a,b} {(0, a), (0, b), (1,a), (2, b)} is a relation from A to B.

More information

4.2 Chain Conditions

4.2 Chain Conditions 4.2 Chain Conditions Imposing chain conditions on the or on the poset of submodules of a module, poset of ideals of a ring, makes a module or ring more tractable and facilitates the proofs of deep theorems.

More information

A Kruskal-Katona Type Theorem for the Linear Lattice

A Kruskal-Katona Type Theorem for the Linear Lattice A Kruskal-Katona Type Theorem for the Linear Lattice Sergei Bezrukov Department of Mathematics and Computer Science University of Paderborn Fürstenallee 11 D-33102 Paderborn, Germany Aart Blokhuis Department

More information

Bichain graphs: geometric model and universal graphs

Bichain graphs: geometric model and universal graphs Bichain graphs: geometric model and universal graphs Robert Brignall a,1, Vadim V. Lozin b,, Juraj Stacho b, a Department of Mathematics and Statistics, The Open University, Milton Keynes MK7 6AA, United

More information

MITOCW Lec 11 MIT 6.042J Mathematics for Computer Science, Fall 2010

MITOCW Lec 11 MIT 6.042J Mathematics for Computer Science, Fall 2010 MITOCW Lec 11 MIT 6.042J Mathematics for Computer Science, Fall 2010 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high

More information

2030 LECTURES. R. Craigen. Inclusion/Exclusion and Relations

2030 LECTURES. R. Craigen. Inclusion/Exclusion and Relations 2030 LECTURES R. Craigen Inclusion/Exclusion and Relations The Principle of Inclusion-Exclusion 7 ROS enumerates the union of disjoint sets. What if sets overlap? Some 17 out of 30 students in a class

More information

Infinitely Many Trees Have Non-Sperner Subtree Poset

Infinitely Many Trees Have Non-Sperner Subtree Poset Order (2007 24:133 138 DOI 10.1007/s11083-007-9064-2 Infinitely Many Trees Have Non-Sperner Subtree Poset Andrew Vince Hua Wang Received: 3 April 2007 / Accepted: 25 August 2007 / Published online: 2 October

More information

Section II.1. Free Abelian Groups

Section II.1. Free Abelian Groups II.1. Free Abelian Groups 1 Section II.1. Free Abelian Groups Note. This section and the next, are independent of the rest of this chapter. The primary use of the results of this chapter is in the proof

More information

Random Variable. Pr(X = a) = Pr(s)

Random Variable. Pr(X = a) = Pr(s) Random Variable Definition A random variable X on a sample space Ω is a real-valued function on Ω; that is, X : Ω R. A discrete random variable is a random variable that takes on only a finite or countably

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 1

MATH 56A: STOCHASTIC PROCESSES CHAPTER 1 MATH 56A: STOCHASTIC PROCESSES CHAPTER. Finite Markov chains For the sake of completeness of these notes I decided to write a summary of the basic concepts of finite Markov chains. The topics in this chapter

More information

Families of Subsets Without a Given Poset in the Interval Chains

Families of Subsets Without a Given Poset in the Interval Chains Families of Subsets Without a Given Poset in the Interval Chains arxiv:1605.00373v1 [math.co] 2 May 2016 Jun-Yi Guo Fei-Huang Chang Hong-Bin Chen Wei-Tian Li May 3, 2016 Abstract For two posets P and Q,

More information

The Erdős-Moser Conjecture

The Erdős-Moser Conjecture The Erdős-Moser Conjecture An Application of Linear Algebra to Combinatorics Richard P. Stanley M.I.T. The function f(s, α) Let S R, #S

More information

Clearly C B, for every C Q. Suppose that we may find v 1, v 2,..., v n

Clearly C B, for every C Q. Suppose that we may find v 1, v 2,..., v n 10. Algebraic closure Definition 10.1. Let K be a field. The algebraic closure of K, denoted K, is an algebraic field extension L/K such that every polynomial in K[x] splits in L. We say that K is algebraically

More information

Introductory Analysis I Fall 2014 Homework #5 Solutions

Introductory Analysis I Fall 2014 Homework #5 Solutions Introductory Analysis I Fall 2014 Homework #5 Solutions 6. Let M be a metric space, let C D M. Now we can think of C as a subset of the metric space M or as a subspace of the metric space D (D being a

More information

Solutions for Math 217 Assignment #3

Solutions for Math 217 Assignment #3 Solutions for Math 217 Assignment #3 (1) Which of the following sets in R n are open? Which are closed? Which are neither open nor closed? (a) {(x, y) R 2 : x 2 y 2 = 1}. (b) {(x, y, z) R 3 : 0 < x + y

More information

On diamond-free subposets of the Boolean lattice

On diamond-free subposets of the Boolean lattice On diamond-free subposets of the Boolean lattice Lucas Kramer, Ryan R Martin, Michael Young 2 Department of Mathematics, Iowa State Uniersity, Ames, Iowa 500 Abstract The Boolean lattice of dimension two,

More information

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 2: HILBERT S NULLSTELLENSATZ.

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 2: HILBERT S NULLSTELLENSATZ. ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 2: HILBERT S NULLSTELLENSATZ. ANDREW SALCH 1. Hilbert s Nullstellensatz. The last lecture left off with the claim that, if J k[x 1,..., x n ] is an ideal, then

More information

arxiv: v1 [cs.cg] 16 May 2011

arxiv: v1 [cs.cg] 16 May 2011 Collinearities in Kinetic Point Sets arxiv:1105.3078v1 [cs.cg] 16 May 2011 Ben D. Lund George B. Purdy Justin W. Smith Csaba D. Tóth August 24, 2018 Abstract Let P be a set of n points in the plane, each

More information

Discrete Mathematics. 2. Relations

Discrete Mathematics. 2. Relations Discrete Mathematics 2. Relations Binary Relations Let A, B be any two sets. A binary relation R from A to B is a subset of A B. E.g., Let < : N N : {(n,m) n < m} The notation a R b or arb means (a,b)îr.

More information

Supplement. Algebraic Closure of a Field

Supplement. Algebraic Closure of a Field Supplement: Algebraic Closure of a Field 1 Supplement. Algebraic Closure of a Field Note. In this supplement, we give some background material which is used in the proof of Fraleigh s Theorem 31.17/31.22

More information

Duality in the Combinatorics of Posets

Duality in the Combinatorics of Posets University of Minnesota, September 12, 2014 Duality in the Combinatorics of Posets William T. Trotter trotter@math.gatech.edu Diagram for a Poset on 26 points Terminology: b < i and s < y. j covers a.

More information

Lattice Theory Lecture 4. Non-distributive lattices

Lattice Theory Lecture 4. Non-distributive lattices Lattice Theory Lecture 4 Non-distributive lattices John Harding New Mexico State University www.math.nmsu.edu/ JohnHarding.html jharding@nmsu.edu Toulouse, July 2017 Introduction Here we mostly consider

More information

Monochromatic Forests of Finite Subsets of N

Monochromatic Forests of Finite Subsets of N Monochromatic Forests of Finite Subsets of N Tom C. Brown Citation data: T.C. Brown, Monochromatic forests of finite subsets of N, INTEGERS - Elect. J. Combin. Number Theory 0 (2000), A4. Abstract It is

More information

30 Classification of States

30 Classification of States 30 Classification of States In a Markov chain, each state can be placed in one of the three classifications. 1 Since each state falls into one and only one category, these categories partition the states.

More information

Multiple Choice Questions for Review

Multiple Choice Questions for Review Equivalence and Order Multiple Choice Questions for Review In each case there is one correct answer (given at the end of the problem set). Try to work the problem first without looking at the answer. Understand

More information

Covering Subsets of the Integers and a Result on Digits of Fibonacci Numbers

Covering Subsets of the Integers and a Result on Digits of Fibonacci Numbers University of South Carolina Scholar Commons Theses and Dissertations 2017 Covering Subsets of the Integers and a Result on Digits of Fibonacci Numbers Wilson Andrew Harvey University of South Carolina

More information

2. Two binary operations (addition, denoted + and multiplication, denoted

2. Two binary operations (addition, denoted + and multiplication, denoted Chapter 2 The Structure of R The purpose of this chapter is to explain to the reader why the set of real numbers is so special. By the end of this chapter, the reader should understand the difference between

More information

Lusin sequences under CH and under Martin s Axiom

Lusin sequences under CH and under Martin s Axiom F U N D A M E N T A MATHEMATICAE 169 (2001) Lusin sequences under CH and under Martin s Axiom by Uri Abraham (Beer-Sheva) and Saharon Shelah (Jerusalem) Abstract. Assuming the continuum hypothesis there

More information

A Class of Partially Ordered Sets: III

A Class of Partially Ordered Sets: III A Class of Partially Ordered Sets: III by Geoffrey Hemion 1 Definitions To begin with, let us fix a certain notation. Let the pair (X, ) be a given poset. For a X, let a = {x X : x < a} and a = {x X :

More information

Chapter 2. Limits and Continuity 2.6 Limits Involving Infinity; Asymptotes of Graphs

Chapter 2. Limits and Continuity 2.6 Limits Involving Infinity; Asymptotes of Graphs 2.6 Limits Involving Infinity; Asymptotes of Graphs Chapter 2. Limits and Continuity 2.6 Limits Involving Infinity; Asymptotes of Graphs Definition. Formal Definition of Limits at Infinity.. We say that

More information

PGSS Discrete Math Solutions to Problem Set #4. Note: signifies the end of a problem, and signifies the end of a proof.

PGSS Discrete Math Solutions to Problem Set #4. Note: signifies the end of a problem, and signifies the end of a proof. PGSS Discrete Math Solutions to Problem Set #4 Note: signifies the end of a problem, and signifies the end of a proof. 1. Prove that for any k N, there are k consecutive composite numbers. (Hint: (k +

More information

Sequences of height 1 primes in Z[X]

Sequences of height 1 primes in Z[X] Sequences of height 1 primes in Z[X] Stephen McAdam Department of Mathematics University of Texas Austin TX 78712 mcadam@math.utexas.edu Abstract: For each partition J K of {1, 2,, n} (n 2) with J 2, let

More information

Exponential Functions Dr. Laura J. Pyzdrowski

Exponential Functions Dr. Laura J. Pyzdrowski 1 Names: (4 communication points) About this Laboratory An exponential function is an example of a function that is not an algebraic combination of polynomials. Such functions are called trancendental

More information

Math 3012 Applied Combinatorics Lecture 14

Math 3012 Applied Combinatorics Lecture 14 October 6, 2015 Math 3012 Applied Combinatorics Lecture 14 William T. Trotter trotter@math.gatech.edu Three Posets with the Same Cover Graph Exercise How many posets altogether have the same cover graph

More information

MONOCHROMATIC FORESTS OF FINITE SUBSETS OF N

MONOCHROMATIC FORESTS OF FINITE SUBSETS OF N MONOCHROMATIC FORESTS OF FINITE SUBSETS OF N Tom C. Brown Department of Mathematics and Statistics, Simon Fraser University, Burnaby, BC Canada V5A 1S6 tbrown@sfu.ca Received: 2/3/00, Revised: 2/29/00,

More information

Elementary Algebra Chinese Remainder Theorem Euclidean Algorithm

Elementary Algebra Chinese Remainder Theorem Euclidean Algorithm Elementary Algebra Chinese Remainder Theorem Euclidean Algorithm April 11, 2010 1 Algebra We start by discussing algebraic structures and their properties. This is presented in more depth than what we

More information

arxiv: v1 [math.co] 16 Feb 2018

arxiv: v1 [math.co] 16 Feb 2018 CHAIN POSETS arxiv:1802.05813v1 [math.co] 16 Feb 2018 IAN T. JOHNSON Abstract. A chain poset, by definition, consists of chains of ordered elements in a poset. We study the chain posets associated to two

More information

Limits at Infinity. Horizontal Asymptotes. Definition (Limits at Infinity) Horizontal Asymptotes

Limits at Infinity. Horizontal Asymptotes. Definition (Limits at Infinity) Horizontal Asymptotes Limits at Infinity If a function f has a domain that is unbounded, that is, one of the endpoints of its domain is ±, we can determine the long term behavior of the function using a it at infinity. Definition

More information

Math Solutions to homework 5

Math Solutions to homework 5 Math 75 - Solutions to homework 5 Cédric De Groote November 9, 207 Problem (7. in the book): Let {e n } be a complete orthonormal sequence in a Hilbert space H and let λ n C for n N. Show that there is

More information

Strange Combinatorial Connections. Tom Trotter

Strange Combinatorial Connections. Tom Trotter Strange Combinatorial Connections Tom Trotter Georgia Institute of Technology trotter@math.gatech.edu February 13, 2003 Proper Graph Colorings Definition. A proper r- coloring of a graph G is a map φ from

More information

#A42 INTEGERS 10 (2010), ON THE ITERATION OF A FUNCTION RELATED TO EULER S

#A42 INTEGERS 10 (2010), ON THE ITERATION OF A FUNCTION RELATED TO EULER S #A42 INTEGERS 10 (2010), 497-515 ON THE ITERATION OF A FUNCTION RELATED TO EULER S φ-function Joshua Harrington Department of Mathematics, University of South Carolina, Columbia, SC 29208 jh3293@yahoo.com

More information

Chapter 8: More on Limits

Chapter 8: More on Limits Chapter 8: More on Limits Lesson 8.. 8-. a. 000 lim a() = lim = 0 b. c. lim c() = lim 3 +7 = 3 +000 lim b( ) 3 lim( 0000 ) = # = " 8-. a. lim 0 = " b. lim (#0.5 ) = # lim c. lim 4 = lim 4(/ ) = " d. lim

More information

Part II. Logic and Set Theory. Year

Part II. Logic and Set Theory. Year Part II Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 60 Paper 4, Section II 16G State and prove the ǫ-recursion Theorem. [You may assume the Principle of ǫ- Induction.]

More information

NAME: Mathematics 205A, Fall 2008, Final Examination. Answer Key

NAME: Mathematics 205A, Fall 2008, Final Examination. Answer Key NAME: Mathematics 205A, Fall 2008, Final Examination Answer Key 1 1. [25 points] Let X be a set with 2 or more elements. Show that there are topologies U and V on X such that the identity map J : (X, U)

More information

Outline. We will now investigate the structure of this important set.

Outline. We will now investigate the structure of this important set. The Reals Outline As we have seen, the set of real numbers, R, has cardinality c. This doesn't tell us very much about the reals, since there are many sets with this cardinality and cardinality doesn't

More information

Fibrations of 3-manifolds and nowhere continuous functions

Fibrations of 3-manifolds and nowhere continuous functions Fibrations of 3-manifolds and nowhere continuous functions Balázs Strenner Georgia Institute of Technology Geometric Topology Seminar Columbia University October 5, 2018 Calculus exercise 1 Calculus exercise

More information

OHSx XM511 Linear Algebra: Solutions to Online True/False Exercises

OHSx XM511 Linear Algebra: Solutions to Online True/False Exercises This document gives the solutions to all of the online exercises for OHSx XM511. The section ( ) numbers refer to the textbook. TYPE I are True/False. Answers are in square brackets [. Lecture 02 ( 1.1)

More information

MATH 56A SPRING 2008 STOCHASTIC PROCESSES 65

MATH 56A SPRING 2008 STOCHASTIC PROCESSES 65 MATH 56A SPRING 2008 STOCHASTIC PROCESSES 65 2.2.5. proof of extinction lemma. The proof of Lemma 2.3 is just like the proof of the lemma I did on Wednesday. It goes like this. Suppose that â is the smallest

More information

Kevin James. MTHSC 412 Section 3.4 Cyclic Groups

Kevin James. MTHSC 412 Section 3.4 Cyclic Groups MTHSC 412 Section 3.4 Cyclic Groups Definition If G is a cyclic group and G =< a > then a is a generator of G. Definition If G is a cyclic group and G =< a > then a is a generator of G. Example 1 Z is

More information

106 CHAPTER 3. TOPOLOGY OF THE REAL LINE. 2. The set of limit points of a set S is denoted L (S)

106 CHAPTER 3. TOPOLOGY OF THE REAL LINE. 2. The set of limit points of a set S is denoted L (S) 106 CHAPTER 3. TOPOLOGY OF THE REAL LINE 3.3 Limit Points 3.3.1 Main Definitions Intuitively speaking, a limit point of a set S in a space X is a point of X which can be approximated by points of S other

More information

Lecture Notes Math 371: Algebra (Fall 2006) by Nathanael Leedom Ackerman

Lecture Notes Math 371: Algebra (Fall 2006) by Nathanael Leedom Ackerman Lecture Notes Math 371: Algebra (Fall 2006) by Nathanael Leedom Ackerman October 17, 2006 TALK SLOWLY AND WRITE NEATLY!! 1 0.1 Factorization 0.1.1 Factorization of Integers and Polynomials Now we are going

More information

Order of Operations. Real numbers

Order of Operations. Real numbers Order of Operations When simplifying algebraic expressions we use the following order: 1. Perform operations within a parenthesis. 2. Evaluate exponents. 3. Multiply and divide from left to right. 4. Add

More information

1 Implicit Differentiation

1 Implicit Differentiation MATH 1010E University Mathematics Lecture Notes (week 5) Martin Li 1 Implicit Differentiation Sometimes a function is defined implicitly by an equation of the form f(x, y) = 0, which we think of as a relationship

More information

Outline Inverse of a Relation Properties of Relations. Relations. Alice E. Fischer. April, 2018

Outline Inverse of a Relation Properties of Relations. Relations. Alice E. Fischer. April, 2018 Relations Alice E. Fischer April, 2018 1 Inverse of a Relation 2 Properties of Relations The Inverse of a Relation Let R be a relation from A to B. Define the inverse relation, R 1 from B to A as follows.

More information

Week 4-5: Generating Permutations and Combinations

Week 4-5: Generating Permutations and Combinations Week 4-5: Generating Permutations and Combinations February 27, 2017 1 Generating Permutations We have learned that there are n! permutations of {1, 2,...,n}. It is important in many instances to generate

More information

CHAPTER 7. Connectedness

CHAPTER 7. Connectedness CHAPTER 7 Connectedness 7.1. Connected topological spaces Definition 7.1. A topological space (X, T X ) is said to be connected if there is no continuous surjection f : X {0, 1} where the two point set

More information

Monoids of languages, monoids of reflexive. relations and ordered monoids. Ganna Kudryavtseva. June 22, 2010

Monoids of languages, monoids of reflexive. relations and ordered monoids. Ganna Kudryavtseva. June 22, 2010 June 22, 2010 J -trivial A monoid S is called J -trivial if the Green s relation J on it is the trivial relation, that is aj b implies a = b for any a, b S, or, equivalently all J -classes of S are one-element.

More information

Paradox and Infinity Problem Set 6: Ordinal Arithmetic

Paradox and Infinity Problem Set 6: Ordinal Arithmetic 24.118 Paradox and Infinity Problem Set 6: Ordinal Arithmetic You will be graded both on the basis of whether your answers are correct and on the basis of whether they are properly justified. There is

More information

We will briefly look at the definition of a probability space, probability measures, conditional probability and independence of probability events.

We will briefly look at the definition of a probability space, probability measures, conditional probability and independence of probability events. 1 Probability 1.1 Probability spaces We will briefly look at the definition of a probability space, probability measures, conditional probability and independence of probability events. Definition 1.1.

More information

SUBLATTICES OF LATTICES OF ORDER-CONVEX SETS, III. THE CASE OF TOTALLY ORDERED SETS

SUBLATTICES OF LATTICES OF ORDER-CONVEX SETS, III. THE CASE OF TOTALLY ORDERED SETS SUBLATTICES OF LATTICES OF ORDER-CONVEX SETS, III. THE CASE OF TOTALLY ORDERED SETS MARINA SEMENOVA AND FRIEDRICH WEHRUNG Abstract. For a partially ordered set P, let Co(P) denote the lattice of all order-convex

More information

Hamiltonian Cycles and Symmetric Chains in Boolean Lattices

Hamiltonian Cycles and Symmetric Chains in Boolean Lattices Graphs and Combinatorics (2014) 30:1565 1586 DOI 10.1007/s00373-013-1350-8 ORIGINAL PAPER Hamiltonian Cycles and Symmetric Chains in Boolean Lattices Noah Streib William T. Trotter Received: 30 April 2012

More information

Containment restrictions

Containment restrictions Containment restrictions Tibor Szabó Extremal Combinatorics, FU Berlin, WiSe 207 8 In this chapter we switch from studying constraints on the set operation intersection, to constraints on the set relation

More information

Section 2: Classes of Sets

Section 2: Classes of Sets Section 2: Classes of Sets Notation: If A, B are subsets of X, then A \ B denotes the set difference, A \ B = {x A : x B}. A B denotes the symmetric difference. A B = (A \ B) (B \ A) = (A B) \ (A B). Remarks

More information

(i) Write down the elements of a subgroup of order 2. [1]

(i) Write down the elements of a subgroup of order 2. [1] FP3 Groups 1. June 010 qu. A multiplicative group with identity e contains distinct elements a and r, with the properties r 6 = e and = r 5 a. Prove that r = a. [] Prove, by induction or otherwise, that

More information

Ramsey Theory. May 24, 2015

Ramsey Theory. May 24, 2015 Ramsey Theory May 24, 2015 1 König s Lemma König s Lemma is a basic tool to move between finite and infinite combinatorics. To be concise, we use the notation [k] = {1, 2,..., k}, and [X] r will denote

More information

arxiv:math/ v1 [math.gm] 21 Jan 2005

arxiv:math/ v1 [math.gm] 21 Jan 2005 arxiv:math/0501341v1 [math.gm] 21 Jan 2005 SUBLATTICES OF LATTICES OF ORDER-CONVEX SETS, I. THE MAIN REPRESENTATION THEOREM MARINA SEMENOVA AND FRIEDRICH WEHRUNG Abstract. For a partially ordered set P,

More information

Chapter 9: Relations Relations

Chapter 9: Relations Relations Chapter 9: Relations 9.1 - Relations Definition 1 (Relation). Let A and B be sets. A binary relation from A to B is a subset R A B, i.e., R is a set of ordered pairs where the first element from each pair

More information

Automata Theory. CS F-10 Non-Context-Free Langauges Closure Properties of Context-Free Languages. David Galles

Automata Theory. CS F-10 Non-Context-Free Langauges Closure Properties of Context-Free Languages. David Galles Automata Theory CS411-2015F-10 Non-Context-Free Langauges Closure Properties of Context-Free Languages David Galles Department of Computer Science University of San Francisco 10-0: Fun with CFGs Create

More information

Mathematical Olympiad for Girls

Mathematical Olympiad for Girls UKMT UKMT UKMT United Kingdom Mathematics Trust Mathematical Olympiad for Girls Organised by the United Kingdom Mathematics Trust These are polished solutions and do not illustrate the process of failed

More information

INFINITY: CARDINAL NUMBERS

INFINITY: CARDINAL NUMBERS INFINITY: CARDINAL NUMBERS BJORN POONEN 1 Some terminology of set theory N := {0, 1, 2, 3, } Z := {, 2, 1, 0, 1, 2, } Q := the set of rational numbers R := the set of real numbers C := the set of complex

More information

Subdirectly irreducible commutative idempotent semirings

Subdirectly irreducible commutative idempotent semirings Subdirectly irreducible commutative idempotent semirings Ivan Chajda Helmut Länger Palacký University Olomouc, Olomouc, Czech Republic, email: ivan.chajda@upol.cz Vienna University of Technology, Vienna,

More information

On representable graphs

On representable graphs On representable graphs Sergey Kitaev and Artem Pyatkin 3rd November 2005 Abstract A graph G = (V, E) is representable if there exists a word W over the alphabet V such that letters x and y alternate in

More information

VC-DENSITY FOR TREES

VC-DENSITY FOR TREES VC-DENSITY FOR TREES ANTON BOBKOV Abstract. We show that for the theory of infinite trees we have vc(n) = n for all n. VC density was introduced in [1] by Aschenbrenner, Dolich, Haskell, MacPherson, and

More information