COMP 182 Algorithmic Thinking. Relations. Luay Nakhleh Computer Science Rice University

Size: px
Start display at page:

Download "COMP 182 Algorithmic Thinking. Relations. Luay Nakhleh Computer Science Rice University"

Transcription

1 COMP 182 Algorithmic Thinking Relations Luay Nakhleh Computer Science Rice University

2 Chapter 9, Section 1-6 Reading Material

3 When we defined the Sorting Problem, we stated that to sort the list, the elements must be totally order-able. Mathematical induction doesn t apply only to positive integers; it applies to any well-ordered set. What is an order? What is a total order? What is an order that is not total? What is a well-ordered set? To answer this question, we learn about relations and special classes of relations, including orders.

4 Relations also play an important role beyond the questions on the previous slide. For example, the relational data model for representing databases is based on the concept of a relation.

5 Binary Relations Let A and B be sets. A binary relation from A to B is a subset of A B. arb denotes (a, b) 2 R a 6 Rb denotes (a, b) /2 R

6 Binary Relations and Functions If f is a function from A to B, then f is a relation from A to B. The converse is not necessarily true.

7 Relation on a Set A relation on a set A is a relation from A to A. We have already seen such a relation: E V V.

8 Properties of Relations A relation R on a set A is called reflexive if (a, a) R for every element a A. A relation R on a set A is called symmetric if (b, a) R whenever (a, b) R, for all a,b A. A relation R on a set A such that for all a,b A, if(a, b) R and (b, a) R, then a = b is called antisymmetric. A relation R on a set A is called transitive if whenever (a, b) R and (b, c) R, then (a, c) R, for all a,b,c A.

9 Properties of Relations R 1 = {(a, b) a divides b} R 2 = {(a, b) a <b} R 3 = {(a, b) a apple b} R 4 = {(a, b) a 7 b} R 5 = {(A, B) A \ B 6= ;}

10 Combining Relations Relations are sets; therefore, set operations apply to them (e.g., you can take the union of two relations). Furthermore, if R is a relation from A to B and S is a relation from B to C, then the composite of R and S, denoted by S R, is {(a, c) a 2 A, c 2 C, 9b 2 B,((a, b) 2 R ^ (b, c) 2 S)}

11 Relations Beyond Two Sets One can define a relation on any number of sets. Let A 1,A 2,...,A n be sets.an n-ary relation on these sets is a subset of A 1 A 2 A n. The sets A 1,A 2,...,A n are called the domains of the relation, and n is called its degree. Central to database theory and implementation.

12 Representing Relations Assume A={a 1,a 2,,a m } and B={b 1,b 2,,b n }. A relation from A to B can be represented with an m n matrix M where: m ij = { 1if(ai,b j ) R, 0if(a i,b j )/ R.

13 Representing Relations Relations can also be represented using digraphs, but ones that allow self loops. a b d c

14 Closures of Relations Let R be a relation on set A. Let P be some property of relations (e.g., reflexivity). If there is a relation S with property P containing R such that S is a subset of every relation with property P containing R, then S is called the closure of R with respect to P.

15 Closures of Relations Let R be a relation on set A. Reflexive closure of R: Symmetric closure of R: S = R [{(a, a) :a 2 A} S = R [{(a, b) :(b, a) 2 R}

16 Transitive Closure Let R be a relation on set A. Recall that R can be represented as a digraph. R n is a relation on set that satisfies: (a,b) R n iff there is a path of length n from a to b in the graph of relation R. The transitive closure of R, denoted by R*, is R = n=1 R n.

17 Transitive Closure Can you devise an algorithm for computing the transitive closure of a relation? Hint: Think of matrix multiplication!

18 Equivalence Relations A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive. Two elements a and bthat are related by an equivalence relation are called equivalent. The notation a bis often used to denote that a and bare equivalent elements with respect to a particular equivalence relation. R = {(a, b) a m b}

19 Equivalence Relations Let R be an equivalence relation on a set A. The set of all elements that are related to an element a of A is called the equivalence class of a. The equivalence class of a with respect to R is denoted by [a] R. When only one relation is under consideration, we can delete the subscript R and write [a] for this equivalence class. [a] R ={s (a, s) R} [ ] Let R be an equivalence relation on a set S. Then the equivalence classes of R form a partition of S. Conversely, given a partition {A i i I} of the set S, there is an equivalence relation R that has the sets A i, i I, as its equivalence classes.

20 Partial Orders

21 A relation R on a set S is called a partial ordering or partial order if it is reflexive, antisymmetric, and transitive. A set S together with a partial ordering R is called a partially ordered set, or poset, and is denoted by (S, R). Members of S are called elements of the poset. S 1 = N R 1 = {(a, b) a apple b} S 2 =2 {1,2,3,4,5,6} R 2 = {(A, B) A B} The elements a and b of a poset (S, ) are called comparable if either a b or b a. When a and b are elements of S such that neither a b nor b a, a and b are called incomparable.

22 Total Order If (S, ) is a poset and every two elements of S are comparable, S is called a totally ordered or linearly ordered set, and is called a total order or a linear order. A totally ordered set is also called a chain. S 1 = N R 1 = {(a, b) a apple b} S 2 =2 {1,2,3,4,5,6} R 2 = {(A, B) A B}

23 <latexit sha1_base64="nffla+vvvyeeoxpyxay0wmamy8g=">aaacexicbvdlssnafj34rpuvdelmsagfosrf0i1qdooyon1ge8nkom2hth7m3agl9bfc+ctuxcji1p07/8zjm4vtpxdhcm693huphwuuwlj+jkxlldw19cjgcxnre2fx3ntvqiirldvojclz9oligoesarwea8eskcaxrouprzk/9cik4lf4b6oyuqhph7zhkqetewb51qvic5w6aygb7+p78cmjdoahtm2knlmyktyeejhyosmhhhxp/ha6eu0cfgivrkmobcxgpkqcp4kni06iwezokprzr9oq6jvuovloji+10sw9sookau/uvxmpczqabb7uzg5u814m/ud1euiduykp4wryskeleonaeoeshtzlkleqi00ilvzfiumasejbh1juidjzly+szrviwxx75rruu8zjkkbdditkyeznqiauur01eevp6aw9oxfj2xg1pozpaeuskc8cobkyx78hpjvk</latexit> <latexit sha1_base64="nffla+vvvyeeoxpyxay0wmamy8g=">aaacexicbvdlssnafj34rpuvdelmsagfosrf0i1qdooyon1ge8nkom2hth7m3agl9bfc+ctuxcji1p07/8zjm4vtpxdhcm693huphwuuwlj+jkxlldw19cjgcxnre2fx3ntvqiirldvojclz9oligoesarwea8eskcaxrouprzk/9cik4lf4b6oyuqhph7zhkqetewb51qvic5w6aygb7+p78cmjdoahtm2knlmyktyeejhyosmhhhxp/ha6eu0cfgivrkmobcxgpkqcp4kni06iwezokprzr9oq6jvuovloji+10sw9sookau/uvxmpczqabb7uzg5u814m/ud1euiduykp4wryskeleonaeoeshtzlkleqi00ilvzfiumasejbh1juidjzly+szrviwxx75rruu8zjkkbdditkyeznqiauur01eevp6aw9oxfj2xg1pozpaeuskc8cobkyx78hpjvk</latexit> <latexit sha1_base64="nffla+vvvyeeoxpyxay0wmamy8g=">aaacexicbvdlssnafj34rpuvdelmsagfosrf0i1qdooyon1ge8nkom2hth7m3agl9bfc+ctuxcji1p07/8zjm4vtpxdhcm693huphwuuwlj+jkxlldw19cjgcxnre2fx3ntvqiirldvojclz9oligoesarwea8eskcaxrouprzk/9cik4lf4b6oyuqhph7zhkqetewb51qvic5w6aygb7+p78cmjdoahtm2knlmyktyeejhyosmhhhxp/ha6eu0cfgivrkmobcxgpkqcp4kni06iwezokprzr9oq6jvuovloji+10sw9sookau/uvxmpczqabb7uzg5u814m/ud1euiduykp4wryskeleonaeoeshtzlkleqi00ilvzfiumasejbh1juidjzly+szrviwxx75rruu8zjkkbdditkyeznqiauur01eevp6aw9oxfj2xg1pozpaeuskc8cobkyx78hpjvk</latexit> <latexit sha1_base64="nffla+vvvyeeoxpyxay0wmamy8g=">aaacexicbvdlssnafj34rpuvdelmsagfosrf0i1qdooyon1ge8nkom2hth7m3agl9bfc+ctuxcji1p07/8zjm4vtpxdhcm693huphwuuwlj+jkxlldw19cjgcxnre2fx3ntvqiirldvojclz9oligoesarwea8eskcaxrouprzk/9cik4lf4b6oyuqhph7zhkqetewb51qvic5w6aygb7+p78cmjdoahtm2knlmyktyeejhyosmhhhxp/ha6eu0cfgivrkmobcxgpkqcp4kni06iwezokprzr9oq6jvuovloji+10sw9sookau/uvxmpczqabb7uzg5u814m/ud1euiduykp4wryskeleonaeoeshtzlkleqi00ilvzfiumasejbh1juidjzly+szrviwxx75rruu8zjkkbdditkyeznqiauur01eevp6aw9oxfj2xg1pozpaeuskc8cobkyx78hpjvk</latexit> (S, ) is a well-ordered set if it is a poset such that is a total ordering and every nonempty subset of S has a least element. S 1 = N R 1 = {(a, b) a apple b} S 2 = Z + Z + R 2 = {((a 1,b 1 ), (a 2,b 2 )) : (a 1 <a 2 ) _ (a 1 = a 2 ^ b 1 <b 2 )}

24 THE PRINCIPLE OF WELL-ORDERED INDUCTION Suppose that S is a wellordered set. Then P (x) is true for all x S, if INDUCTIVE STEP: For every y S, if P (x) is true for all x S with x y, then P (y) is true.

25 Hasse Diagrams Let (S,R) be a finite poset. The Hasse diagram of (S,R) is a digraph g=(v,e) where V=S R={(a,b) arb and c (arc and crb)}

26 Hasse Diagrams 4 GURE 2 Const 3 ({1, 2, 3, 4}, ) 2 1

27 Hasse Diagrams {a, b, c} {a,c} {a,b} {b, c} {a} {c} {b} Hasse diagram of (P({a,b,c}), )

28 Maximal and Minimal Elements Let (S,R) be a poset and a,b S. Element a is maximal if there is no element c S (c a) such that arc. Element b is minimal if there is no element c S (c b) such that crb.

29 Greatest and Least Elements Let (S,R) be a poset and a,b S. Element a is the greatest element if for every element c S, cra. Element b is the least element if for every element c S, brc. The greatest and least elements are unique when they exist.

30 What are the maximal, minimal, greatest, and least elements of the posets given by the following four Hasse diagrams? b c d d e d d c c b c a a b a b a (a) (b) (c) (d)

31 Questions?

Section Summary. Relations and Functions Properties of Relations. Combining Relations

Section Summary. Relations and Functions Properties of Relations. Combining Relations Chapter 9 Chapter Summary Relations and Their Properties n-ary Relations and Their Applications (not currently included in overheads) Representing Relations Closures of Relations (not currently included

More information

Definition: A binary relation R from a set A to a set B is a subset R A B. Example:

Definition: A binary relation R from a set A to a set B is a subset R A B. Example: Chapter 9 1 Binary Relations Definition: A binary relation R from a set A to a set B is a subset R A B. Example: Let A = {0,1,2} and B = {a,b} {(0, a), (0, b), (1,a), (2, b)} is a relation from A to B.

More information

CSC Discrete Math I, Spring Relations

CSC Discrete Math I, Spring Relations CSC 125 - Discrete Math I, Spring 2017 Relations Binary Relations Definition: A binary relation R from a set A to a set B is a subset of A B Note that a relation is more general than a function Example:

More information

Relations. Relations of Sets N-ary Relations Relational Databases Binary Relation Properties Equivalence Relations. Reading (Epp s textbook)

Relations. Relations of Sets N-ary Relations Relational Databases Binary Relation Properties Equivalence Relations. Reading (Epp s textbook) Relations Relations of Sets N-ary Relations Relational Databases Binary Relation Properties Equivalence Relations Reading (Epp s textbook) 8.-8.3. Cartesian Products The symbol (a, b) denotes the ordered

More information

Chapter 9: Relations Relations

Chapter 9: Relations Relations Chapter 9: Relations 9.1 - Relations Definition 1 (Relation). Let A and B be sets. A binary relation from A to B is a subset R A B, i.e., R is a set of ordered pairs where the first element from each pair

More information

What are relations? f: A B

What are relations? f: A B What are relations? Ch 9.1 What are relations? Notation Informally, a relation is a set of pairs of objects (or in general, set of n-tuples) that are related to each other by some rule. We will focus first

More information

Massachusetts Institute of Technology 6.042J/18.062J, Fall 02: Mathematics for Computer Science Professor Albert Meyer and Dr.

Massachusetts Institute of Technology 6.042J/18.062J, Fall 02: Mathematics for Computer Science Professor Albert Meyer and Dr. Massachusetts Institute of Technology 6.042J/18.062J, Fall 02: Mathematics for Computer Science Professor Albert Meyer and Dr. Radhika Nagpal Quiz 1 Appendix Appendix Contents 1 Induction 2 2 Relations

More information

Equivalence relations

Equivalence relations Equivalence relations R A A is an equivalence relation if R is 1. reflexive (a, a) R 2. symmetric, and (a, b) R (b, a) R 3. transitive. (a, b), (b, c) R (a, c) R Example: Let S be a relation on people

More information

Sets and Motivation for Boolean algebra

Sets and Motivation for Boolean algebra SET THEORY Basic concepts Notations Subset Algebra of sets The power set Ordered pairs and Cartesian product Relations on sets Types of relations and their properties Relational matrix and the graph of

More information

Discrete Mathematics. 2. Relations

Discrete Mathematics. 2. Relations Discrete Mathematics 2. Relations Binary Relations Let A, B be any two sets. A binary relation R from A to B is a subset of A B. E.g., Let < : N N : {(n,m) n < m} The notation a R b or arb means (a,b)îr.

More information

MAD 3105 PRACTICE TEST 2 SOLUTIONS

MAD 3105 PRACTICE TEST 2 SOLUTIONS MAD 3105 PRACTICE TEST 2 SOLUTIONS 1. Let R be the relation defined below. Determine which properties, reflexive, irreflexive, symmetric, antisymmetric, transitive, the relation satisfies. Prove each answer.

More information

Relations Graphical View

Relations Graphical View Introduction Relations Computer Science & Engineering 235: Discrete Mathematics Christopher M. Bourke cbourke@cse.unl.edu Recall that a relation between elements of two sets is a subset of their Cartesian

More information

Math.3336: Discrete Mathematics. Chapter 9 Relations

Math.3336: Discrete Mathematics. Chapter 9 Relations Math.3336: Discrete Mathematics Chapter 9 Relations Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu Fall 2018

More information

CHAPTER 1. Relations. 1. Relations and Their Properties. Discussion

CHAPTER 1. Relations. 1. Relations and Their Properties. Discussion CHAPTER 1 Relations 1. Relations and Their Properties 1.1. Definition of a Relation. Definition 1.1.1. A binary relation from a set A to a set B is a subset R A B. If (a, b) R we say a is Related to b

More information

Multiple Choice Questions for Review

Multiple Choice Questions for Review Equivalence and Order Multiple Choice Questions for Review In each case there is one correct answer (given at the end of the problem set). Try to work the problem first without looking at the answer. Understand

More information

Notes. Relations. Introduction. Notes. Relations. Notes. Definition. Example. Slides by Christopher M. Bourke Instructor: Berthe Y.

Notes. Relations. Introduction. Notes. Relations. Notes. Definition. Example. Slides by Christopher M. Bourke Instructor: Berthe Y. Relations Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Spring 2006 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 7.1, 7.3 7.5 of Rosen cse235@cse.unl.edu

More information

Section 7.1 Relations and Their Properties. Definition: A binary relation R from a set A to a set B is a subset R A B.

Section 7.1 Relations and Their Properties. Definition: A binary relation R from a set A to a set B is a subset R A B. Section 7.1 Relations and Their Properties Definition: A binary relation R from a set A to a set B is a subset R A B. Note: there are no constraints on relations as there are on functions. We have a common

More information

Reading 11 : Relations and Functions

Reading 11 : Relations and Functions CS/Math 240: Introduction to Discrete Mathematics Fall 2015 Reading 11 : Relations and Functions Instructor: Beck Hasti and Gautam Prakriya In reading 3, we described a correspondence between predicates

More information

Discrete Mathematics. Chapter 4. Relations and Digraphs Sanguk Noh

Discrete Mathematics. Chapter 4. Relations and Digraphs Sanguk Noh Discrete Mathematics Chapter 4. Relations and Digraphs Sanguk Noh Table Product sets and partitions Relations and digraphs Paths in relations and digraphs Properties of relations Equivalence relations

More information

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska LECTURE 1 Course Web Page www3.cs.stonybrook.edu/ cse303 The webpage contains: lectures notes slides; very detailed solutions to

More information

Outline Inverse of a Relation Properties of Relations. Relations. Alice E. Fischer. April, 2018

Outline Inverse of a Relation Properties of Relations. Relations. Alice E. Fischer. April, 2018 Relations Alice E. Fischer April, 2018 1 Inverse of a Relation 2 Properties of Relations The Inverse of a Relation Let R be a relation from A to B. Define the inverse relation, R 1 from B to A as follows.

More information

a + b = b + a and a b = b a. (a + b) + c = a + (b + c) and (a b) c = a (b c). a (b + c) = a b + a c and (a + b) c = a c + b c.

a + b = b + a and a b = b a. (a + b) + c = a + (b + c) and (a b) c = a (b c). a (b + c) = a b + a c and (a + b) c = a c + b c. Properties of the Integers The set of all integers is the set and the subset of Z given by Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }, N = {0, 1, 2, 3, 4, }, is the set of nonnegative integers (also called

More information

Properties of the Integers

Properties of the Integers Properties of the Integers The set of all integers is the set and the subset of Z given by Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }, N = {0, 1, 2, 3, 4, }, is the set of nonnegative integers (also called

More information

Relations, Functions, and Sequences

Relations, Functions, and Sequences MCS-236: Graph Theory Handout #A3 San Skulrattanakulchai Gustavus Adolphus College Sep 13, 2010 Relations, Functions, and Sequences Relations An ordered pair can be constructed from any two mathematical

More information

Relations. We have seen several types of abstract, mathematical objects, including propositions, predicates, sets, and ordered pairs and tuples.

Relations. We have seen several types of abstract, mathematical objects, including propositions, predicates, sets, and ordered pairs and tuples. Relations We have seen several types of abstract, mathematical objects, including propositions, predicates, sets, and ordered pairs and tuples. Relations use ordered tuples to represent relationships among

More information

Relations, Functions, Binary Relations (Chapter 1, Sections 1.2, 1.3)

Relations, Functions, Binary Relations (Chapter 1, Sections 1.2, 1.3) Relations, Functions, Binary Relations (Chapter 1, Sections 1.2, 1.3) CmSc 365 Theory of Computation 1. Relations Definition: Let A and B be two sets. A relation R from A to B is any set of ordered pairs

More information

Relations. Relations. Definition. Let A and B be sets.

Relations. Relations. Definition. Let A and B be sets. Relations Relations. Definition. Let A and B be sets. A relation R from A to B is a subset R A B. If a A and b B, we write a R b if (a, b) R, and a /R b if (a, b) / R. A relation from A to A is called

More information

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska LECTURE 3 CHAPTER 1 SETS, RELATIONS, and LANGUAGES 6. Closures and Algorithms 7. Alphabets and Languages 8. Finite Representation

More information

Today. Binary relations establish a relationship between elements of two sets

Today. Binary relations establish a relationship between elements of two sets Today Relations Binary relations and properties Relationship to functions n-ary relations Definitions Binary relations establish a relationship between elements of two sets Definition: Let A and B be two

More information

Automata and Languages

Automata and Languages Automata and Languages Prof. Mohamed Hamada Software Engineering Lab. The University of Aizu Japan Mathematical Background Mathematical Background Sets Relations Functions Graphs Proof techniques Sets

More information

1.4 Equivalence Relations and Partitions

1.4 Equivalence Relations and Partitions 24 CHAPTER 1. REVIEW 1.4 Equivalence Relations and Partitions 1.4.1 Equivalence Relations Definition 1.4.1 (Relation) A binary relation or a relation on a set S is a set R of ordered pairs. This is a very

More information

Relations. P. Danziger. We may represent a relation by a diagram in which a line is drawn between two elements if they are related.

Relations. P. Danziger. We may represent a relation by a diagram in which a line is drawn between two elements if they are related. - 10 Relations P. Danziger 1 Relations (10.1) Definition 1 1. A relation from a set A to a set B is a subset R of A B. 2. Given (x, y) R we say that x is related to y and write xry. 3. If (x, y) R we say

More information

Relations --- Binary Relations. Debdeep Mukhopadhyay IIT Madras

Relations --- Binary Relations. Debdeep Mukhopadhyay IIT Madras Relations --- Binary Relations Debdeep Mukhopadhyay IIT Madras What is a relation? The mathematical concept of relation is based on the common notion of relationships among objects: One box is heavier

More information

Relationships between elements of sets occur in many contexts. Every day we deal with

Relationships between elements of sets occur in many contexts. Every day we deal with C H A P T E R 9 Relations 9.1 Relations and Their Properties 9.2 n-ary Relations and Their Applications 9.3 Representing Relations 9.4 Closures of Relations 9.5 Equivalence Relations 9.6 Partial Orderings

More information

Discrete Structures: Sample Questions, Exam 2, SOLUTIONS

Discrete Structures: Sample Questions, Exam 2, SOLUTIONS Discrete Structures: Sample Questions, Exam 2, SOLUTIONS (This is longer than the actual test.) 1. Show that any postage of 8 cents or more can be achieved by using only -cent and 5-cent stamps. We proceed

More information

{a, b, c} {a, b} {a, c} {b, c} {a}

{a, b, c} {a, b} {a, c} {b, c} {a} Section 4.3 Order Relations A binary relation is an partial order if it transitive and antisymmetric. If R is a partial order over the set S, we also say, S is a partially ordered set or S is a poset.

More information

Deviations from the Mean

Deviations from the Mean Deviations from the Mean The Markov inequality for non-negative RVs Variance Definition The Bienaymé Inequality For independent RVs The Chebyeshev Inequality Markov s Inequality For any non-negative random

More information

Ranking Score Vectors of Tournaments

Ranking Score Vectors of Tournaments Utah State University DigitalCommons@USU All Graduate Plan B and other Reports Graduate Studies 5-2011 Ranking Score Vectors of Tournaments Sebrina Ruth Cropper Utah State University Follow this and additional

More information

Discrete Structures: Sample Questions, Exam 2, SOLUTIONS

Discrete Structures: Sample Questions, Exam 2, SOLUTIONS Discrete Structures: Sample Questions, Exam, SOLUTIONS This is longer than the actual test.) 1. List all the strings over X = {a, b, c} of length or less. λ, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc..

More information

Math 2534 Solution to Test 3A Spring 2010

Math 2534 Solution to Test 3A Spring 2010 Math 2534 Solution to Test 3A Spring 2010 Problem 1: (10pts) Prove that R is a transitive relation on Z when given that mrpiff m pmod d (ie. d ( m p) ) Solution: The relation R is transitive, if arb and

More information

3. R = = on Z. R, S, A, T.

3. R = = on Z. R, S, A, T. 6 Relations Let R be a relation on a set A, i.e., a subset of AxA. Notation: xry iff (x, y) R AxA. Recall: A relation need not be a function. Example: The relation R 1 = {(x, y) RxR x 2 + y 2 = 1} is not

More information

Rela%ons and Their Proper%es. Slides by A. Bloomfield

Rela%ons and Their Proper%es. Slides by A. Bloomfield Rela%ons and Their Proper%es Slides by A. Bloomfield What is a rela%on Let A and B be sets. A binary rela%on R is a subset of A B Example Let A be the students in a the CS major A = {Alice, Bob, Claire,

More information

RED. Name: Instructor: Pace Nielsen Math 290 Section 1: Winter 2014 Final Exam

RED. Name: Instructor: Pace Nielsen Math 290 Section 1: Winter 2014 Final Exam RED Name: Instructor: Pace Nielsen Math 290 Section 1: Winter 2014 Final Exam Note that the first 10 questions are true-false. Mark A for true, B for false. Questions 11 through 20 are multiple choice

More information

Lecture 4.3: Closures and Equivalence Relations

Lecture 4.3: Closures and Equivalence Relations Lecture 4.3: Closures and CS 250, Discrete Structures, Fall 2015 Nitesh Saxena Adopted from previous lectures by Cinda Heeren Course Admin Mid-Term 2 Exam Solution will be posted soon Should have the results

More information

Tree sets. Reinhard Diestel

Tree sets. Reinhard Diestel 1 Tree sets Reinhard Diestel Abstract We study an abstract notion of tree structure which generalizes treedecompositions of graphs and matroids. Unlike tree-decompositions, which are too closely linked

More information

Today s topics. Binary Relations. Inverse Relations. Complementary Relations. Let R:A,B be any binary relation.

Today s topics. Binary Relations. Inverse Relations. Complementary Relations. Let R:A,B be any binary relation. Today s topics Binary Relations Relations Kinds of relations n-ary relations Representations of relations Reading: Sections 7.-7.3 Upcoming Upcoming Minesweeper Let A, B be any sets. A binary relation

More information

Week 4-5: Generating Permutations and Combinations

Week 4-5: Generating Permutations and Combinations Week 4-5: Generating Permutations and Combinations February 27, 2017 1 Generating Permutations We have learned that there are n! permutations of {1, 2,...,n}. It is important in many instances to generate

More information

Packet #5: Binary Relations. Applied Discrete Mathematics

Packet #5: Binary Relations. Applied Discrete Mathematics Packet #5: Binary Relations Applied Discrete Mathematics Table of Contents Binary Relations Summary Page 1 Binary Relations Examples Page 2 Properties of Relations Page 3 Examples Pages 4-5 Representations

More information

Worksheet on Relations

Worksheet on Relations Worksheet on Relations Recall the properties that relations can have: Definition. Let R be a relation on the set A. R is reflexive if for all a A we have ara. R is irreflexive or antireflexive if for all

More information

14 Equivalence Relations

14 Equivalence Relations 14 Equivalence Relations Tom Lewis Fall Term 2010 Tom Lewis () 14 Equivalence Relations Fall Term 2010 1 / 10 Outline 1 The definition 2 Congruence modulo n 3 Has-the-same-size-as 4 Equivalence classes

More information

1. To be a grandfather. Objects of our consideration are people; a person a is associated with a person b if a is a grandfather of b.

1. To be a grandfather. Objects of our consideration are people; a person a is associated with a person b if a is a grandfather of b. 20 [161016-1020 ] 3.3 Binary relations In mathematics, as in everyday situations, we often speak about a relationship between objects, which means an idea of two objects being related or associated one

More information

Generating Permutations and Combinations

Generating Permutations and Combinations Generating Permutations and Combinations March 0, 005 Generating Permutations We have learned that there are n! permutations of {,,, n} It is important in many instances to generate a list of such permutations

More information

EQUIVALENCE RELATIONS (NOTES FOR STUDENTS) 1. RELATIONS

EQUIVALENCE RELATIONS (NOTES FOR STUDENTS) 1. RELATIONS EQUIVALENCE RELATIONS (NOTES FOR STUDENTS) LIOR SILBERMAN Version 1.0 compiled September 9, 2015. 1.1. List of examples. 1. RELATIONS Equality of real numbers: for some x,y R we have x = y. For other pairs

More information

Section 8.4 Closures of Relations

Section 8.4 Closures of Relations Section 8.4 Closures of Relations Definition: The closure of a relation R with respect to property P is the relation obtained by adding the minimum number of ordered pairs to R to obtain property P. In

More information

MITOCW Lec 11 MIT 6.042J Mathematics for Computer Science, Fall 2010

MITOCW Lec 11 MIT 6.042J Mathematics for Computer Science, Fall 2010 MITOCW Lec 11 MIT 6.042J Mathematics for Computer Science, Fall 2010 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high

More information

GENERALIZED DIFFERENCE POSETS AND ORTHOALGEBRAS. 0. Introduction

GENERALIZED DIFFERENCE POSETS AND ORTHOALGEBRAS. 0. Introduction Acta Math. Univ. Comenianae Vol. LXV, 2(1996), pp. 247 279 247 GENERALIZED DIFFERENCE POSETS AND ORTHOALGEBRAS J. HEDLÍKOVÁ and S. PULMANNOVÁ Abstract. A difference on a poset (P, ) is a partial binary

More information

Math 42, Discrete Mathematics

Math 42, Discrete Mathematics c Fall 2018 last updated 12/05/2018 at 15:47:21 For use by students in this class only; all rights reserved. Note: some prose & some tables are taken directly from Kenneth R. Rosen, and Its Applications,

More information

Denotational Semantics

Denotational Semantics 5 Denotational Semantics In the operational approach, we were interested in how a program is executed. This is contrary to the denotational approach, where we are merely interested in the effect of executing

More information

Selected Solutions to Even Problems, Part 3

Selected Solutions to Even Problems, Part 3 Selected Solutions to Even Problems, Part 3 March 14, 005 Page 77 6. If one selects 101 integers from among {1,,..., 00}, then at least two of these numbers must be consecutive, and therefore coprime (which

More information

Definition 2.3. We define addition and multiplication of matrices as follows.

Definition 2.3. We define addition and multiplication of matrices as follows. 14 Chapter 2 Matrices In this chapter, we review matrix algebra from Linear Algebra I, consider row and column operations on matrices, and define the rank of a matrix. Along the way prove that the row

More information

Indian Institute of Information Technology Design and Manufacturing, Kancheepuram Chennai , India. Instructor N.Sadagopan Scribe: P.

Indian Institute of Information Technology Design and Manufacturing, Kancheepuram Chennai , India. Instructor N.Sadagopan Scribe: P. Indian Institute of Information Technology Design and Manufacturing, Kancheepuram Chennai 600 127, India An Autonomous Institute under MHRD, Govt of India An Institute of National Importance www.iiitdm.ac.in

More information

Sequences and Summations

Sequences and Summations COMP 182 Algorithmic Thinking Sequences and Summations Luay Nakhleh Computer Science Rice University Chapter 2, Section 4 Reading Material Sequences A sequence is a function from a subset of the set of

More information

Tutorial Obtain the principal disjunctive normal form and principal conjunction form of the statement

Tutorial Obtain the principal disjunctive normal form and principal conjunction form of the statement Tutorial - 1 1. Obtain the principal disjunctive normal form and principal conjunction form of the statement Let S P P Q Q R P P Q Q R A: P Q Q R P Q R P Q Q R Q Q R A S Minterm Maxterm T T T F F T T T

More information

Lecture Notes 1 Basic Concepts of Mathematics MATH 352

Lecture Notes 1 Basic Concepts of Mathematics MATH 352 Lecture Notes 1 Basic Concepts of Mathematics MATH 352 Ivan Avramidi New Mexico Institute of Mining and Technology Socorro, NM 87801 June 3, 2004 Author: Ivan Avramidi; File: absmath.tex; Date: June 11,

More information

CIS 375 Intro to Discrete Mathematics Exam 3 (Section M004: Blue) 6 December Points Possible

CIS 375 Intro to Discrete Mathematics Exam 3 (Section M004: Blue) 6 December Points Possible Name: CIS 375 Intro to Discrete Mathematics Exam 3 (Section M004: Blue) 6 December 2016 Question Points Possible Points Received 1 12 2 14 3 14 4 12 5 16 6 16 7 16 Total 100 Instructions: 1. This exam

More information

5. Partitions and Relations Ch.22 of PJE.

5. Partitions and Relations Ch.22 of PJE. 5. Partitions and Relations Ch. of PJE. We now generalize the ideas of congruence classes of Z to classes of any set X. The properties of congruence classes that we start with here are that they are disjoint

More information

Equivalence, Order, and Inductive Proof

Equivalence, Order, and Inductive Proof 2/ chapter 4 Equivalence, Order, and Inductive Proof Good order is the foundation of all things. Edmund Burke (729 797) Classifying things and ordering things are activities in which we all engage from

More information

Nonnegative Matrices I

Nonnegative Matrices I Nonnegative Matrices I Daisuke Oyama Topics in Economic Theory September 26, 2017 References J. L. Stuart, Digraphs and Matrices, in Handbook of Linear Algebra, Chapter 29, 2006. R. A. Brualdi and H. J.

More information

Diskrete Mathematik Solution 6

Diskrete Mathematik Solution 6 ETH Zürich, D-INFK HS 2018, 30. October 2018 Prof. Ueli Maurer Marta Mularczyk Diskrete Mathematik Solution 6 6.1 Partial Order Relations a) i) 11 and 12 are incomparable, since 11 12 and 12 11. ii) 4

More information

Outline. We will now investigate the structure of this important set.

Outline. We will now investigate the structure of this important set. The Reals Outline As we have seen, the set of real numbers, R, has cardinality c. This doesn't tell us very much about the reals, since there are many sets with this cardinality and cardinality doesn't

More information

Relations MATH Relations. Benjamin V.C. Collins, James A. Swenson MATH 2730

Relations MATH Relations. Benjamin V.C. Collins, James A. Swenson MATH 2730 MATH 2730 Benjamin V.C. Collins James A. Swenson among integers equals a = b is true for some pairs (a, b) Z Z, but not for all pairs. is less than a < b is true for some pairs (a, b) Z Z, but not for

More information

Well-Ordering Principle. Axiom: Every nonempty subset of Z + has a least element. That is, if S Z + and S, then S has a smallest element.

Well-Ordering Principle. Axiom: Every nonempty subset of Z + has a least element. That is, if S Z + and S, then S has a smallest element. Well-Ordering Principle Axiom: Every nonempty subset of Z + has a least element. That is, if S Z + and S, then S has a smallest element. Well-Ordering Principle Example: Use well-ordering property to prove

More information

Mathematical Foundations of Logic and Functional Programming

Mathematical Foundations of Logic and Functional Programming Mathematical Foundations of Logic and Functional Programming lecture notes The aim of the course is to grasp the mathematical definition of the meaning (or, as we say, the semantics) of programs in two

More information

CIS 375 Intro to Discrete Mathematics Exam 3 (Section M001: Green) 6 December Points Possible

CIS 375 Intro to Discrete Mathematics Exam 3 (Section M001: Green) 6 December Points Possible Name: CIS 375 Intro to Discrete Mathematics Exam 3 (Section M001: Green) 6 December 2016 Question Points Possible Points Received 1 12 2 14 3 14 4 12 5 16 6 16 7 16 Total 100 Instructions: 1. This exam

More information

Automated Program Verification and Testing 15414/15614 Fall 2016 Lecture 7: Procedures for First-Order Theories, Part 1

Automated Program Verification and Testing 15414/15614 Fall 2016 Lecture 7: Procedures for First-Order Theories, Part 1 Automated Program Verification and Testing 15414/15614 Fall 2016 Lecture 7: Procedures for First-Order Theories, Part 1 Matt Fredrikson mfredrik@cs.cmu.edu October 17, 2016 Matt Fredrikson Theory Procedures

More information

Discrete Structures, Final Exam

Discrete Structures, Final Exam Discrete Structures, Final Exam Monday, May 11, 2009 SOLUTIONS 1. (40 pts) Short answer. Put your answer in the box. No partial credit. [ ] 0 1 (a) If A = and B = 1 0 [ ] 0 0 1. 0 1 1 [ 0 1 1 0 0 1 ],

More information

1. A poset P has no chain on five elements and no antichain on five elements. Determine, with proof, the largest possible number of elements in P.

1. A poset P has no chain on five elements and no antichain on five elements. Determine, with proof, the largest possible number of elements in P. 1. A poset P has no chain on five elements and no antichain on five elements. Determine, with proof, the largest possible number of elements in P. By Mirsky s Theorem, since P has no chain on five elements,

More information

Definition: A binary relation R from a set A to a set B is a subset R A B. Example:

Definition: A binary relation R from a set A to a set B is a subset R A B. Example: Section 9.1 Rela%onships Relationships between elements of sets occur in many contexts. Every day we deal with relationships such as those between a business and its telephone number, an employee and his

More information

Exam 2. Is g one-to-one? Is g onto? Why? Solution: g is not one-to-one, since for c A, g(b) = g(c) = c. g is not onto, since a / g(a).

Exam 2. Is g one-to-one? Is g onto? Why? Solution: g is not one-to-one, since for c A, g(b) = g(c) = c. g is not onto, since a / g(a). Discrete Structures: Exam 2 Solutions to Sample Questions, 1. Let A = B = {a, b, c}. Consider the relation g = {(a, b), (b, c), (c, c)}. Is g one-to-one? Is g onto? Why? Solution: g is not one-to-one,

More information

Chapter 6. Relations. 6.1 Relations

Chapter 6. Relations. 6.1 Relations Chapter 6 Relations Mathematical relations are an extremely general framework for specifying relationships between pairs of objects. This chapter surveys the types of relations that can be constructed

More information

Divisor Problems HAROLD B. REITER.

Divisor Problems HAROLD B. REITER. Divisor Problems HAROLD B REITER UNIVERSITY OF NORTH CAROLINA CHARLOTTE http://wwwmathunccedu/~hbreiter The purpose of this note is to find and study a method for determining and counting all the positive

More information

Writing Assignment 2 Student Sample Questions

Writing Assignment 2 Student Sample Questions Writing Assignment 2 Student Sample Questions 1. Let P and Q be statements. Then the statement (P = Q) ( P Q) is a tautology. 2. The statement If the sun rises from the west, then I ll get out of the bed.

More information

Outline for Today. Binary Relations. Equivalence Relations. Partial Orders. Quick Midterm Review

Outline for Today. Binary Relations. Equivalence Relations. Partial Orders. Quick Midterm Review Binary Relations Outline for Today Binary Relations Studying connections between objects from a different perspective. Equivalence Relations Relations that break objects into groups. Partial Orders Relations

More information

Practice Exam 1 CIS/CSE 607, Spring 2009

Practice Exam 1 CIS/CSE 607, Spring 2009 Practice Exam 1 CIS/CSE 607, Spring 2009 Problem 1) Let R be a reflexive binary relation on a set A. Prove that R is transitive if, and only if, R = R R. Problem 2) Give an example of a transitive binary

More information

2MA105 Algebraic Structures I

2MA105 Algebraic Structures I 2MA105 Algebraic Structures I Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/2ma105.html Lecture 12 Partially Ordered Sets Lattices Bounded Lattices Distributive Lattices Complemented Lattices

More information

Strange Combinatorial Connections. Tom Trotter

Strange Combinatorial Connections. Tom Trotter Strange Combinatorial Connections Tom Trotter Georgia Institute of Technology trotter@math.gatech.edu February 13, 2003 Proper Graph Colorings Definition. A proper r- coloring of a graph G is a map φ from

More information

Relations, Functions & Binary Operations

Relations, Functions & Binary Operations Relations, Functions & Binary Operations Important Terms, Definitions & Formulae 0 TYPES OF INTERVLS a) Open interval: If a and b be two real numbers such that a b then, the set of all the real numbers

More information

CS Discrete Mathematics Dr. D. Manivannan (Mani)

CS Discrete Mathematics Dr. D. Manivannan (Mani) CS 275 - Discrete Mathematics Dr. D. Manivannan (Mani) Department of Computer Science University of Kentucky Lexington, KY 40506 Course Website: www.cs.uky.edu/~manivann/cs275 Notes based on Discrete Mathematics

More information

Chapter 1. Sets and Numbers

Chapter 1. Sets and Numbers Chapter 1. Sets and Numbers 1. Sets A set is considered to be a collection of objects (elements). If A is a set and x is an element of the set A, we say x is a member of A or x belongs to A, and we write

More information

Is g one-to-one? Is g onto? Why? Solution: g is not one-to-one, since for c A, g(b) = g(c) = c. g is not onto, since a / g(a).

Is g one-to-one? Is g onto? Why? Solution: g is not one-to-one, since for c A, g(b) = g(c) = c. g is not onto, since a / g(a). Discrete Structures: Exam 2 Solutions to Sample Questions, 1. Let A = B = {a, b, c}. Consider the relation g = {(a, b), (b, c), (c, c)}. Is g one-to-one? Is g onto? Why? Solution: g is not one-to-one,

More information

Just the Factors, Ma am HAROLD B. REITER.

Just the Factors, Ma am HAROLD B. REITER. Just the Factors, Ma am HAROLD B REITER UNIVERSITY OF NORTH CAROLINA CHARLOTTE http://wwwmathunccedu/~hbreiter The purpose of this note is to find and study a method for determining and counting all the

More information

Week 4-5: Binary Relations

Week 4-5: Binary Relations 1 Binary Relations Week 4-5: Binary Relations The concept of relation is common in daily life and seems intuitively clear. For instance, let X be the set of all living human females and Y the set of all

More information

32 Divisibility Theory in Integral Domains

32 Divisibility Theory in Integral Domains 3 Divisibility Theory in Integral Domains As we have already mentioned, the ring of integers is the prototype of integral domains. There is a divisibility relation on * : an integer b is said to be divisible

More information

COT3100 SI Final Exam Review

COT3100 SI Final Exam Review 1 Symbols COT3100 SI Final Exam Review Jarrett Wendt Spring 2018 You ve learned a plethora of new Mathematical symbols this semester. Let s see if you know them all and what they re used for. How many

More information

Relations and Equivalence Relations

Relations and Equivalence Relations Relations and Equivalence Relations In this section, we shall introduce a formal definition for the notion of a relation on a set. This is something we often take for granted in elementary algebra courses,

More information

Solutions to In Class Problems Week 4, Mon.

Solutions to In Class Problems Week 4, Mon. Massachusetts Institute of Technology 6.042J/18.062J, Fall 05: Mathematics for Computer Science September 26 Prof. Albert R. Meyer and Prof. Ronitt Rubinfeld revised September 26, 2005, 1050 minutes Solutions

More information

Chapter VI. Relations. Assumptions are the termites of relationships. Henry Winkler

Chapter VI. Relations. Assumptions are the termites of relationships. Henry Winkler Chapter VI Relations Assumptions are the termites of relationships. Henry Winkler Studying relationships between objects can yield important information about the objects themselves. In the real numbers,

More information

and e 2 ~ e 2 iff e 1

and e 2 ~ e 2 iff e 1 Section 4. Equivalence Relations A binary relation is an equivalence relation if it has the three properties reflexive, symmetric, and transitive (RST). Examples. a. Equality on any set. b. x ~ y iff x

More information

Discrete Structures: Solutions to Sample Questions, Exam 2

Discrete Structures: Solutions to Sample Questions, Exam 2 Discrete Structures: Solutions to Sample Questions, Exam 2 1. Let A = B = {a, b, c}. Consider the relation g = {(a, b), (b, c), (c, c)}. Is g one-to-one? Is g onto? Why? Solution: g is not one-to-one,

More information

Equivalence Relations and Partitions, Normal Subgroups, Quotient Groups, and Homomorphisms

Equivalence Relations and Partitions, Normal Subgroups, Quotient Groups, and Homomorphisms Equivalence Relations and Partitions, Normal Subgroups, Quotient Groups, and Homomorphisms Math 356 Abstract We sum up the main features of our last three class sessions, which list of topics are given

More information