Well-Ordering Principle. Axiom: Every nonempty subset of Z + has a least element. That is, if S Z + and S, then S has a smallest element.

Size: px
Start display at page:

Download "Well-Ordering Principle. Axiom: Every nonempty subset of Z + has a least element. That is, if S Z + and S, then S has a smallest element."

Transcription

1 Well-Ordering Principle Axiom: Every nonempty subset of Z + has a least element. That is, if S Z + and S, then S has a smallest element.

2 Well-Ordering Principle Example: Use well-ordering property to prove the division algorithm: If a is an integer and d is a positive integer, then there exist (unique) integers q and r with 0 r < d such that a = dq + r.

3 Well-Ordering Principle Proof: Consider the set S = {n Z + n = a dq +1 where q Z} This set is nonempty because dq can be made as large as desired (by taking q < 0 with q sufficiently large). By the wellordering principle, S has a least element n 0 = (a dq 0 ) + 1 where q 0 Z. We claim n 0 d. If not, then n 1 = (a d(q 0 + 1)) + 1 = n 0 d > 0, which implies n 1 S and n 1 < n 0. This contradicts the assumption that n 0 is the least element of S. Therefore, 1 n 0 d. This proves a = dq 0 + r where r = n 0 1 is an integer such that 0 r < d.

4 The proof that q 0 and r are unique is left as an exercise.

5 Well-Ordering Principle Theorem: The Well-Ordering Principle (WOP) and the Principle of Mathematical Induction (PMI) are equivalent.

6 WOP PMI Proof: Assume WOP holds. We want to prove PMI holds. Let S Z + such that (i) 1 S, (ii) k S k + 1 S for all k Z +. We want to prove S = Z +. Assume for the sake of contradiction that S Z +. Then, T = Z + S is a non-empty subset of Z +. Therefore, by the well-ordering principle, T has a least element m. That is, there exists m T such that m n for all n T. Since 1 S, we know m 2. Therefore m 1 is a positive integer. Clearly m 1 / T (otherwise m 1 would be the least element

7 of T ). This means m 1 S, and by assumption (ii) (m 1) S (m 1) + 1 S. Therefore, m S which contradicts the fact that m T. We conclude that S = Z +. Therefore PMI holds.

8 Relations Binary Relation Let A and B be sets. A (binary) relation from A to B is a subset of A B. Notation Let R A B be a relation from A to B. If (a, b) R, we write a R b. 1

9 Binary Relation Example: Consider the sets A = {2, 3, 5, 7} and B = {4, 6, 8, 9, 10}. Let R be the relation from A to B defined by a R b iff b is divisible by a. Then R consists of the ordered pairs {(2, 4), (2, 6), (2, 8), (2, 10), (3, 6), (3, 9), (5, 10)}. 2

10 Domain and Range The domain of a relation R from A to B is the set Dom(R) = {x A y (y B and x R y)}. The range of the relation R from A to B is the set Rng(R) = {y B x (x A and x R y)}. 3

11 Domain and Range Example: Consider the sets A = {2, 3, 5, 7} and B = {4, 6, 8, 9, 10}. Let R be the relation from A to B defined by a R b iff b is divisible by a. Then R consists of the ordered pairs {(2, 4), (2, 6), (2, 8), (2, 10), (3, 6), (3, 9), (5, 10)}.

12 Domain and Range Example: Consider the sets A = {2, 3, 5, 7} and B = {4, 6, 8, 9, 10}. Let R be the relation from A to B defined by a R b iff b is divisible by a. Then R consists of the ordered pairs {(2, 4), (2, 6), (2, 8), (2, 10), (3, 6), (3, 9), (5, 10)}. Dom(R) = {2, 3, 5} Rng(R) = {4, 6, 8, 9, 10} 4

13 Domain and Range Example: Let X = Y = R, and consider the relation R from X to Y defined by x R y iff x y That is, R = { (x, y) R R x 2 } 16 + y

14 Domain and Range Example: Let X = Y = R, and consider the relation R from X to Y defined by x R y iff x y That is, R = { (x, y) R R x 2 } 16 + y Dom(R) = [ 4, 4] Rng(R) = [ 3, 3] 6

15 Binary Relation on a Set A (binary) relation on a set S is a relation from the set S to S. 7

16 Binary Relation on a Set Examples: Let S = R. The following are examples of binary relations on S. R 1 = {(x, y) x = y}, R 2 = {(x, y) x < y}, R 3 = {(x, y) x y}, R 4 = {(x, y) x > y}, R 5 = {(x, y) x y}, R 6 = {(x, y) x = y or x = y}, R 7 = {(x, y) x = y + 1}, R 8 = {(x, y) x + y 3}. 8

17 Identity Relation The identity relation on S is the relation from S to itself given by I S = {(x, x) x S}. Example: Let S = {a, b, c}. The identity relation on S is the relation I S = {(a, a), (b, b), (c, c)} 9

18 Inverse Relation If R is a relation from A to B, then the inverse of R, denoted R 1, is the relation R 1 = {(y, x) (x, y) R} Example: Consider the relation R = {(2, 4), (2, 6), (2, 8), (2, 10), (3, 6), (3, 9), (5, 10)}. The inverse of R is the relation R 1 = {(4, 2), (6, 2), (8, 2), (10, 2), (6, 3), (9, 3), (10, 5)}. 10

19 Inverse Relation Theorem: If R is a relation from A to B, then (a) Rng(R 1 ) = Dom(R). (b) Dom(R 1 ) = Rng(R). 11

20 Proof:

21 Inverse Relation Example Let R be the relation on R given by x R y iff y = e x. The inverse of R is the relation given by x R 1 y iff x = e y iff y = ln x. 12

22 Inverse Relation Example Let R be the relation on R given by x R y iff y = e x. The inverse of R is the relation given by x R 1 y iff x = e y iff y = ln x. The previous theorem gives Dom(R 1 ) = Rng(R) = (0, ). Rng(R 1 ) = Dom(R) = (, ). 13

23 Composition of Relations Let R be a relation from A to B, and let S be a relation from B to C. The composition of R and S, denoted S R, is a relation from A to C defined by S R = {(a, c) b B ( (a, b) R and (b, c) S )} 14

24 Composition of Relations Example: Consider the sets A = {1, 2, 3, 4, 5} B = {p, q, r, s, t} C = {x, y, z, w} Let R be the relation from A to B given by R = {(1, p), (1, q), (2, q), (3, r), (4, s)}. Let S be the relation from B to C given by S = {(p, x), (q, x), (q, y), (s, z), (t, z)}. 15

25 Composition of Relations Example: Consider the sets A = {1, 2, 3, 4, 5} B = {p, q, r, s, t} C = {x, y, z, w} Let R be the relation from A to B given by R = {(1, p), (1, q), (2, q), (3, r), (4, s)}. Let S be the relation from B to C given by S = {(p, x), (q, x), (q, y), (s, z), (t, z)}. The composition S R is the relation from A to C given by S R = {(1, x), (1, y), (2, x), (2, y), (4, z)}. 16

26 Composition of Relations Example: Consider the relations R = {(x, y) R R y = x + 1} S = {(x, y) R R y = x 2 }. Determine the following: S R = R S = 17

27 Composition of Relations Theorem: Suppose A, B, C, and D are sets. Let R be a relation from A to B, S be a relation from B to C, and T be a relation from C to D. (a) (R 1 ) 1 = R. (b) T (S R) = (T S) R. (c) I B R = R and R I A = R. (d) (S R) 1 = R 1 S 1 18

Complete Induction and the Well- Ordering Principle

Complete Induction and the Well- Ordering Principle Complete Induction and the Well- Ordering Principle Complete Induction as a Rule of Inference In mathematical proofs, complete induction (PCI) is a rule of inference of the form P (a) P (a + 1) P (b) k

More information

We want to show P (n) is true for all integers

We want to show P (n) is true for all integers Generalized Induction Proof: Let P (n) be the proposition 1 + 2 + 2 2 + + 2 n = 2 n+1 1. We want to show P (n) is true for all integers n 0. Generalized Induction Example: Use generalized induction to

More information

Relations. Binary Relation. Let A and B be sets. A (binary) relation from A to B is a subset of A B. Notation. Let R A B be a relation from A to B.

Relations. Binary Relation. Let A and B be sets. A (binary) relation from A to B is a subset of A B. Notation. Let R A B be a relation from A to B. Relations Binary Relation Let A and B be sets. A (binary) relation from A to B is a subset of A B. Notation Let R A B be a relation from A to B. If (a, b) R, we write a R b. 1 Binary Relation Example:

More information

MATH 215 Final. M4. For all a, b in Z, a b = b a.

MATH 215 Final. M4. For all a, b in Z, a b = b a. MATH 215 Final We will assume the existence of a set Z, whose elements are called integers, along with a well-defined binary operation + on Z (called addition), a second well-defined binary operation on

More information

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4 Do the following exercises from the text: Chapter (Section 3):, 1, 17(a)-(b), 3 Prove that 1 3 + 3 + + n 3 n (n + 1) for all n N Proof The proof is by induction on n For n N, let S(n) be the statement

More information

Properties of the Integers

Properties of the Integers Properties of the Integers The set of all integers is the set and the subset of Z given by Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }, N = {0, 1, 2, 3, 4, }, is the set of nonnegative integers (also called

More information

a + b = b + a and a b = b a. (a + b) + c = a + (b + c) and (a b) c = a (b c). a (b + c) = a b + a c and (a + b) c = a c + b c.

a + b = b + a and a b = b a. (a + b) + c = a + (b + c) and (a b) c = a (b c). a (b + c) = a b + a c and (a + b) c = a c + b c. Properties of the Integers The set of all integers is the set and the subset of Z given by Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }, N = {0, 1, 2, 3, 4, }, is the set of nonnegative integers (also called

More information

Intro to Logic and Proofs

Intro to Logic and Proofs Intro to Logic and Proofs Propositions A proposition is a declarative sentence (that is, a sentence that declares a fact) that is either true or false, but not both. Examples: It is raining today. Washington

More information

a = qb + r where 0 r < b. Proof. We first prove this result under the additional assumption that b > 0 is a natural number. Let

a = qb + r where 0 r < b. Proof. We first prove this result under the additional assumption that b > 0 is a natural number. Let 2. Induction and the division algorithm The main method to prove results about the natural numbers is to use induction. We recall some of the details and at the same time present the material in a different

More information

PEANO AXIOMS FOR THE NATURAL NUMBERS AND PROOFS BY INDUCTION. The Peano axioms

PEANO AXIOMS FOR THE NATURAL NUMBERS AND PROOFS BY INDUCTION. The Peano axioms PEANO AXIOMS FOR THE NATURAL NUMBERS AND PROOFS BY INDUCTION The Peano axioms The following are the axioms for the natural numbers N. You might think of N as the set of integers {0, 1, 2,...}, but it turns

More information

Basic Proof Examples

Basic Proof Examples Basic Proof Examples Lisa Oberbroeckling Loyola University Maryland Fall 2015 Note. In this document, we use the symbol as the negation symbol. Thus p means not p. There are four basic proof techniques

More information

A lower bound for X is an element z F such that

A lower bound for X is an element z F such that Math 316, Intro to Analysis Completeness. Definition 1 (Upper bounds). Let F be an ordered field. For a subset X F an upper bound for X is an element y F such that A lower bound for X is an element z F

More information

Show Your Work! Point values are in square brackets. There are 35 points possible. Some facts about sets are on the last page.

Show Your Work! Point values are in square brackets. There are 35 points possible. Some facts about sets are on the last page. Formal Methods Name: Key Midterm 2, Spring, 2007 Show Your Work! Point values are in square brackets. There are 35 points possible. Some facts about sets are on the last page.. Determine whether each of

More information

CHAPTEER - TWO SUBGROUPS. ( Z, + ) is subgroup of ( R, + ). 1) Find all subgroups of the group ( Z 8, + 8 ).

CHAPTEER - TWO SUBGROUPS. ( Z, + ) is subgroup of ( R, + ). 1) Find all subgroups of the group ( Z 8, + 8 ). CHAPTEER - TWO SUBGROUPS Definition 2-1. Let (G, ) be a group and H G be a nonempty subset of G. The pair ( H, ) is said to be a SUBGROUP of (G, ) if ( H, ) is group. Example. ( Z, + ) is subgroup of (

More information

Structure of R. Chapter Algebraic and Order Properties of R

Structure of R. Chapter Algebraic and Order Properties of R Chapter Structure of R We will re-assemble calculus by first making assumptions about the real numbers. All subsequent results will be rigorously derived from these assumptions. Most of the assumptions

More information

WORKSHEET MATH 215, FALL 15, WHYTE. We begin our course with the natural numbers:

WORKSHEET MATH 215, FALL 15, WHYTE. We begin our course with the natural numbers: WORKSHEET MATH 215, FALL 15, WHYTE We begin our course with the natural numbers: N = {1, 2, 3,...} which are a subset of the integers: Z = {..., 2, 1, 0, 1, 2, 3,... } We will assume familiarity with their

More information

CSE 20 DISCRETE MATH. Winter

CSE 20 DISCRETE MATH. Winter CSE 20 DISCRETE MATH Winter 2017 http://cseweb.ucsd.edu/classes/wi17/cse20-ab/ Today's learning goals Determine whether a relation is an equivalence relation by determining whether it is Reflexive Symmetric

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Today's learning goals Determine whether a relation is an equivalence relation by determining whether it is Reflexive Symmetric

More information

Axioms for the Real Number System

Axioms for the Real Number System Axioms for the Real Number System Math 361 Fall 2003 Page 1 of 9 The Real Number System The real number system consists of four parts: 1. A set (R). We will call the elements of this set real numbers,

More information

Topics in Logic, Set Theory and Computability

Topics in Logic, Set Theory and Computability Topics in Logic, Set Theory and Computability Homework Set #3 Due Friday 4/6 at 3pm (by email or in person at 08-3234) Exercises from Handouts 7-C-2 7-E-6 7-E-7(a) 8-A-4 8-A-9(a) 8-B-2 8-C-2(a,b,c) 8-D-4(a)

More information

WUCT121. Discrete Mathematics. Numbers

WUCT121. Discrete Mathematics. Numbers WUCT121 Discrete Mathematics Numbers 1. Natural Numbers 2. Integers and Real Numbers 3. The Principle of Mathematical Induction 4. Elementary Number Theory 5. Congruence Arithmetic WUCT121 Numbers 1 Section

More information

1.4 Equivalence Relations and Partitions

1.4 Equivalence Relations and Partitions 24 CHAPTER 1. REVIEW 1.4 Equivalence Relations and Partitions 1.4.1 Equivalence Relations Definition 1.4.1 (Relation) A binary relation or a relation on a set S is a set R of ordered pairs. This is a very

More information

n n P} is a bounded subset Proof. Let A be a nonempty subset of Z, bounded above. Define the set

n n P} is a bounded subset Proof. Let A be a nonempty subset of Z, bounded above. Define the set 1 Mathematical Induction We assume that the set Z of integers are well defined, and we are familiar with the addition, subtraction, multiplication, and division. In particular, we assume the following

More information

Principles of Real Analysis I Fall I. The Real Number System

Principles of Real Analysis I Fall I. The Real Number System 21-355 Principles of Real Analysis I Fall 2004 I. The Real Number System The main goal of this course is to develop the theory of real-valued functions of one real variable in a systematic and rigorous

More information

Module 1. Integers, Induction, and Recurrences

Module 1. Integers, Induction, and Recurrences Module 1. Integers, Induction, and Recurrences This module will look at The integers and the natural numbers. Division and divisors, greatest common divisors Methods of reasoning including proof by contradiction

More information

2.2 Some Consequences of the Completeness Axiom

2.2 Some Consequences of the Completeness Axiom 60 CHAPTER 2. IMPORTANT PROPERTIES OF R 2.2 Some Consequences of the Completeness Axiom In this section, we use the fact that R is complete to establish some important results. First, we will prove that

More information

Math 242: Principles of Analysis Fall 2016 Homework 1 Part B solutions

Math 242: Principles of Analysis Fall 2016 Homework 1 Part B solutions Math 4: Principles of Analysis Fall 0 Homework Part B solutions. Let x, y, z R. Use the axioms of the real numbers to prove the following. a) If x + y = x + z then y = z. Solution. By Axiom a), there is

More information

HW 4 SOLUTIONS. , x + x x 1 ) 2

HW 4 SOLUTIONS. , x + x x 1 ) 2 HW 4 SOLUTIONS The Way of Analysis p. 98: 1.) Suppose that A is open. Show that A minus a finite set is still open. This follows by induction as long as A minus one point x is still open. To see that A

More information

n(n + 1). 2 . If n = 3, then 1+2+3=6= 3(3+1) . If n = 2, then = 3 = 2(2+1)

n(n + 1). 2 . If n = 3, then 1+2+3=6= 3(3+1) . If n = 2, then = 3 = 2(2+1) Chapter 4 Induction In this chapter, we introduce mathematical induction, which is a proof technique that is useful for proving statements of the form (8n N)P(n), or more generally (8n Z)(n a =) P(n)),

More information

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers.

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers. MATH 4 Summer 011 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

In case (1) 1 = 0. Then using and from Friday,

In case (1) 1 = 0. Then using and from Friday, Math 316, Intro to Analysis The order of the real numbers. The field axioms are not enough to give R, as an extra credit problem will show. Definition 1. An ordered field F is a field together with a nonempty

More information

MATH115. Sequences and Infinite Series. Paolo Lorenzo Bautista. June 29, De La Salle University. PLBautista (DLSU) MATH115 June 29, / 16

MATH115. Sequences and Infinite Series. Paolo Lorenzo Bautista. June 29, De La Salle University. PLBautista (DLSU) MATH115 June 29, / 16 MATH115 Sequences and Infinite Series Paolo Lorenzo Bautista De La Salle University June 29, 2014 PLBautista (DLSU) MATH115 June 29, 2014 1 / 16 Definition A sequence function is a function whose domain

More information

Solutions to Assignment 1

Solutions to Assignment 1 Solutions to Assignment 1 Question 1. [Exercises 1.1, # 6] Use the division algorithm to prove that every odd integer is either of the form 4k + 1 or of the form 4k + 3 for some integer k. For each positive

More information

Climbing an Infinite Ladder

Climbing an Infinite Ladder Section 5.1 Section Summary Mathematical Induction Examples of Proof by Mathematical Induction Mistaken Proofs by Mathematical Induction Guidelines for Proofs by Mathematical Induction Climbing an Infinite

More information

Postulate 2 [Order Axioms] in WRW the usual rules for inequalities

Postulate 2 [Order Axioms] in WRW the usual rules for inequalities Number Systems N 1,2,3,... the positive integers Z 3, 2, 1,0,1,2,3,... the integers Q p q : p,q Z with q 0 the rational numbers R {numbers expressible by finite or unending decimal expansions} makes sense

More information

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION CHAPTER 5 SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION Copyright Cengage Learning. All rights reserved. SECTION 5.4 Strong Mathematical Induction and the Well-Ordering Principle for the Integers Copyright

More information

MATH 220 (all sections) Homework #12 not to be turned in posted Friday, November 24, 2017

MATH 220 (all sections) Homework #12 not to be turned in posted Friday, November 24, 2017 MATH 220 (all sections) Homework #12 not to be turned in posted Friday, November 24, 2017 Definition: A set A is finite if there exists a nonnegative integer c such that there exists a bijection from A

More information

COSE212: Programming Languages. Lecture 1 Inductive Definitions (1)

COSE212: Programming Languages. Lecture 1 Inductive Definitions (1) COSE212: Programming Languages Lecture 1 Inductive Definitions (1) Hakjoo Oh 2018 Fall Hakjoo Oh COSE212 2018 Fall, Lecture 1 September 5, 2018 1 / 10 Inductive Definitions Inductive definition (induction)

More information

A lower bound for X is an element z F such that

A lower bound for X is an element z F such that Math 316, Intro to Analysis Completeness. Definition 1 (Upper bounds). Let F be an ordered field. For a subset X F an upper bound for X is an element y F such that A lower bound for X is an element z F

More information

PRINCIPLE OF MATHEMATICAL INDUCTION

PRINCIPLE OF MATHEMATICAL INDUCTION Chapter 4 PRINCIPLE OF MATHEMATICAL INDUCTION 4.1 Overview Mathematical induction is one of the techniques which can be used to prove variety of mathematical statements which are formulated in terms of

More information

NOTES ON SIMPLE NUMBER THEORY

NOTES ON SIMPLE NUMBER THEORY NOTES ON SIMPLE NUMBER THEORY DAMIEN PITMAN 1. Definitions & Theorems Definition: We say d divides m iff d is positive integer and m is an integer and there is an integer q such that m = dq. In this case,

More information

Mathematics 228(Q1), Assignment 2 Solutions

Mathematics 228(Q1), Assignment 2 Solutions Mathematics 228(Q1), Assignment 2 Solutions Exercise 1.(10 marks) A natural number n > 1 is said to be square free if d N with d 2 n implies d = 1. Show that n is square free if and only if n = p 1 p k

More information

The theory of numbers

The theory of numbers 1 AXIOMS FOR THE INTEGERS 1 The theory of numbers UCU Foundations of Mathematics course 2017 Author: F. Beukers 1 Axioms for the integers Roughly speaking, number theory is the mathematics of the integers.

More information

Algorithms for Picture Analysis. Lecture 07: Metrics. Axioms of a Metric

Algorithms for Picture Analysis. Lecture 07: Metrics. Axioms of a Metric Axioms of a Metric Picture analysis always assumes that pictures are defined in coordinates, and we apply the Euclidean metric as the golden standard for distance (or derived, such as area) measurements.

More information

Climbing an Infinite Ladder

Climbing an Infinite Ladder Section 5.1 Section Summary Mathematical Induction Examples of Proof by Mathematical Induction Mistaken Proofs by Mathematical Induction Guidelines for Proofs by Mathematical Induction Climbing an Infinite

More information

Cardinality and ordinal numbers

Cardinality and ordinal numbers Cardinality and ordinal numbers The cardinality A of a finite set A is simply the number of elements in it. When it comes to infinite sets, we no longer can speak of the number of elements in such a set.

More information

COM S 330 Homework 08 Solutions. Type your answers to the following questions and submit a PDF file to Blackboard. One page per problem.

COM S 330 Homework 08 Solutions. Type your answers to the following questions and submit a PDF file to Blackboard. One page per problem. COM S 0 Homework 08 Solutions Type your answers to the following questions and submit a PDF file to Blackboard. One page per problem. Problem 1. [10pts] Let M = (S, T, s 0 ) be the state machine where

More information

CSC B36 Additional Notes sample induction and well-ordering proofs. c Nick Cheng

CSC B36 Additional Notes sample induction and well-ordering proofs. c Nick Cheng CSC B36 Additional Notes sample induction and well-ordering proofs c Nick Cheng Introduction We present examples of induction proofs here in hope that they can be used as models when you write your own

More information

7 Mathematical Induction. For the natural numbers N a the following are equivalent:

7 Mathematical Induction. For the natural numbers N a the following are equivalent: 7 Mathematical Induction Definition: N a = {n N n a}. For the natural numbers N a the following are equivalent: 1. Ordinary axiom of induction: IfS N a such that (a) a S (b) n N a (n S n +1 S) then S =

More information

Lecture 2. Econ August 11

Lecture 2. Econ August 11 Lecture 2 Econ 2001 2015 August 11 Lecture 2 Outline 1 Fields 2 Vector Spaces 3 Real Numbers 4 Sup and Inf, Max and Min 5 Intermediate Value Theorem Announcements: - Friday s exam will be at 3pm, in WWPH

More information

The integers. Chapter 3

The integers. Chapter 3 Chapter 3 The integers Recall that an abelian group is a set A with a special element 0, and operation + such that x +0=x x + y = y + x x +y + z) =x + y)+z every element x has an inverse x + y =0 We also

More information

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction Math 4 Summer 01 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

Economics 204 Summer/Fall 2011 Lecture 2 Tuesday July 26, 2011 N Now, on the main diagonal, change all the 0s to 1s and vice versa:

Economics 204 Summer/Fall 2011 Lecture 2 Tuesday July 26, 2011 N Now, on the main diagonal, change all the 0s to 1s and vice versa: Economics 04 Summer/Fall 011 Lecture Tuesday July 6, 011 Section 1.4. Cardinality (cont.) Theorem 1 (Cantor) N, the set of all subsets of N, is not countable. Proof: Suppose N is countable. Then there

More information

Strong Induction (Second Principle) Example: There are two piles of cards, players take turn: each turn: one player removes any number of cards from

Strong Induction (Second Principle) Example: There are two piles of cards, players take turn: each turn: one player removes any number of cards from Strong Induction (Second Principle) Example: There are two piles of cards, players take turn: each turn: one player removes any number of cards from 1 pile (any of the two). The player who removes the

More information

The Real Number System

The Real Number System MATH 337 The Real Number System Sets of Numbers Dr. Neal, WKU A set S is a well-defined collection of objects, with well-defined meaning that there is a specific description from which we can tell precisely

More information

5 Set Operations, Functions, and Counting

5 Set Operations, Functions, and Counting 5 Set Operations, Functions, and Counting Let N denote the positive integers, N 0 := N {0} be the non-negative integers and Z = N 0 ( N) the positive and negative integers including 0, Q the rational numbers,

More information

Relations, Functions & Binary Operations

Relations, Functions & Binary Operations Relations, Functions & Binary Operations Important Terms, Definitions & Formulae 0 TYPES OF INTERVLS a) Open interval: If a and b be two real numbers such that a b then, the set of all the real numbers

More information

A Little Beyond: Linear Algebra

A Little Beyond: Linear Algebra A Little Beyond: Linear Algebra Akshay Tiwary March 6, 2016 Any suggestions, questions and remarks are welcome! 1 A little extra Linear Algebra 1. Show that any set of non-zero polynomials in [x], no two

More information

Discrete Mathematics. Spring 2017

Discrete Mathematics. Spring 2017 Discrete Mathematics Spring 2017 Previous Lecture Principle of Mathematical Induction Mathematical Induction: rule of inference Mathematical Induction: Conjecturing and Proving Climbing an Infinite Ladder

More information

Carmen s Core Concepts (Math 135)

Carmen s Core Concepts (Math 135) Carmen s Core Concepts (Math 135) Carmen Bruni University of Waterloo Week 2 1 Divisibility Theorems 2 DIC Example 3 Converses 4 If and only if 5 Sets 6 Other Set Examples 7 Set Operations 8 More Set Terminology

More information

Homework 1 (revised) Solutions

Homework 1 (revised) Solutions Homework 1 (revised) Solutions 1. Textbook, 1.1.1, # 1.1.2 (p. 24) Let S be an ordered set. Let A be a non-empty finite subset. Then A is bounded and sup A, inf A A Solution. The hint was: Use induction,

More information

THE REAL NUMBERS Chapter #4

THE REAL NUMBERS Chapter #4 FOUNDATIONS OF ANALYSIS FALL 2008 TRUE/FALSE QUESTIONS THE REAL NUMBERS Chapter #4 (1) Every element in a field has a multiplicative inverse. (2) In a field the additive inverse of 1 is 0. (3) In a field

More information

REVIEW FOR THIRD 3200 MIDTERM

REVIEW FOR THIRD 3200 MIDTERM REVIEW FOR THIRD 3200 MIDTERM PETE L. CLARK 1) Show that for all integers n 2 we have 1 3 +... + (n 1) 3 < 1 n < 1 3 +... + n 3. Solution: We go by induction on n. Base Case (n = 2): We have (2 1) 3 =

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter The Real Numbers.. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {, 2, 3, }. In N we can do addition, but in order to do subtraction we need to extend

More information

S15 MA 274: Exam 3 Study Questions

S15 MA 274: Exam 3 Study Questions S15 MA 274: Exam 3 Study Questions You can find solutions to some of these problems on the next page. These questions only pertain to material covered since Exam 2. The final exam is cumulative, so you

More information

Monoids. Definition: A binary operation on a set M is a function : M M M. Examples:

Monoids. Definition: A binary operation on a set M is a function : M M M. Examples: Monoids Definition: A binary operation on a set M is a function : M M M. If : M M M, we say that is well defined on M or equivalently, that M is closed under the operation. Examples: Definition: A monoid

More information

Due date: Monday, February 6, 2017.

Due date: Monday, February 6, 2017. Modern Analysis Homework 3 Solutions Due date: Monday, February 6, 2017. 1. If A R define A = {x R : x A}. Let A be a nonempty set of real numbers, assume A is bounded above. Prove that A is bounded below

More information

06 Recursive Definition and Inductive Proof

06 Recursive Definition and Inductive Proof CAS 701 Fall 2002 06 Recursive Definition and Inductive Proof Instructor: W. M. Farmer Revised: 30 November 2002 1 What is Recursion? Recursion is a method of defining a structure or operation in terms

More information

Well-Ordered Sets, Ordinals and Cardinals Ali Nesin 1 July 2001

Well-Ordered Sets, Ordinals and Cardinals Ali Nesin 1 July 2001 Well-Ordered Sets, Ordinals and Cardinals Ali Nesin 1 July 2001 Definitions. A set together with a binary relation < is called a partially ordered set (poset in short) if x (x < x) x y z ((x < y y < z)

More information

Division Algorithm B1 Introduction to the Division Algorithm (Procedure) quotient remainder

Division Algorithm B1 Introduction to the Division Algorithm (Procedure) quotient remainder A Survey of Divisibility Page 1 SECTION B Division Algorithm By the end of this section you will be able to apply the division algorithm or procedure Our aim in this section is to show that for any given

More information

In case (1) 1 = 0. Then using and from the previous lecture,

In case (1) 1 = 0. Then using and from the previous lecture, Math 316, Intro to Analysis The order of the real numbers. The field axioms are not enough to give R, as an extra credit problem will show. Definition 1. An ordered field F is a field together with a nonempty

More information

m + q = p + n p + s = r + q m + q + p + s = p + n + r + q. (m + s) + (p + q) = (r + n) + (p + q) m + s = r + n.

m + q = p + n p + s = r + q m + q + p + s = p + n + r + q. (m + s) + (p + q) = (r + n) + (p + q) m + s = r + n. 9 The Basic idea 1 = { 0, 1, 1, 2, 2, 3,..., n, n + 1,...} 5 = { 0, 5, 1, 6, 2, 7,..., n, n + 5,...} Definition 9.1. Let be the binary relation on ω ω defined by m, n p, q iff m + q = p + n. Theorem 9.2.

More information

20 Ordinals. Definition A set α is an ordinal iff: (i) α is transitive; and. (ii) α is linearly ordered by. Example 20.2.

20 Ordinals. Definition A set α is an ordinal iff: (i) α is transitive; and. (ii) α is linearly ordered by. Example 20.2. 20 Definition 20.1. A set α is an ordinal iff: (i) α is transitive; and (ii) α is linearly ordered by. Example 20.2. (a) Each natural number n is an ordinal. (b) ω is an ordinal. (a) ω {ω} is an ordinal.

More information

Chapter 5: The Integers

Chapter 5: The Integers c Dr Oksana Shatalov, Fall 2014 1 Chapter 5: The Integers 5.1: Axioms and Basic Properties Operations on the set of integers, Z: addition and multiplication with the following properties: A1. Addition

More information

Divisibility = 16, = 9, = 2, = 5. (Negative!)

Divisibility = 16, = 9, = 2, = 5. (Negative!) Divisibility 1-17-2018 You probably know that division can be defined in terms of multiplication. If m and n are integers, m divides n if n = mk for some integer k. In this section, I ll look at properties

More information

In 1854, Karl Weierstrauss gave an example of a continuous function which was nowhere di erentiable: cos(3 n x) 2 n. sin(3 n x), 2

In 1854, Karl Weierstrauss gave an example of a continuous function which was nowhere di erentiable: cos(3 n x) 2 n. sin(3 n x), 2 Why non-pictured analysis? CHAPTER 1 Preliminaries f is continuous at x if lim f(x + h) = f(x) h!0 and f(x + h) f(x) f is di erentiable at x if lim h!0 h Then but Di erentiability =) continuity, continuity

More information

Basic properties of the Integers

Basic properties of the Integers Basic properties of the Integers Branko Ćurgus May 2, 2017 1 Axioms for the Integers In the axioms below we use the standard logical operators: conjunction, disjunction, exclusive disjunction, implication,

More information

INTEGERS. In this section we aim to show the following: Goal. Every natural number can be written uniquely as a product of primes.

INTEGERS. In this section we aim to show the following: Goal. Every natural number can be written uniquely as a product of primes. INTEGERS PETER MAYR (MATH 2001, CU BOULDER) In this section we aim to show the following: Goal. Every natural number can be written uniquely as a product of primes. 1. Divisibility Definition. Let a, b

More information

MATH10040 Chapter 1: Integers and divisibility

MATH10040 Chapter 1: Integers and divisibility MATH10040 Chapter 1: Integers and divisibility Recall the basic definition: 1. Divisibilty Definition 1.1. If a, b Z, we say that b divides a, or that a is a multiple of b and we write b a if there is

More information

Math 421, Homework #6 Solutions. (1) Let E R n Show that = (E c ) o, i.e. the complement of the closure is the interior of the complement.

Math 421, Homework #6 Solutions. (1) Let E R n Show that = (E c ) o, i.e. the complement of the closure is the interior of the complement. Math 421, Homework #6 Solutions (1) Let E R n Show that (Ē) c = (E c ) o, i.e. the complement of the closure is the interior of the complement. 1 Proof. Before giving the proof we recall characterizations

More information

Induction and recursion. Chapter 5

Induction and recursion. Chapter 5 Induction and recursion Chapter 5 Chapter Summary Mathematical Induction Strong Induction Well-Ordering Recursive Definitions Structural Induction Recursive Algorithms Mathematical Induction Section 5.1

More information

Kevin James. MTHSC 412 Section 3.1 Definition and Examples of Rings

Kevin James. MTHSC 412 Section 3.1 Definition and Examples of Rings MTHSC 412 Section 3.1 Definition and Examples of Rings A ring R is a nonempty set R together with two binary operations (usually written as addition and multiplication) that satisfy the following axioms.

More information

Carmen s Core Concepts (Math 135)

Carmen s Core Concepts (Math 135) Carmen s Core Concepts (Math 135) Carmen Bruni University of Waterloo Week 4 1 Principle of Mathematical Induction 2 Example 3 Base Case 4 Inductive Hypothesis 5 Inductive Step When Induction Isn t Enough

More information

Lecture Notes 1 Basic Concepts of Mathematics MATH 352

Lecture Notes 1 Basic Concepts of Mathematics MATH 352 Lecture Notes 1 Basic Concepts of Mathematics MATH 352 Ivan Avramidi New Mexico Institute of Mining and Technology Socorro, NM 87801 June 3, 2004 Author: Ivan Avramidi; File: absmath.tex; Date: June 11,

More information

Mathematical Induction. Section 5.1

Mathematical Induction. Section 5.1 Mathematical Induction Section 5.1 Section Summary Mathematical Induction Examples of Proof by Mathematical Induction Mistaken Proofs by Mathematical Induction Guidelines for Proofs by Mathematical Induction

More information

Discrete Mathematics. Spring 2017

Discrete Mathematics. Spring 2017 Discrete Mathematics Spring 2017 Previous Lecture Principle of Mathematical Induction Mathematical Induction: Rule of Inference Mathematical Induction: Conjecturing and Proving Mathematical Induction:

More information

With Question/Answer Animations

With Question/Answer Animations Chapter 5 With Question/Answer Animations Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. Chapter Summary

More information

Proofs. Chapter 2 P P Q Q

Proofs. Chapter 2 P P Q Q Chapter Proofs In this chapter we develop three methods for proving a statement. To start let s suppose the statement is of the form P Q or if P, then Q. Direct: This method typically starts with P. Then,

More information

CHAPTER 8: EXPLORING R

CHAPTER 8: EXPLORING R CHAPTER 8: EXPLORING R LECTURE NOTES FOR MATH 378 (CSUSM, SPRING 2009). WAYNE AITKEN In the previous chapter we discussed the need for a complete ordered field. The field Q is not complete, so we constructed

More information

Introduction Integers. Discrete Mathematics Andrei Bulatov

Introduction Integers. Discrete Mathematics Andrei Bulatov Introduction Integers Discrete Mathematics Andrei Bulatov Discrete Mathematics - Integers 9- Integers God made the integers; all else is the work of man Leopold Kroenecker Discrete Mathematics - Integers

More information

Chapter 9: Relations Relations

Chapter 9: Relations Relations Chapter 9: Relations 9.1 - Relations Definition 1 (Relation). Let A and B be sets. A binary relation from A to B is a subset R A B, i.e., R is a set of ordered pairs where the first element from each pair

More information

Chapter 3 Basic Number Theory

Chapter 3 Basic Number Theory Chapter 3 Basic Number Theory What is Number Theory? Well... What is Number Theory? Well... Number Theory The study of the natural numbers (Z + ), especially the relationship between different sorts of

More information

0.Axioms for the Integers 1

0.Axioms for the Integers 1 0.Axioms for the Integers 1 Number theory is the study of the arithmetical properties of the integers. You have been doing arithmetic with integers since you were a young child, but these mathematical

More information

NOTES ON INTEGERS. 1. Integers

NOTES ON INTEGERS. 1. Integers NOTES ON INTEGERS STEVEN DALE CUTKOSKY The integers 1. Integers Z = {, 3, 2, 1, 0, 1, 2, 3, } have addition and multiplication which satisfy familar rules. They are ordered (m < n if m is less than n).

More information

All variables a, b, n, etc are integers unless otherwise stated. Each part of a problem is worth 5 points.

All variables a, b, n, etc are integers unless otherwise stated. Each part of a problem is worth 5 points. Math 152, Problem Set 2 solutions (2018-01-24) All variables a, b, n, etc are integers unless otherwise stated. Each part of a problem is worth 5 points. 1. Let us look at the following equation: x 5 1

More information

Outline. We will now investigate the structure of this important set.

Outline. We will now investigate the structure of this important set. The Reals Outline As we have seen, the set of real numbers, R, has cardinality c. This doesn't tell us very much about the reals, since there are many sets with this cardinality and cardinality doesn't

More information

CS411 Notes 3 Induction and Recursion

CS411 Notes 3 Induction and Recursion CS411 Notes 3 Induction and Recursion A. Demers 5 Feb 2001 These notes present inductive techniques for defining sets and subsets, for defining functions over sets, and for proving that a property holds

More information

INTRODUCTORY ANALYSIS I Homework #13 (The lucky one)

INTRODUCTORY ANALYSIS I Homework #13 (The lucky one) INTRODUCTORY ANALYSIS I Homework #13 (The lucky one) 1. Let X be a metric space. Let {p n } be a sequence of points in X. Let p X. Prove: The sequence {p n } converges to p in X if and only if the sequence

More information

COSE212: Programming Languages. Lecture 1 Inductive Definitions (1)

COSE212: Programming Languages. Lecture 1 Inductive Definitions (1) COSE212: Programming Languages Lecture 1 Inductive Definitions (1) Hakjoo Oh 2017 Fall Hakjoo Oh COSE212 2017 Fall, Lecture 1 September 4, 2017 1 / 9 Inductive Definitions Inductive definition (induction)

More information

Sums of Squares. Bianca Homberg and Minna Liu

Sums of Squares. Bianca Homberg and Minna Liu Sums of Squares Bianca Homberg and Minna Liu June 24, 2010 Abstract For our exploration topic, we researched the sums of squares. Certain properties of numbers that can be written as the sum of two squares

More information