CS Discrete Mathematics Dr. D. Manivannan (Mani)

Size: px
Start display at page:

Download "CS Discrete Mathematics Dr. D. Manivannan (Mani)"

Transcription

1 CS Discrete Mathematics Dr. D. Manivannan (Mani) Department of Computer Science University of Kentucky Lexington, KY Course Website: Notes based on Discrete Mathematics and its applications - by Kenneth H. Rosen (seventh edition) 1

2 Foundations of Logic and Proof (Chapter 1 Sections 1.1 to 1.6) Definition: A proposition is a declarative statement that is True of False but not both. (Note: true means always true; false means sometimes true or never true.) Example of propositions: Paris is the capital of France. Dr. Eli Capilouto is the president of University of Kentucky. 7 is a prime number (Recall that a positive integer > 1 is a prime number if its only divisors are 1 and itself). If n > 1 is an odd integer, then n is a prime number. The only even prime number is = 7. The following are not propositions What is your name? Where are you going? Beware of dogs. What is wrong with you? x+5 = 10. 2

3 Foundations of Logic and Proof (Chapter 1 Sections 1.1 to 1.6)... Propositional Calculus is an area of logic that deals with propositions. Compound Propositions are formed from existing propositions. Definition: The negation of a proposition p is denoted by p and is defined as p = It is not the case that p. An example: Suppose p = 7 is a prime number. Then p = It is not the case that 7 is a prime number. Definition: If p and q are propositions, then the conjunction of p and q, denoted by p q is the proposition p and q. The conjunction is true if both p and q are true; otherwise, it is false. Truth table for p q: Definition: If p and q are propositions, then the disjunction of p and q, denoted by p q is the proposition p or q. The disjunction is false if both p and q are false; otherwise, it is true. Truth table for p q: 3

4 Foundations of Logic and Proof (Chapter 1 Sections 1.1 to 1.6)... Definition: Let p and q be propositions. The conditional statement p q is the proposition: If p then q. p q is false when p is true and q is false, and is true otherwise. Truth table for p q: Definition: The proposition q p is called the converse of p q. The Contraposition of p q is the proposition q p. Exercise: The propositions p q and q p are equivalent (i.e., they have same truth values). This is an important result used for proving many propositions. A proof using this method is called proof by contraposition. Example: Let p = Student A graduated with a B.S. degree in CS from UK in the year Let q = Student A took CS 275 from UK or its equivalent. Definition: Let p and q be propositions. The biconditional statement p q is the proposition: p if and only if q. Truth table: 4

5 Foundations of Logic and Proof (Chapter 1 Sections 1.1 to 1.6)... Compound propositions that have same truth values are said to be logically equivalent propositions. Logical Equivalences: In the following equivalences T denotes the compound proposition that is always true and F denotes the compound proposition that is always false. Equivalence Name p T p Identity Laws p F p p T T Domination Laws p F F p p p Idempotent Laws p p p ( p) p Double negation Law p q q p Commutative Laws p q q p (p q) r p (q r) Associative Laws (p q) r p (q r) p (q r) (p q) (p r) Distributive Laws p (q r) (p q) (p r) (important laws) (p q) p q De Morgan s Laws (p q) p q (important laws) p (p q) p Absorption Laws p (p q) p p p T Negation Laws p p F 5

6 Foundations of Logic and Proof (Chapter 1 Sections 1.1 to 1.6)... Logical Equivalences involving Conditional Statements: p q p q p q q p (Important equivalence) p q p q p q (p q) (p q) p q (p q) (p r) p (q r) (p r) (q r) (p q) r (p q) (p r) p (q r) (p r) (q r) (p q) r Logical Equivalences involving Biconditional Statements: p q (p q) (q p) p q p q p q (p q) ( p q) (p q) (p q) Exercise: Prove the above equivalences using truth tables. 6

7 Foundations of Logic and Proof Predicates and quantifiers Predicates: The statement x is greater than 5 has two parts. The first part, the variable x, is the subject of the statement. The second part the Predicate, is greater than 5 refers to the property that the subject of the statement can have. We can denote the statement x is grater than 5 by P(x), where P is the predicate is greater than 5 and x is the variable. The statement P(x) is also said to be the value of the propositional function P at x. Once a value has been assigned to the variable x, the statement P(x) becomes a proposition and has a truth value. Illustration (For the following examples, the domain is the set of all integers): Let P(x) denote the statement x is less than 100. Then, what are the truth values of (i) P(10); (ii) P(200)? Let Q(x,y) denote the statement x = y 100. What are the truth values of (i) Q(5,10); (ii) Q(5,105)? 7

8 Foundations of Logic and Proof Predicates and quantifiers Definition: The Universal quantification of P(x) is the statement P(x) for all values of x in the domain. The notation xp(x)) denotes the universal quantification of P(x). We read xp(x) as for all x P(x). Here is called the universal quantifier. An element for which P(x) is false is called a counterexample of xp(x). The meaning of universal and existential quantifiers are summarized in the table below: Statement When it is true? When it is false? xp(x) P(x) is true There is an x for every x. for which P(x) is false. xp(x) There is an x P(x) is false for which P(x) is true. for every x. ( xp(x)) for every x, P(x) is false. For the following examples, assume that the domain is the set of all real numbers(positive and negative): Let (i) P(x) : x > 5; (ii) Q(x) : x 2 > 0; (iii) R(x) : x 2 < 0. Which of the following statements are true? (i) xp(x); (ii) xp(x); (iii) xq(x); (iv) xq(x); (vi) xr(x) ; (vii) xr(x) Read the rules of inference in Table 1 on page 72 and Table 2 on page 76. 8

9 Section Introduction to Proofs Recall the following about propositions: Associative laws, Distributive laws, De Morgan s laws, and the equivalence p q q p Some terminologies: A Theorem is a statement that can be shown to be true. This term is generally reserved for statements that are important. Less important theorems are called Propositions. A Proof is a valid argument that establishes the truth of a Theorem. Statements used in proofs can include axioms that are assumed to be true, and previously proved theorems. A Lemma is a result that is proved to help in proving a theorem. A Corollary is a theorem that can be established directly from a theorem that has been proved. A Conjecture is a statement that is being proposed to be a true statement, usually based on some partial evidence. Following are some famous conjectures in mathematics: (i) Fermat s last Theorem: The equation X n + Y n = Z n has no nontrivial solution in the set of integers if n > 2. (ii) Four color conjecture: A planar graph is four colorable. 9

10 Section Introduction to Proofs... Methods for proving Theorems: Direct Method (Forward proofs): The proof of a conditional statement p q is constructed where the first step is the assumption that p is true; subsequent steps are constructed using rules of inference, with the final step showing q must be true. Proof by Contraposition: To prove p q we prove q p. Proof by Contradiction: To prove a statement p is true, we assume p is not true and arrive at a contradiction. Definition: An integer n is even if there exists an integer k such that n = 2k, and n is odd if there exists an integer k such that n = 2k +1, Some examples of direct proof: Prove the following: 1. If n is an even integer then n 2 is an even integer. 2. If n is an odd integer then n 2 is an odd integer. 10

11 Section Introduction to Proofs... Methods for proving Theorems... Prove the following using proof by contraposition 1. If n is an integer and 5n+2 is odd then n is odd. 2. Let a and b be two integers. If ab is even, then a is even or b is even. 3. If n = ab where a and b are positive integers then a n or b n. 4. If n is an integer and n 2 is odd then n is odd. 5. If n is an integer and n 2 is even then n is even. Definition: A real number r is rational if there exists integers p and q (q 0) such that r = p q. A real number that is not rational is called irrational. 11

12 Section Introduction to Proofs... Methods for proving Theorems... Prove the following using proof by contradiction: 1. 2 is an irrational number 2. The sum of an irrational number and a rational number is irrational. More examples: 1. Show that the following statements about an integer n are equivalent. (a) n is even. (b) n 1 is odd. (c) n 2 is even 2. Show that if a is irrational and a 0, then 1 a is irrational. 3. Show that at least ten of any 65 days chosen must fall on the same day of the week. Read the following examples in Section 1.7: 14, 15, 16 and

13 Section Proof Methods Following are some additional proof methods. Proof by Cases: To prove (p 1 p 2 p n ) q, we prove [(p 1 q) (p 2 q) (p n q)] Exhaustive Proof: This is done by examining a relatively small number of examples. Existence Proofs: A proof of a proposition of the form xp(x) is called an existence proof. Uniqueness Proofs: This requires proving the following two parts 1. Existence: We show an element x with the desired property exists 2. Uniqueness: We show that if y x, then y does not have the desired property. 13

14 Section Proof Methods... Prove the following using one of the following proof methods: Proof by Cases, Exhaustive Proof, Existence Proof or Uniqueness Proof 1. Prove that (n + 1) 3 3 n if n is a positive integer with n Prove that if n is an integer, then n 2 n. (Hint: consider the following three cases, n = 0, n 1, n 1) 3. Prove that xy = x y where x and y are any real numbers. 4. Show that there is a positive integer that can be written as the sum of cubes of two positive integers in two different ways. Proof: 1729 = = (constructive existence proof) 5. Show that there exist irrational numbers x and y such that x y is rational. (non-constructive existence proof) 6. Show that the equation ax+b = c, (a 0) has a unique solution where a,b,c are real numbers. 14

15 Section Sets Definition 1: A set is an unordered, well defined collection of objects; objects in a set are called elements or members of the set. (Cantor introduced sets) Some Notations: We write a A to denote that a is an element of the set A. We write a A to denote that a is not an element of the set A. {a,b,c,d} represents the set containing the four elements a,b,c,d More Examples and Venn diagrams: Another way to represent set is using the set builder notation as O = {x x is an odd positive integer less than 50} Some sets used often in this course: Z + = {1,2,3, } = the set of all positive integers. N = {0,1,2,3, } = the set of all natural numbers. Z = { 2, 1,0,1,2,3, } = the set of all integers, positive and negative. Q = { p p,q Z and q 0}= the set of all rational numbers. q R = the set of all real numbers. R + = the set of all positive real numbers. Note: Z + N Z Q R; and R + R. 15

16 Some Definitions: Section Sets Definition 2: Two sets are equal if they have the same elements. Definition: The set with no elements is called the empty set and is denoted by or { }. Definition 3: A set A is said to be a subset of another set B if every element of A is an element of B. We use the notation A B to denote A is a subset of the set B. We use the notation A B to denote A is a proper subset of B. A is a proper subset of B if A B and A B. Theorem 1: is a subset of every set. For any set S, S S. To show two sets are equal, we show each of them is a subset of the other. Definition 4: A set S with exactly n distinct elements, where n is a non-negative integer, is called a finite set and that the cardinality of S is n. The cardinality of S is denoted by S. A set is said to be infinite if it is not finite. Definition 6: Given a set S, the power set of S is the set of all subsets of S, and is denoted by P(S). Some examples: P({ }), P( ), etc. Fact: P(S) = 2 S for any finite set S. i.e., if S has n elements, P(S) has 2 n elements. We will prove this later. 16

17 Section Sets... Definition 7: An ordered n-tuple (a 1,a 2,,a n ) is the ordered collection that has a 1 as its first element, a 2 as its second element,..., and a n as its n th element. Two ordered n-tuples (a 1,a 2,,a n ) and (b 1,b 2,,b n ) are said to be equal if a i = b i for i = 1,2,,n. 2-tuples are called ordered pairs. Definition 8: Let A and B be sets. The Cartesian product of A and B, denoted by A B, is the set of all ordered pairs (a,b) where a A and b B. i.e., A B = {(a,b) a A,b B} Definition 9: The Cartesian product of the sets A 1,A 2,, A n, denoted by A 1 A 2,, A n, is defined as A 1 A 2,, A n = {(a 1,a 2,,a n ) a i A i,i = 1,2, n} Using set notation with quantifiers. Given a predicate P and a domain D, we define the truth set of P to be the set of elements x D for which P(x) is true. The truth set of P(x) is denoted by P(x) = {x D P(x)} Example: What are the truth sets of the following predicates where the domain is the set Z, the set of all integers? (i)p(x) = x 2 > 5 (ii) Q(x) = x 2 < 0 (iii) R(x) = x+2 is even 17

18 Section Set Operations Definition 1: Let A and B be sets. The union of two sets A and B, denoted by A B, is the set containing precisely the elements in A and B. i.e., A B = {x (x A) (x B)} Definition 2: The intersection of the sets A and B, denoted by A B, is the set containing those elements that are both in A and B. i.e., A B = {x (x A) (x B)} Definition 3: Two sets are said to be disjoint if their intersection is empty. i.e., they have no common elements. Definition 4: Let A and B be two sets. The difference, denoted by A B, is defined as the set containing all those elements in A that are not in B. i.e., A B = {x (x A) (x B)} Definition 5: Let U be the universal set. The complement of A, denoted by Ā, is the complement of A with respect to U. i.e., Ā = {x (x U) (x A)} 18

19 Section Set Operations... Some important set identities: Identity A A = A A = A A U = U A = A A = A A A = A Name Identity Laws Domination Laws Idempotent Laws (Ā) = A Complementation Law A B = B A Commutative Laws A B = B A A (B C) = (A B) C Associative Laws A (B C) = (A B) C A (B C) = (A B) (A C) Distributive Laws A (B C) = (A B) (A C) A B = Ā B A B = Ā B A (A B) = A A (A B) = A A Ā = U A Ā = De Morgan s Laws Absorption Laws Complement Laws Exercise: Prove some of the above identities. 19

20 Section Set Operations... Let A,B,C be sets. Then, prove the following: 1. A (B C) = ( C B) Ā 2. (A B C) = Ā B C 3. A B = A B Definition 6: The union of a collection of sets is the set that contains those elements that are members of at least one set in the collection. We use the notation n A 1 A 2 A n = Definition: The intersection of a collection of sets is the set that contains those elements that are members of all the sets in the collection. We use the notation n A 1 A 2 A n = i=1 i=1 A i A i 20

21 Section 2.3 Functions Definition 1: Let A and B be two nonempty sets. A function f from A to B is a rule which assigns for each element in A, a unique element in B. We write b = f(a), if b is the unique element assigned by f to a. If f is a function from A to B, then we write, f : A B Definition 2: If f : A B, we say A is the domain of f and B is the codomain of f. If f(a) = b, we say b is the image of a and a is the preimage of b. The range of f is the set of all images of all elements of A. We say f maps A to B. Definition : Two functions f and g are equal if their domain and codomain are same and f(a) = g(a) for all a in their domain. Definition 3: If f and g are functions from a set A to the set of all real numbers R, then f +g and fg are also functions from A to R defined as follows: (f +g)(x) = f(x)+g(x) x A (fg)(x) = f(x)g(x) x A In the above definition, the codomain can be any set in which addition and multiplication are defined.(for example, N,Z +,R +,Z, or any subset of these sets can be codomains). 21

22 Section 2.3 Functions... Definition 4: Let f : A B be a function and S A, then the image of S under f, denoted as f(s), is the subset of B that contains the images of all elements in S. i.e., f(s) = {f(s) s S} = {t B s S such that t = f(s)} Definition 5: A function f : A B is said to be a oneto-one function or an injection if f(a) = f(b) implies a = b for all a,b A. i.e., ( a, b (f(a) = f(b) a = b)) Definition 6: A function f whose domain and codomain are subsets of real numbers is called an (i) increasing function if f(x) f(y) whenever x < y and (ii) strictly increasing function if f(x) < f(y) whenever x < y. Definition 7: A function f : A B is called on-to or surjective if for every element b B, there is some element a A with f(a) = b Definition 8: A function f : A B is said to be a oneto-one correspondence or a bijection if it is both one-to-one and on-to. 22

23 Section 2.3 Functions... Definition 9: If f : A B is a one-to-one correspondence from A to B, the inverse function of f, denoted by f 1, is the function that assigns to each element b B, the unique element a A such that f(a) = b. Hence f 1 (b) = a when f(a) = b. Note: Do not confuse f 1 with 1. These two are different. f Definition 10: Let g : A B and f : B C be two functions. The composition of the functions f and g, namely f g : A C, is defined as: f g(a) = f(g(a)) a A Definition 11: The graph of a function f : A B is the set of ordered pairs {(a,b) (a A) (f(a) = b)}. Definition 12: The floor function, namely and the ceiling function, namely, are defined as follows. is defined as is defined as : R R x = the largest integer x. : R R x = the smallest integer x. 23

24 Section Sequences and summation Definition 1: A sequence is a function from a subset of integers (usually either the set {0,1,2,3, } or {1,2,3, }) to a set S. We use the notation a n to denote the image of integer n. We call a n, a term of the sequence, usually the n th term of the sequence. Definition 2: A geometric progression is a sequence of the form a,ar,ar 2, ar n, where the initial term a and the common ratio r are real numbers. Definition 3: An Arithmetic progression is a sequence of the form a,a+d,a+2d,,a+nd, where the initial term a and the common difference d are real numbers. Finding a formula or a rule for a given sequence is often a difficult problem. You may need to ask many questions such as Are there terms obtained from previous terms by adding, subtracting, multiplying? Are there terms obtained by combining previous terms in a certain way? etc. Find a formula or a rule for the following sequences: (i) 3,6,11,18,27... (ii) 1,2,2,3,3,3,4,4,4,4,... (iii) 2,4,16,256,65536, ,... 24

25 Section Sequences and summation... We use the notations n j=m a j, n j=m a j, and to represent the sum a m +a m+1 + +a n. a j (m j n) Following are some useful formulas: (We will prove some of them now and some later) n k=0 n k=1 n k=1 ar k (r 0) = arn+1 a r 1 k = n(n+1) 2 k 2 = n(n+1)(2n+1) 6 n k 3 = n2 (n+1) 2 4 k=1 k=0 x k ( x < 1) = 1 1 x (r 1), 6. kx k 1 ( x < 1) = k=1 1 (1 x) 2 25

26 Section Cardinality of sets Definition 1: The sets A and B have same cardinality if there is a one-to-one correspondence between A and B (A and B can be infinite). Definition 2: If there is a one-to-one function from A to B, the cardinality of A is less than or equal to the cardinality of B. We write A B. If A B and A and B have different cardinality, then we write A < B and say the cardinality of A is less than the cardinality of B. Definition 3: A set that is either finite or has the same cardinality as the set of positive integers is called countable. A set that is not countable is called uncountable. When an infinite set S is countable, we denote its cardinality as ℵ 0 (read as aleph null or aleph not, ℵ is the first Hebrew alphabet). We write S = ℵ 0 and say S has cardinality aleph null. Prove the following: (i) The set of all even integers is countable. (ii) The set of all odd integers is countable (iii) The set of all integers is countable. (iv) The set of all positive rational numbers is countable. (iv) A subset of a countable set is countable. (v) The set of all real numbers is uncountable. Cantor s Continuum hypothesis (1878?): There is no set whose cardinality is strictly between the set Z and the set R. Definition: Hilbert s Grand Hotel has countably infinite number of rooms and each is occupied by a guest. When, a new guest arrives, the new guest can be allocated a room even if the hotel is full!!. (something impossible with finite sets is possible with infinite sets!.) 26

27 Section Mathematical induction Generally, mathematical induction can be used to prove statements such as P(n) is true for all positive integers n, where P(n) is a propositional function. Principle of Mathematical Induction: To prove P(n) is true for all positive integers n, where P(n) is a propositional function, we complete the following two steps. 1. Basis step: We verify P(1) is true. (i.e., P(n) is true for n = 1). 2. Inductive step: For all positive integers k, we assume P(k) is true and show P(k +1) is true. Principle of induction can be asserted as the following rule of inference: [P(1) k(p(k) P(k +1))] np(n) Why mathematical induction is valid? Proof: Mathematical induction can be used to prove a conjecture if it is true. But it cannot be used to find new theorems. n For example, we can prove k = n(n+1) by induction 2 but... k=1 27

28 Section Mathematical induction... Prove the following using mathematical induction: 1. If n is positive integer n = n(n+1) 2 2. If n is positive integer (2n 1) = n 2 3. For any positive integer n, a+ar+ar 2 + +ar n = arn+1 a r 1 when r For any positive integer n, 5. For any positive integer n, n k=1 k 2 = n(n+1)(2n+1) 6 n k 3 = n2 (n+1) 2 4 k=1 6. If n is a positive integer then 2 n < n! if n n 3 n is divisible 3 for all positive integers n. 8. If S is a finite set of n elements, prove that P(S) = 2 n. 9. For any positive integer n > 1 prove the following De n n n n Morgan s Laws. (i) A j = Ā j ; (ii) A j = j=1 j=1 j=1 j=1 Ā j Read Examples 2, 3, 7, 13 and 14 in Section

29 Section Strong induction and well ordering Strong Induction: To prove that P(n) is true for all positive integers n, where P(n) is a propositional function, we complete the following two steps: 1. Basis step: We verify that P(1) is true. 2. Inductive step: We show that the conditional statement [P(1) P(2) P(3) P(k)] P(k+1) is true for all positive integers k. ( In fact mathematical induction and strong induction are equivalent. However, sometimes it is easier to use strong induction. Strong induction is also called as the second principle of mathematical induction or Complete induction.) Example: Prove the following statement: If n is a positive integer > 1, then n can be written as a product of primes. (it is not easy to prove this using mathematical induction) A modified version of Strong induction: Let b be a fixed integer and let j be a fixed positive integer. The to prove P(n) is true for all n b, we complete the following two steps. 1. Basis step: Verify that the propositions P(b),P(b + 1),P(b+2),,P(b+j) are true. 2. Inductive step: Show that [P(b) P(b + 1) P(b + 2), P(k)] P(k +1) is true for every integer k b+j. 29

30 Section Strong induction and well ordering... Prove the following statements: (i) Prove that every amount of money of n dollars can be formed using only $ 2 bills and $ 5 bills if n 4. (ii) Suppose a store offers gift certificates in denominations of 35 dollars and 25 dollars. Prove that using gift certificates in these two denominations only, you can purchase any amount of $ 5n where n 24. Well ordering property: Every nonempty set of nonnegative integers has a least element (It has been proved that the well ordering property, mathematical induction, and strong induction are equivalent). Well ordering property can be directly used in proofs. Example: Use well ordering property to prove division algorithm. (Division Algorithm: If a is an integer and d is a positive integer, then there are unique integers q and r with 0 r < d such that a = qd+r.) 30

31 Section Recursive definition and structural induction... Recursively defined function: We use the following two steps to define a function with the set of nonnegative integers as its domain: 1. Basis step: Specify the value of the function at zero. 2. Recursive step: Give a rule for finding the value of the function at an integer from its value at smaller integers. Example of recursively defined functions: Recursively defined sets: They have two parts, a basis step and a recursive step. Basis step: An initial collection of elements is specified. Recursive step: In this step, rules for forming new elements in the set from those already known to be in the set are provided. Examples of recursively defined sets: 1. Consider the set S of integers defined by Basis step: 5 S Recursive step: if x S and y S, then x+y S 2. The set Σ, of strings over an alphabet Σ is defined by Basis step: λ Σ, here λ is the empty string. Recursive step: if w Σ and x Σ, then wx Σ Words in a dictionary is a subset of Σ, where Σ = the set {a,b,c,,z,a,b, Z}. 31

32 Section Recursive definition and structural induction... More examples: 1. The set of rooted trees (where a rooted tree consists of a set of vertices containing a distinct vertex called the root, and edges connecting these vertices), can be defined recursively as follows: Basis step: A single vertex is a rooted tree. Recursive step: suppose T 1,T 2,,T n are rooted trees with roots r 1,r 2,,r n respectively. Then a graph formed by starting with a root r, which is not in any of the rooted trees T 1,T 2,,T n, and adding an edge from each of the vertices r 1,r 2,,r n to r is also a rooted tree. Structural Induction: To prove results about recursively defined sets, we generally use some form of mathematical induction. Example: Show that the set defined by the following rules Basis step: 7 S Recursive step: if x,y S, then x+y S. consists precisely of all positive integers that are multiples of 7. 32

33 Section The basis of counting Two basic principles of counting: Product rule and Sum rule Product rule: Suppose that a procedure can be broken down in to a sequence of two tasks. If there are n 1 ways to do the first task and for each of these n 1 ways of doing the first task, there are n 2 ways to do the second task, then there are n 1 n 2 ways to do the procedure. This rule generalizes to any number of tasks as well. 1. There are 25 CS majors and 30 math majors in this class. In how many ways can you pick two representatives so that one is a math major and the other is a CS major; Assume that none majors both in CS and math. 2. How many different bit strings of length 5 are there? 3. How many different ternary strings of length 5 are there? 4. How many different licence plate numbers can be formed if each plate contains three digits followed by three letters. 5. By setting up a one-to-one correspondence between the subsets of a finite set S and the bit strings of length S, show that the number of subsets of S is 2 S. 6. Show that there is one-to-one correspondence between the set of all subsets of Z + (the set of all positive integers) and the set of all real numbers in the open interval (0,1) (i.e., the set {x R 0 < x < 1}) Read examples 1 to 10 in the book. 33

34 Section 6.1 and The basis of counting..., pigeonhole principle The sum Rule: If a task can be done either in one of n 1 ways or in one of n 2 ways, where none of the set of n 1 ways is the same as any of the set of n 2 ways, then there are n 1 +n 2 ways to do the task. Inclusion-Exclusion Principle (sometimes also called as subtraction rule): If a task can be done in either n 1 ways or n 2 ways, then the number of ways to do the task is n 1 +n 2 minus the numbers of ways to do the task in both ways. (i.e., If A and B are two finite sets, then A B = A + B A B ) Theorem 1: Pigeonhole Principle: If k is a positive integer and k +1 or more objects are placed in k boxes, there is at least one box containing two or more objects. Proof: Corollary 1: A function f from a set with k + 1 or more elements to set with k elements is not one-to-one. Theorem 2: Generalized Pigeonhole Principle: If N objects are placed in K boxes, then there is at least one box that contains at least N K objects. Proof: Theorem 3: Every sequence of n 2 +1 real numbers contains a subsequence of length n+1 that is either strictly increasing or strictly decreasing. Proof: 34

35 Section Permutation and Combination Definition: A permutation of a set of distinct objects is an ordered arrangement of these objects. r-permutation: An ordered arrangement of r elements of a set is called an r-permutation. Definition: The number of r-permutations of a set with n- elements is denoted by P(n,r). Theorem 1: If n is a positive integer and r is an integer with (1 r n), then P(n,r) = n(n 1)(n 2) (n r +1) Proof: Use product rule. Corollary 1: If n and r are positive integers and (1 r n), then P(n,r) = n! (n r)! 35

36 Section Permutation and.. Definition: An r-combination is an unordered selection of r elements from a set. The number of r-combinations of a set with n elements is denoted by C(n,r) or ( n r). Theorem: The number of r-combinations of a set with n elements where n and r are positive integers such that (0 r n) is given by C(n,r) = n! (n r)!r! Proof: P(n.r) = C(n,r)P(r,r) = C(n,r)r!. Corollary 2: Let n and r be positive integers such that r n. Then C(n,r) = C(n,n r). 36

37 Section Binomial coefficients and identities Theorem 1: (Binomial Theorem) Let X and Y be variables and n be a positive integer. Then ) ( X n n) ( + X n 1 n) Y + X n 2 Y 2 + ( n ) ( XY n 1 n + (X+Y) n = ( n 0 OR Proof: 1 (X +Y) n = 2 n k=0 ( n ) X n k Y k k Corollary 1: If n > 0 is an integer, then Proof: Take X = Y = 1 in the theorem. Corollary 2: If n > 0 is an integer, then n 1 n k=0 k=0 ( n ) k = 2 n Proof: Take X = 1 and Y = 1 in the theorem. Corollary 3: If n > 0 is an integer, then n n ( n ) ( 1) k = 0 k n ( n ) 2 k = 3 n k k=0 Proof: Take X = 1 and Y = 2 in the theorem. ) Y n Theorem 2: Pascal s identity. Let n and k be positive integers with n k. Then ( ) ( n+1 k = n ( k 1) + n ) k 37

38 Section Applications of recurrence relations Many counting problems cannot be solved using the techniques described in chapter 6. In this chapter, we explore using recurrence relations for solving some counting problems. Definition 1: A recurrence relation for the sequence {a n } is an equation that expresses a n in terms of one or more of the previous terms in the sequence, namely, a 0,a 1,a 2,...,a n 1, for all integers n with n n 0, where n 0 is a non negative integer. A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation. 38

39 Section Solving linear recurrence relations Definition 1: A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form a n = c 1 a n 1 +c 2 a n c k a n k, where c 1,c 2,...,c k are real numbers and c k 0. Characteristic equation: The equation r k c 1 r k 1 c 2 r k 2 c k = 0 is called the characteristic equation associated with the recurrence relation a n = c 1 a n 1 +c 2 a n c k a n k. Roots of this characteristic equation are called the Characteristic roots of the recurrence relation. As seen in the following Theorems, Characteristic roots help in determining the solution of the recurrence relation. Theorem 1: Let c 1 and c 2 be real numbers. Suppose that r 2 c 1 r c 2 = 0 has two distinct roots r 1 and r 2. Then the sequence {a n } is a solution of the recurrence relation a n = c 1 a n 1 + c 2 a n 2 if and only if a n = α 1 r n 1 + α 2r n 2 for n = 0,1,2,... where α 1 and α 2 are constants. Theorem 2: Let c 1 and c 2 be real numbers with c 2 o. Suppose that r 2 c 1 r c 2 = 0 has only one root r 0. Then the sequence {a n } is a solution of the recurrence relation a n = c 1 a n 1 + c 2 a n 2 if and only if a n = α 1 r n 0 + α 2nr n 0 for n = 0,1,2,... where α 1 and α 2 are constants. 39

40 Section Theorem 3: Let c 1,c 2,...c k be real numbers. Suppose that the characteristic equation r k c 1 r k 1 c 2 r k 2... c k = 0 has k distinct roots r 1,r 2,...r k. Then a sequence {a n } is a solution of the recurrence relation a n = c 1 a n 1 + c 2 a n c k a n k if and only if a n = α 1 r n 1 + α 2r n α kr n k for n = 0,1,2,..., where α 1,α 2,...,α k are constants. Theorem 4: Let c 1,c 2,...,c k be real numbers. Suppose that the characteristic equation r k c 1 r k 1 c 2 r k 2... c k = 0 has t distinct roots r 1,r 2,...r t (t k) with multiplicities m 1,m 2,...,m t, respectively, so that m i 1 for i = 1,2,...,t and m 1 +m m t = k. Then a sequence {a n } is a solution of the recurrence relation a n = c 1 a n 1 +c 2 a n c k a n k if and only if a n = (α 1,0 +α 1,1 n+...+α 1,m1 1n m 1 1 )r n 1 +(α 2,0+α 2,1 n+...+α 2,m2 1n m 2 1 )r n (α t,0 +α t,1 n+...+α t,mt 1n m t 1 )r n t for n = 0,1,2,..., where α i,j are constants for 1 i t and 0 j m i 1. Note: Theorems 1, 2 and 3 are corollaries to Theorem 4 40

41 Section Theorem 5: If {a (p) n } is a particular solution of the nonhomogeneous linear recurrence relation with constant coefficients a n = c 1 a n 1 + c 2 a n c k a n k + F(n), then every solution is of the form {a (p) n + a n (h) }, where {a n (h) } is a solution of the associated linear homogeneous recurrence relation a n = c 1 a n 1 +c 2 a n c k a n k. Theorem 6: If {a n } satisfies the linear non-homogeneous recurrence relation a n = c 1 a n 1 +c 2 a n c k a n k +F(n), where F(n) = (b t n t + b t 1 n t b 1 n + b 0 )s n. When s is not a root of the characteristic equation of the associated linear homogeneous recurrence relation, there is a particular solution of the form (p t n t +p t 1 n t p 1 n+p 0 )s n. When s is a root of this characteristic equation of multiplicity m, there is a particular solution of the form n m (p t n t +p t 1 n t p 1 n+p 0 )s n. 41

42 Section Inclusion-exclusion principle Theorem 1: (Inclusion-Exclusion principle) Let A 1,A 2,...,A n be finite sets. Then, n A i = A i A i A j + A i A j A k i=1 1 i n 1 i<j n 1 i<j<k n +( 1) n+1 A 1 A 2... A n Recall that we saw the special case of this result earlier for n = 2, namely, A 1 A 2 = A 1 + A 2 A 1 A 2 Proof of the Theorem: 42

43 Section Relations and their properties Definition 1: Let A and B be two sets. A binary relation from A to B is a subset of the cross product A X B. Note: The concept of relations is a powerful tool in the networked world and has many applications. Definition 2: A relation on a set A is a relation from A to A itself (i.e., a subset of A X A). Notation: Sometimes if (a,b) R, we simply write arb and say a is related to b with respect to R OR a is R-related to b. Definition 3: A relation R on a set A is called reflexive if (a,a) R a A. Definition 4: A relation R on a set A is called symmetric if (b,a) R whenever (a,b) R. i.e., (a,b) R (b,a) R a,b A. R is called antisymmetric if a,b A, ((a,b) R and (b,a) R) implies a = b. i.e., a,b A ((a,b) R) (b,a) R) a = b. Definition 4: A relation R on a set A is called transitive if whenever ((a,b) R and (b,c) R), then (a,c) R, a,b,c A. i.e., a,b,c A ((a,b) R) (b,c) R) (a,c) R. 43

44 Section Relations... Definition 6: Let R be a relation from a set A to a set B and S be a relation from a set B to set C. The composite of the relations R an S is a relation from A to C, denoted as S R, is defined as S R = {(a,c) (a A) (c C) ( b B such that ((a,b) R) ((b,c) S)} Definition 7: Let R be a relation on the set A. Then, for n = 1,2,, R n is defined recursively as, R 1 = R, and R n+1 = R n R for n = 1,2,. Theorem 1: A relation R is transitive if and only if R n R for all n = 1,2,. Proof: 44

45 Section 2.6 Matrices Definition 1: A matrix is a rectangular array of numbers. A matrix with m rows and n columns is called an m n matrix (read as m by n matrix). The plural of matrix is matrices. A matrix with same number of rows and columns is called a square matrix. Two matrices are equal if they have the same number of rows, same number of columns and the corresponding entries in every position are equal. Examples of matrices: A short notation for writing a matrix A is A=[a ij ] which indicates that A is a matrix whose (i,j) th entry is a ij. Definition 2: Let m and n be positive integers and let a 11 a 12 a 1n a 21 a 22 a 2n... A = a m1 a m2 a mn The i th row of the matrix A is the 1 n matrix [a i1,a i2,,a in ]. The j th column of A is the m 1 matrix a 1j a 2j... a mj 45

46 Section 2.6 Matrices... Definition 3: Let A= [a ij ] and B= [b ij ] be two m n matrices. The sum of the two matrices A and B, denoted as A + B, is the m n matrix whose (i,j) th entry is a ij + b ij. In other words, A + B = [a ij +b ij ] Definition 4: Let A= [a ij ] be a m k matrix and B= [b ij ] be k n matrix. Then the product of the two matrices A and B, denoted as AB, is the m n matrix whose (i,j) th entry is the sum of the products of the i th row of A and j th column of B. In otherwords, if AB= [c ij ], then c ij = a i1 b 1j +a i2 b 2j + +a ik b kj Definition 5: The identity matrix of order n is the n n matrix I n = [δ ij ] where δ ij = 1 if i = j and δ ij = 0 if i j. In otherwords, I n = Note: Multiplying any matrix with an identity matrix of appropriate size does not change this matrix. i.e., if A is any m n matrix, then AI n = A. Definition 6: Let A = [a ij ] be an m n matrix. The transpose of A, denoted by A t, is the n m matrix obtained by interchanging the rows and columns of A i.e., if A t = [b ij ], then b ij = a ji for i = 1,2,,n and j = 1,2,,m. Definition: 7 A square matrix A is called symmetric if A = A t. i.e., if A = [a ij ], then a ij = a ji i,j (1 i,j n) 46

47 Section 2.6 Matrices... Zero-one matrix: A zero-one matrix is a matrix whose entries are 0 or 1. Such matrices are often used to represent structures in discrete mathematics. The arithmetic boolean operations on a pair of bits a,b can be defined as follows: a b = { 1 if a = b = 1, 0 otherwise. a b = { 1 if a = 1 or b = 1, 0 otherwise. Definition 8: Let A = [a ij ] and B = [b ij ] be two m n zeroone matrices. Then the join of A and B is the zero-one matrix with (i,j) th entry a ij b ij and is denoted by A B. Let A = [a ij ] and B = [b ij ] be two m n zero-one matrices. Then the meet of A and B is the zero-one matrix with (i,j) th entry a ij b ij and is denoted by A B. Definition 9: Let A= [a ij ] be a m k zero-one matrix and B= [b ij ] be k n zero-one matrix. Then the Boolean product of the two matrices A and B, denoted as A B, is the m n zero-one matrix with (i,j) th entry c ij where c ij = (a i1 b 1j ) (a i2 b 2j ) (a ik b kj ) Definition 10: The r th Boolean power of a zero-one square matrix A, denoted by A [r], is the boolean product of r factors of A. Hence, A [r] = A A A A }{{} r times A [0] is defined as I n. 47

48 Section 9.3 Representing Relations Suppose R is a relation from A = {a 1,a 2,...a m } to B = {b 1,b 2,...b n }. (Here the elements of A and B are listed in a particular order. If A = B, we use the same ordering in both). The relation R with respect to this ordering of the elements of A and B can be represented as the matrix M R = [m ij ], where m ij = { 1 if (ai,b j ) R. 0 if (a i,b j ) R. Example: Observation: If M R = [m ij ] is the matrix of a relation defined on a set A = {a 1,a 2,,a n } then 1. R is reflexive if and only if m ii = 1 for i = 1,2, n 2. R is symmetric if and only if m ji = m ij 1 i,j n Remark: Suppose R 1 and R 2 are two relations on a set A represented by the matrices M R1 = [m ij ] and M R2 = [m ij ] respectively. Then, the matrices representing R 1 R 2 and R 1 R 2 are respectively M R1 R 2 = [u ij ] and M R1 R 2 = [v ij ] where u ij and v ij are defined by u ij = { 1 if (mij = 1) (m ij = 1). 0 otherwise. v ij = { 1 if (mij = 1) (m ij = 1). 0 otherwise. Thus, M R1 R 2 = M R1 M R2 and M R1 R 2 = M R1 M R2. Example: 48

49 Section 9.3 Representing Relations... Observations: Let R 1 and R 2 be relations defined on a set A. Let M R1 and M R2 be the matrices representing relations R 1 and R 2 respectively. Then, M R1 R 2 = M R1 M R2. M R1 R 2 = M R1 M R2. Matrix representation of relations also help in determining if a relation is reflexive or symmetric easily. Let R be a relation from A to B and S be a relation from B to C. Suppose A, B and C have m, n, p elements respectively. Let the matrices for S R,R and S be M S R,M R and M S respectively. Then, M S R = M R M S. Definition 1: A directed graph or digraph consists of a set V of vertices together with a set E of ordered pairs of elements of V, called edges or arcs. The vertex a of the edge (a,b) is called initial vertex and b is called the terminal vertex. Thus, directed graphs can be used to represent relations. 49

50 Section Closure of Relations Definition: Let R be a relation on the set A. The reflexive closure of R is the smallest relation S containing R (i.e., S R) that is reflexive. Note: Let R be a relation on the set A. Then R, where = {(a,a) a A} is the reflexive closure of R. Definition: Let R be a relation on the set A. The symmetric closure of R is the smallest relation S containing R (i.e., R S) that is symmetric. Note: Let R be a relation on the set A. Then the symmetric closure of R is same as R R 1, where R 1 = {(b,a) (a,b) R} Note: We can define the transitive closure of a relation the same way. However, constructing transitive closure of a relation is not easy. We need some graph theory for that. Definition 1: A path from a vertex a to a vertex b in a directed graph G is a sequence of edges (x 0,x 1 ),(x 1,x 2 ),,(x n 1,x n ) in G where n is a nonnegative integer, and x 0 = a, and x n = b; that is, a sequence of edges where the terminal vertex of one edge is the initial vertex of the next edge in the sequence. This path is simply denoted as x 0,x 1,,x n and has length n. A path that begins and ends at the same vertex is called a cycle. 50

51 Section Closure of Relations... The term path also applies to relations. Let R be a relation on the set A. We say there is a path from a to b in R if there is a sequence of elements a,x 1,x 2,,x n 1,b with (a,x 1 ) R,(x 1,x 2 ) R, (x n 2,x n 1 ) R,(x n 1,b) R. Note: Useful in tracing ancestry, tracking terrorist groups, tracking consumers interest,... Theorem 1: Let R be a relation on the set A. There is a path of length n in R, where n is a positive integer, from a to b if and only if (a,b) R n. Proof: Use induction on n. Definition 2: Let R be a relation on the set A. The connectivity relation R consists of the pairs (a,b) such that there is a path of length at least one from a to b in R. It follows that R = R n n=1 Theorem: The connectivity relation R is the transitive closure of R. Lemma 1: Let A be a set with n elements and R be a relation on A. If there is a path of length at least one in R from a to b, then there is a path with length not exceeding n; moreover, when a b, there is a path of length at most n 1. Theorem 2: If R is a relation on a set A with n elements, then R = R 1 R 2 R n Theorem 3: Let M R be the zero-one matrix representing relation R on a set A with n elements. Then M R = M R M [2] R M[3] R M[n] R. 51

52 Section 9.5 Equivalence relations Definition 1: A relation on a set A is called an equivalence relation if it is reflexive, symmetric and transitive. Note: An equivalence relation allows to relate objects that are similar in some way. Definition 2: Two elements a and b that are related by an equivalence relation are called equivalent. The notation a b is often used to denote that a and b are equivalent with respect to a particular equivalence relation. Definition 3: Let R be an equivalence relation on a set A. The set of all elements that are related to an element x A is called the equivalence class of x with respect to R. The equivalence class of x with respect to R is denoted by [x] R or simply [x], if the relation under consideration is clear. Theorem 1: Let R be an equivalence relation on a set A. Then, the following three statements are equivalent. 1. arb 2. [a] = [b] 3. [a] [b] 52

53 Section 9.5 Equivalence relations... Definition: A Partition of a set S is a collection of nonempty disjoint subsets of S whose union is S. In otherwords, the collection of subsets A i, i I} (where I is some indexing set) forms partition of S if and only if S = i IA i and A i A j = i,j I, i j. Theorem 2: Let R be an equivalence relation on a set S. Then the equivalence classes of R form a partition of S. Conversely, given a partition {A i i I} of the set S, there is an equivalence relation R on S that has sets A i, i I as equivalence classes. Proof: 53

54 Section Partial ordering We use relations to order some or all elements of a set. For example, (i) ordering daily routine (ii) ordering words in a dictionary (iii) ordering of integers (iv) scheduling tasks in a project (v) arrange students in a line according to height (vi) arranging students grades in descending order Note: The ordering can be partial meaning there may be elements not related to each other with respect to the ordering. This leads to the following definition Definition 1: A relation R on a set S is called a partial ordering if R is reflexive, antisymmetric and transitive. A set S, together with a partial ordering R is called a partially ordered set or poset, and is denoted by(s,r). Members of S are called elements of the poset. Note: Customarily, the notation is used to denote (a,b) R (i.e., we say a b and read as a precedes b ) in any arbitrary poset (S,R)). This notation is used because the relation on the set of real numbers is partial order relation. The notation a b denotes that a b but a b. Definition 2: The elements a and b of a poset (S, ) are called comparable if a b or b a. Otherwise, a and b are said to be incomparable. Example: 54

55 Section Definition 3: If (S, ) is a poset and every two elements of S are comparable, the S is called a totally ordered set or a linearly ordered set, and is called a total order. A totally orders set is also called a chain. Definition 4: (S, ) is a well-ordered set if it is a poset such that is a total ordering and every nonempty subset of S has a least element. Theorem 1: (Principle of well ordered induction.) Suppose that S is a well ordered set. Then P(x) is true for all x S, if Inductive step: For every y S, if P(x) is true for all x S such that x y then P(y) is true. Proof: Lexicographic order: let (A 1, 1 ) and (A 2, 2 ) be two posets. The lexicographic ordering on the set (A 1 X A 2 ) is defined as follows: We define (a 1,a 2 ) (b 1,b 2 ) if (a 1 = b 1 and a 2 2 b 2 ) or a 1 1 b 1. Then we obtain a partial ordering by adding equality to the ordering. (Z X Z, ) from (Z, ) and (Z, ) The above definition can be extended to any number of sets as follows: Let (A 1, 1 ),(A 2, 2 ) (A n, n ) be posets, then define on A 1 XA 2 X X A n by (a 1,a 2,,a n ) (b 1,b 2,,b n ) if a 1 1 b 1 or an integer i > 0 such that a 1 = b 1,a 2 = b 2,,a i = b i and a i+1 i+1 b i+1. 55

56 Section Definition: Hasse diagram. We can represent a poset (S, ) as a graph with minimal number of edges. The procedure for reducing the number of edges is as follows: Start with the original graph and remove edges from this graph using the following rules: (i) Since a a a S, we can remove all loops (a,a). (ii) then remove all edges (x,y) for which there is a z such that (x z) and (z y). The resulting graph is called the Hasse diagram of the poset. Example: Definition: An element of a poset is called maximal if it is not less than any other element of the poset. An element is called minimal if it is not greater than any other element. Note: A poset can have more than one maximal element and more than one minimal element. Definition: An element a in a poset (S, ) is said to be the greatest element of the poset if b a b S. An element a in a poset (S, ) is said to be the least element of the poset if a b b S. Note: a poset may not have a greatest element or a least element; however, when they exist, they are unique. An element u in a poset (S, ) is said to be an upper bound of a subset A S, if a u a A. An element l in a poset (S, ) is said to be a lower bound of a subset A S, if l a a A. 56

57 Section An element u in a poset (S, ) is said to be the least upper bound of a subset A S, if u is an upper bound that is less than every other upper bound of A. An element l in a poset (S, ) is said to be the greatest lower bound of a subset A S, if it is greater than every other lower bound. Note: A subset A of a poset (S, ) may not have a lower bound or an upper bound. The greatest lower bound and least upper bound are unique, if they exist. Definition: A poset (S ) in which every pair of elements has both a least upper bound and greatest lower bound is called a lattice. Definition: A total ordering is said to be compatible with the partial ordering R if a b whenever arb. Constructing a compatible total ordering from a partial ordering is called Topological sorting. Lemma 1: Every finite nonempty poset (S, ) has at least one minimal element. Proof: 57

58 Section Algorithm for Topological Sorting Procedure TopologicalSort((S, ): finite poset) Begin integer k := 1; while S { a k := a minimal element of S; S := S {a k }; k := k +1; } return a 1,a 2,,a n ; // a compatible total ordering of S End; Example: 58

59 Section Graphs and Graph Models Definition 1: A graph G = (V,E) consists of V, a nonempty set of vertices (or nodes) and E, a set of edges. Each edge has either one or two vertices associated with it, called end points. Remark: A graph with infinite vertex set or infinite number of edges is called an infinite graph. A graph with finite vertex set and finite number of edges is called a finite graph. Definition: A graph in which each edge connects two different vertices and where no two edges connect the same pair of vertices is called a Simple graph. Graphs that may have multiple edges connecting the same vertices are called multigraphs. Graphs that may include loops (i.e., edges that connect a vertex to itself) and possibly multiple edges connecting same pair of vertices or a vertex to itself are sometimes called pseudographs. Definition 2: A directed graph (or digraph) (V,E) consists of a nonempty set of vertices V and a set of directed edges (or arcs) E. Each directed edge is associated with an ordered pair of vertices. The directed edge associate with the ordered pair (u,v) is said to start with u and end at v. Definition: A simple directed graph is a directed graph with no loops and no multiple directed edges. A directed multigraph is a directed graph that may have multiple directed edges from a vertex to a second (possibly the same) vertex. 59

Sets are one of the basic building blocks for the types of objects considered in discrete mathematics.

Sets are one of the basic building blocks for the types of objects considered in discrete mathematics. Section 2.1 Introduction Sets are one of the basic building blocks for the types of objects considered in discrete mathematics. Important for counting. Programming languages have set operations. Set theory

More information

Lecture Notes 1 Basic Concepts of Mathematics MATH 352

Lecture Notes 1 Basic Concepts of Mathematics MATH 352 Lecture Notes 1 Basic Concepts of Mathematics MATH 352 Ivan Avramidi New Mexico Institute of Mining and Technology Socorro, NM 87801 June 3, 2004 Author: Ivan Avramidi; File: absmath.tex; Date: June 11,

More information

Chapter 2 - Basics Structures MATH 213. Chapter 2: Basic Structures. Dr. Eric Bancroft. Fall Dr. Eric Bancroft MATH 213 Fall / 60

Chapter 2 - Basics Structures MATH 213. Chapter 2: Basic Structures. Dr. Eric Bancroft. Fall Dr. Eric Bancroft MATH 213 Fall / 60 MATH 213 Chapter 2: Basic Structures Dr. Eric Bancroft Fall 2013 Dr. Eric Bancroft MATH 213 Fall 2013 1 / 60 Chapter 2 - Basics Structures 2.1 - Sets 2.2 - Set Operations 2.3 - Functions 2.4 - Sequences

More information

Chapter 2 - Basics Structures

Chapter 2 - Basics Structures Chapter 2 - Basics Structures 2.1 - Sets Definitions and Notation Definition 1 (Set). A set is an of. These are called the or of the set. We ll typically use uppercase letters to denote sets: S, A, B,...

More information

Chapter 1 : The language of mathematics.

Chapter 1 : The language of mathematics. MAT 200, Logic, Language and Proof, Fall 2015 Summary Chapter 1 : The language of mathematics. Definition. A proposition is a sentence which is either true or false. Truth table for the connective or :

More information

Section Summary. Sequences. Recurrence Relations. Summations. Examples: Geometric Progression, Arithmetic Progression. Example: Fibonacci Sequence

Section Summary. Sequences. Recurrence Relations. Summations. Examples: Geometric Progression, Arithmetic Progression. Example: Fibonacci Sequence Section 2.4 1 Section Summary Sequences. Examples: Geometric Progression, Arithmetic Progression Recurrence Relations Example: Fibonacci Sequence Summations 2 Introduction Sequences are ordered lists of

More information

2.1 Sets. Definition 1 A set is an unordered collection of objects. Important sets: N, Z, Z +, Q, R.

2.1 Sets. Definition 1 A set is an unordered collection of objects. Important sets: N, Z, Z +, Q, R. 2. Basic Structures 2.1 Sets Definition 1 A set is an unordered collection of objects. Important sets: N, Z, Z +, Q, R. Definition 2 Objects in a set are called elements or members of the set. A set is

More information

586 Index. vertex, 369 disjoint, 236 pairwise, 272, 395 disjoint sets, 236 disjunction, 33, 36 distributive laws

586 Index. vertex, 369 disjoint, 236 pairwise, 272, 395 disjoint sets, 236 disjunction, 33, 36 distributive laws Index absolute value, 135 141 additive identity, 254 additive inverse, 254 aleph, 465 algebra of sets, 245, 278 antisymmetric relation, 387 arcsine function, 349 arithmetic sequence, 208 arrow diagram,

More information

Foundations of Mathematics MATH 220 FALL 2017 Lecture Notes

Foundations of Mathematics MATH 220 FALL 2017 Lecture Notes Foundations of Mathematics MATH 220 FALL 2017 Lecture Notes These notes form a brief summary of what has been covered during the lectures. All the definitions must be memorized and understood. Statements

More information

Chapter Summary. Sets The Language of Sets Set Operations Set Identities Functions Types of Functions Operations on Functions Computability

Chapter Summary. Sets The Language of Sets Set Operations Set Identities Functions Types of Functions Operations on Functions Computability Chapter 2 1 Chapter Summary Sets The Language of Sets Set Operations Set Identities Functions Types of Functions Operations on Functions Computability Sequences and Summations Types of Sequences Summation

More information

Propositional Logic, Predicates, and Equivalence

Propositional Logic, Predicates, and Equivalence Chapter 1 Propositional Logic, Predicates, and Equivalence A statement or a proposition is a sentence that is true (T) or false (F) but not both. The symbol denotes not, denotes and, and denotes or. If

More information

0 Sets and Induction. Sets

0 Sets and Induction. Sets 0 Sets and Induction Sets A set is an unordered collection of objects, called elements or members of the set. A set is said to contain its elements. We write a A to denote that a is an element of the set

More information

LECTURE NOTES DISCRETE MATHEMATICS. Eusebius Doedel

LECTURE NOTES DISCRETE MATHEMATICS. Eusebius Doedel LECTURE NOTES on DISCRETE MATHEMATICS Eusebius Doedel 1 LOGIC Introduction. First we introduce some basic concepts needed in our discussion of logic. These will be covered in more detail later. A set is

More information

Chapter Summary. Sets (2.1) Set Operations (2.2) Functions (2.3) Sequences and Summations (2.4) Cardinality of Sets (2.5) Matrices (2.

Chapter Summary. Sets (2.1) Set Operations (2.2) Functions (2.3) Sequences and Summations (2.4) Cardinality of Sets (2.5) Matrices (2. Chapter 2 Chapter Summary Sets (2.1) Set Operations (2.2) Functions (2.3) Sequences and Summations (2.4) Cardinality of Sets (2.5) Matrices (2.6) Section 2.1 Section Summary Definition of sets Describing

More information

Notation Index. gcd(a, b) (greatest common divisor) NT-16

Notation Index. gcd(a, b) (greatest common divisor) NT-16 Notation Index (for all) B A (all functions) B A = B A (all functions) SF-18 (n) k (falling factorial) SF-9 a R b (binary relation) C(n,k) = n! k! (n k)! (binomial coefficient) SF-9 n! (n factorial) SF-9

More information

Lecture Notes on DISCRETE MATHEMATICS. Eusebius Doedel

Lecture Notes on DISCRETE MATHEMATICS. Eusebius Doedel Lecture Notes on DISCRETE MATHEMATICS Eusebius Doedel c Eusebius J. Doedel, 009 Contents Logic. Introduction............................................................................... Basic logical

More information

MATH 363: Discrete Mathematics

MATH 363: Discrete Mathematics MATH 363: Discrete Mathematics Learning Objectives by topic The levels of learning for this class are classified as follows. 1. Basic Knowledge: To recall and memorize - Assess by direct questions. The

More information

Notes for Math 290 using Introduction to Mathematical Proofs by Charles E. Roberts, Jr.

Notes for Math 290 using Introduction to Mathematical Proofs by Charles E. Roberts, Jr. Notes for Math 290 using Introduction to Mathematical Proofs by Charles E. Roberts, Jr. Chapter : Logic Topics:. Statements, Negation, and Compound Statements.2 Truth Tables and Logical Equivalences.3

More information

Equivalence of Propositions

Equivalence of Propositions Equivalence of Propositions 1. Truth tables: two same columns 2. Sequence of logical equivalences: from one to the other using equivalence laws 1 Equivalence laws Table 6 & 7 in 1.2, some often used: Associative:

More information

REVIEW QUESTIONS. Chapter 1: Foundations: Sets, Logic, and Algorithms

REVIEW QUESTIONS. Chapter 1: Foundations: Sets, Logic, and Algorithms REVIEW QUESTIONS Chapter 1: Foundations: Sets, Logic, and Algorithms 1. Why can t a Venn diagram be used to prove a statement about sets? 2. Suppose S is a set with n elements. Explain why the power set

More information

LECTURE NOTES DISCRETE MATHEMATICS. Eusebius Doedel

LECTURE NOTES DISCRETE MATHEMATICS. Eusebius Doedel LECTURE NOTES on DISCRETE MATHEMATICS Eusebius Doedel 1 LOGIC Introduction. First we introduce some basic concepts needed in our discussion of logic. These will be covered in more detail later. A set is

More information

Packet #2: Set Theory & Predicate Calculus. Applied Discrete Mathematics

Packet #2: Set Theory & Predicate Calculus. Applied Discrete Mathematics CSC 224/226 Notes Packet #2: Set Theory & Predicate Calculus Barnes Packet #2: Set Theory & Predicate Calculus Applied Discrete Mathematics Table of Contents Full Adder Information Page 1 Predicate Calculus

More information

Section Summary. Definition of a Function.

Section Summary. Definition of a Function. Section 2.3 Section Summary Definition of a Function. Domain, Codomain Image, Preimage Injection, Surjection, Bijection Inverse Function Function Composition Graphing Functions Floor, Ceiling, Factorial

More information

With Question/Answer Animations. Chapter 2

With Question/Answer Animations. Chapter 2 With Question/Answer Animations Chapter 2 Chapter Summary Sets The Language of Sets Set Operations Set Identities Functions Types of Functions Operations on Functions Sequences and Summations Types of

More information

Definition: A binary relation R from a set A to a set B is a subset R A B. Example:

Definition: A binary relation R from a set A to a set B is a subset R A B. Example: Chapter 9 1 Binary Relations Definition: A binary relation R from a set A to a set B is a subset R A B. Example: Let A = {0,1,2} and B = {a,b} {(0, a), (0, b), (1,a), (2, b)} is a relation from A to B.

More information

MATH1240 Definitions and Theorems

MATH1240 Definitions and Theorems MATH1240 Definitions and Theorems 1 Fundamental Principles of Counting For an integer n 0, n factorial (denoted n!) is defined by 0! = 1, n! = (n)(n 1)(n 2) (3)(2)(1), for n 1. Given a collection of n

More information

Section Summary. Relations and Functions Properties of Relations. Combining Relations

Section Summary. Relations and Functions Properties of Relations. Combining Relations Chapter 9 Chapter Summary Relations and Their Properties n-ary Relations and Their Applications (not currently included in overheads) Representing Relations Closures of Relations (not currently included

More information

Final Exam Review. 2. Let A = {, { }}. What is the cardinality of A? Is

Final Exam Review. 2. Let A = {, { }}. What is the cardinality of A? Is 1. Describe the elements of the set (Z Q) R N. Is this set countable or uncountable? Solution: The set is equal to {(x, y) x Z, y N} = Z N. Since the Cartesian product of two denumerable sets is denumerable,

More information

MAT115A-21 COMPLETE LECTURE NOTES

MAT115A-21 COMPLETE LECTURE NOTES MAT115A-21 COMPLETE LECTURE NOTES NATHANIEL GALLUP 1. Introduction Number theory begins as the study of the natural numbers the integers N = {1, 2, 3,...}, Z = { 3, 2, 1, 0, 1, 2, 3,...}, and sometimes

More information

COMP 182 Algorithmic Thinking. Proofs. Luay Nakhleh Computer Science Rice University

COMP 182 Algorithmic Thinking. Proofs. Luay Nakhleh Computer Science Rice University COMP 182 Algorithmic Thinking Proofs Luay Nakhleh Computer Science Rice University 1 Reading Material Chapter 1, Section 3, 6, 7, 8 Propositional Equivalences The compound propositions p and q are called

More information

CHAPTER 1. Relations. 1. Relations and Their Properties. Discussion

CHAPTER 1. Relations. 1. Relations and Their Properties. Discussion CHAPTER 1 Relations 1. Relations and Their Properties 1.1. Definition of a Relation. Definition 1.1.1. A binary relation from a set A to a set B is a subset R A B. If (a, b) R we say a is Related to b

More information

Mathematics Course 111: Algebra I Part I: Algebraic Structures, Sets and Permutations

Mathematics Course 111: Algebra I Part I: Algebraic Structures, Sets and Permutations Mathematics Course 111: Algebra I Part I: Algebraic Structures, Sets and Permutations D. R. Wilkins Academic Year 1996-7 1 Number Systems and Matrix Algebra Integers The whole numbers 0, ±1, ±2, ±3, ±4,...

More information

Finite and Infinite Sets

Finite and Infinite Sets Chapter 9 Finite and Infinite Sets 9. Finite Sets Preview Activity (Equivalent Sets, Part ). Let A and B be sets and let f be a function from A to B..f W A! B/. Carefully complete each of the following

More information

Intro to Logic and Proofs

Intro to Logic and Proofs Intro to Logic and Proofs Propositions A proposition is a declarative sentence (that is, a sentence that declares a fact) that is either true or false, but not both. Examples: It is raining today. Washington

More information

Exercises for Unit VI (Infinite constructions in set theory)

Exercises for Unit VI (Infinite constructions in set theory) Exercises for Unit VI (Infinite constructions in set theory) VI.1 : Indexed families and set theoretic operations (Halmos, 4, 8 9; Lipschutz, 5.3 5.4) Lipschutz : 5.3 5.6, 5.29 5.32, 9.14 1. Generalize

More information

Discrete Mathematical Structures: Theory and Applications

Discrete Mathematical Structures: Theory and Applications Chapter 1: Foundations: Sets, Logic, and Algorithms Discrete Mathematical Structures: Theory and Applications Learning Objectives Learn about sets Explore various operations on sets Become familiar with

More information

Tutorial Obtain the principal disjunctive normal form and principal conjunction form of the statement

Tutorial Obtain the principal disjunctive normal form and principal conjunction form of the statement Tutorial - 1 1. Obtain the principal disjunctive normal form and principal conjunction form of the statement Let S P P Q Q R P P Q Q R A: P Q Q R P Q R P Q Q R Q Q R A S Minterm Maxterm T T T F F T T T

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter The Real Numbers.. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {, 2, 3, }. In N we can do addition, but in order to do subtraction we need to extend

More information

Section Summary. Sequences. Recurrence Relations. Summations Special Integer Sequences (optional)

Section Summary. Sequences. Recurrence Relations. Summations Special Integer Sequences (optional) Section 2.4 Section Summary Sequences. o Examples: Geometric Progression, Arithmetic Progression Recurrence Relations o Example: Fibonacci Sequence Summations Special Integer Sequences (optional) Sequences

More information

Mathematical Reasoning & Proofs

Mathematical Reasoning & Proofs Mathematical Reasoning & Proofs MAT 1362 Fall 2018 Alistair Savage Department of Mathematics and Statistics University of Ottawa This work is licensed under a Creative Commons Attribution-ShareAlike 4.0

More information

Sets. We discuss an informal (naive) set theory as needed in Computer Science. It was introduced by G. Cantor in the second half of the nineteenth

Sets. We discuss an informal (naive) set theory as needed in Computer Science. It was introduced by G. Cantor in the second half of the nineteenth Sets We discuss an informal (naive) set theory as needed in Computer Science. It was introduced by G. Cantor in the second half of the nineteenth century. Most students have seen sets before. This is intended

More information

Sets McGraw-Hill Education

Sets McGraw-Hill Education Sets A set is an unordered collection of objects. The objects in a set are called the elements, or members of the set. A set is said to contain its elements. The notation a A denotes that a is an element

More information

Today s Topics. Methods of proof Relationships to logical equivalences. Important definitions Relationships to sets, relations Special functions

Today s Topics. Methods of proof Relationships to logical equivalences. Important definitions Relationships to sets, relations Special functions Today s Topics Set identities Methods of proof Relationships to logical equivalences Functions Important definitions Relationships to sets, relations Special functions Set identities help us manipulate

More information

MATH 220 (all sections) Homework #12 not to be turned in posted Friday, November 24, 2017

MATH 220 (all sections) Homework #12 not to be turned in posted Friday, November 24, 2017 MATH 220 (all sections) Homework #12 not to be turned in posted Friday, November 24, 2017 Definition: A set A is finite if there exists a nonnegative integer c such that there exists a bijection from A

More information

Discrete Math Notes. Contents. William Farmer. April 8, Overview 3

Discrete Math Notes. Contents. William Farmer. April 8, Overview 3 April 8, 2014 Contents 1 Overview 3 2 Principles of Counting 3 2.1 Pigeon-Hole Principle........................ 3 2.2 Permutations and Combinations.................. 3 2.3 Binomial Coefficients.........................

More information

Week Some Warm-up Questions

Week Some Warm-up Questions 1 Some Warm-up Questions Week 1-2 Abstraction: The process going from specific cases to general problem. Proof: A sequence of arguments to show certain conclusion to be true. If... then... : The part after

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter 1 The Real Numbers 1.1. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {1, 2, 3, }. In N we can do addition, but in order to do subtraction we need

More information

Logic. Facts (with proofs) CHAPTER 1. Definitions

Logic. Facts (with proofs) CHAPTER 1. Definitions CHAPTER 1 Logic Definitions D1. Statements (propositions), compound statements. D2. Truth values for compound statements p q, p q, p q, p q. Truth tables. D3. Converse and contrapositive. D4. Tautologies

More information

Discrete Mathematics. W. Ethan Duckworth. Fall 2017, Loyola University Maryland

Discrete Mathematics. W. Ethan Duckworth. Fall 2017, Loyola University Maryland Discrete Mathematics W. Ethan Duckworth Fall 2017, Loyola University Maryland Contents 1 Introduction 4 1.1 Statements......................................... 4 1.2 Constructing Direct Proofs................................

More information

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc (MATHEMATICS) I Semester Core Course. FOUNDATIONS OF MATHEMATICS (MODULE I & ii) QUESTION BANK

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc (MATHEMATICS) I Semester Core Course. FOUNDATIONS OF MATHEMATICS (MODULE I & ii) QUESTION BANK UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc (MATHEMATICS) (2011 Admission Onwards) I Semester Core Course FOUNDATIONS OF MATHEMATICS (MODULE I & ii) QUESTION BANK 1) If A and B are two sets

More information

SETS AND FUNCTIONS JOSHUA BALLEW

SETS AND FUNCTIONS JOSHUA BALLEW SETS AND FUNCTIONS JOSHUA BALLEW 1. Sets As a review, we begin by considering a naive look at set theory. For our purposes, we define a set as a collection of objects. Except for certain sets like N, Z,

More information

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9 MAT 570 REAL ANALYSIS LECTURE NOTES PROFESSOR: JOHN QUIGG SEMESTER: FALL 204 Contents. Sets 2 2. Functions 5 3. Countability 7 4. Axiom of choice 8 5. Equivalence relations 9 6. Real numbers 9 7. Extended

More information

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska LECTURE 1 Course Web Page www3.cs.stonybrook.edu/ cse303 The webpage contains: lectures notes slides; very detailed solutions to

More information

Review 1. Andreas Klappenecker

Review 1. Andreas Klappenecker Review 1 Andreas Klappenecker Summary Propositional Logic, Chapter 1 Predicate Logic, Chapter 1 Proofs, Chapter 1 Sets, Chapter 2 Functions, Chapter 2 Sequences and Sums, Chapter 2 Asymptotic Notations,

More information

Foundations of Mathematics

Foundations of Mathematics Foundations of Mathematics L. Pedro Poitevin 1. Preliminaries 1.1. Sets We will naively think of a set as a collection of mathematical objects, called its elements or members. To indicate that an object

More information

7.11 A proof involving composition Variation in terminology... 88

7.11 A proof involving composition Variation in terminology... 88 Contents Preface xi 1 Math review 1 1.1 Some sets............................. 1 1.2 Pairs of reals........................... 3 1.3 Exponentials and logs...................... 4 1.4 Some handy functions......................

More information

Part IA. Numbers and Sets. Year

Part IA. Numbers and Sets. Year Part IA Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2017 19 Paper 4, Section I 1D (a) Show that for all positive integers z and n, either z 2n 0 (mod 3) or

More information

Background for Discrete Mathematics

Background for Discrete Mathematics Background for Discrete Mathematics Huck Bennett Northwestern University These notes give a terse summary of basic notation and definitions related to three topics in discrete mathematics: logic, sets,

More information

Countable and uncountable sets. Matrices.

Countable and uncountable sets. Matrices. Lecture 11 Countable and uncountable sets. Matrices. Instructor: Kangil Kim (CSE) E-mail: kikim01@konkuk.ac.kr Tel. : 02-450-3493 Room : New Milenium Bldg. 1103 Lab : New Engineering Bldg. 1202 Next topic:

More information

Review 3. Andreas Klappenecker

Review 3. Andreas Klappenecker Review 3 Andreas Klappenecker Final Exam Friday, May 4, 2012, starting at 12:30pm, usual classroom Topics Topic Reading Algorithms and their Complexity Chapter 3 Logic and Proofs Chapter 1 Logic and Proofs

More information

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics. Introductory Notes in Discrete Mathematics Solution Guide

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics. Introductory Notes in Discrete Mathematics Solution Guide Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics Introductory Notes in Discrete Mathematics Solution Guide Marcel B. Finan c All Rights Reserved 2015 Edition Contents

More information

Copyright c 2007 Jason Underdown Some rights reserved. statement. sentential connectives. negation. conjunction. disjunction

Copyright c 2007 Jason Underdown Some rights reserved. statement. sentential connectives. negation. conjunction. disjunction Copyright & License Copyright c 2007 Jason Underdown Some rights reserved. statement sentential connectives negation conjunction disjunction implication or conditional antecedant & consequent hypothesis

More information

CSCE 222 Discrete Structures for Computing. Review for Exam 1. Dr. Hyunyoung Lee !!!

CSCE 222 Discrete Structures for Computing. Review for Exam 1. Dr. Hyunyoung Lee !!! CSCE 222 Discrete Structures for Computing Review for Exam 1 Dr. Hyunyoung Lee 1 Topics Propositional Logic (Sections 1.1, 1.2 and 1.3) Predicate Logic (Sections 1.4 and 1.5) Rules of Inferences and Proofs

More information

MA Discrete Mathematics

MA Discrete Mathematics MA2265 - Discrete Mathematics UNIT I 1. Check the validity of the following argument. If the band could not play rock music or the refreshments were not delivered on time, then the New year s party would

More information

Discrete Mathematics

Discrete Mathematics Discrete Mathematics Dr. Thomas Baird January 7, 2013 Contents 1 Logic 2 1.1 Statements.................................... 2 1.1.1 And, Or, Not.............................. 2 1.1.2 Implication...............................

More information

A Semester Course in Basic Abstract Algebra

A Semester Course in Basic Abstract Algebra A Semester Course in Basic Abstract Algebra Marcel B. Finan Arkansas Tech University c All Rights Reserved December 29, 2011 1 PREFACE This book is an introduction to abstract algebra course for undergraduates

More information

BASIC MATHEMATICAL TECHNIQUES

BASIC MATHEMATICAL TECHNIQUES CHAPTER 1 ASIC MATHEMATICAL TECHNIQUES 1.1 Introduction To understand automata theory, one must have a strong foundation about discrete mathematics. Discrete mathematics is a branch of mathematics dealing

More information

MATH FINAL EXAM REVIEW HINTS

MATH FINAL EXAM REVIEW HINTS MATH 109 - FINAL EXAM REVIEW HINTS Answer: Answer: 1. Cardinality (1) Let a < b be two real numbers and define f : (0, 1) (a, b) by f(t) = (1 t)a + tb. (a) Prove that f is a bijection. (b) Prove that any

More information

1 Basic Combinatorics

1 Basic Combinatorics 1 Basic Combinatorics 1.1 Sets and sequences Sets. A set is an unordered collection of distinct objects. The objects are called elements of the set. We use braces to denote a set, for example, the set

More information

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 1. I. Foundational material

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 1. I. Foundational material SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A Part 1 Fall 2014 I. Foundational material I.1 : Basic set theory Problems from Munkres, 9, p. 64 2. (a (c For each of the first three parts, choose a 1 1 correspondence

More information

Math 109 September 1, 2016

Math 109 September 1, 2016 Math 109 September 1, 2016 Question 1 Given that the proposition P Q is true. Which of the following must also be true? A. (not P ) or Q. B. (not Q) implies (not P ). C. Q implies P. D. A and B E. A, B,

More information

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction Math 4 Summer 01 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

5 Set Operations, Functions, and Counting

5 Set Operations, Functions, and Counting 5 Set Operations, Functions, and Counting Let N denote the positive integers, N 0 := N {0} be the non-negative integers and Z = N 0 ( N) the positive and negative integers including 0, Q the rational numbers,

More information

Chapter 1. Sets and Numbers

Chapter 1. Sets and Numbers Chapter 1. Sets and Numbers 1. Sets A set is considered to be a collection of objects (elements). If A is a set and x is an element of the set A, we say x is a member of A or x belongs to A, and we write

More information

Proofs. Chapter 2 P P Q Q

Proofs. Chapter 2 P P Q Q Chapter Proofs In this chapter we develop three methods for proving a statement. To start let s suppose the statement is of the form P Q or if P, then Q. Direct: This method typically starts with P. Then,

More information

Introduction to Proofs

Introduction to Proofs Introduction to Proofs Notes by Dr. Lynne H. Walling and Dr. Steffi Zegowitz September 018 The Introduction to Proofs course is organised into the following nine sections. 1. Introduction: sets and functions

More information

INFINITY: CARDINAL NUMBERS

INFINITY: CARDINAL NUMBERS INFINITY: CARDINAL NUMBERS BJORN POONEN 1 Some terminology of set theory N := {0, 1, 2, 3, } Z := {, 2, 1, 0, 1, 2, } Q := the set of rational numbers R := the set of real numbers C := the set of complex

More information

Notes on ordinals and cardinals

Notes on ordinals and cardinals Notes on ordinals and cardinals Reed Solomon 1 Background Terminology We will use the following notation for the common number systems: N = {0, 1, 2,...} = the natural numbers Z = {..., 2, 1, 0, 1, 2,...}

More information

Analysis 1. Lecture Notes 2013/2014. The original version of these Notes was written by. Vitali Liskevich

Analysis 1. Lecture Notes 2013/2014. The original version of these Notes was written by. Vitali Liskevich Analysis 1 Lecture Notes 2013/2014 The original version of these Notes was written by Vitali Liskevich followed by minor adjustments by many Successors, and presently taught by Misha Rudnev University

More information

Sets and Motivation for Boolean algebra

Sets and Motivation for Boolean algebra SET THEORY Basic concepts Notations Subset Algebra of sets The power set Ordered pairs and Cartesian product Relations on sets Types of relations and their properties Relational matrix and the graph of

More information

Theorem. For every positive integer n, the sum of the positive integers from 1 to n is n(n+1)

Theorem. For every positive integer n, the sum of the positive integers from 1 to n is n(n+1) Week 1: Logic Lecture 1, 8/1 (Sections 1.1 and 1.3) Examples of theorems and proofs Theorem (Pythagoras). Let ABC be a right triangle, with legs of lengths a and b, and hypotenuse of length c. Then a +

More information

Mathematics Review for Business PhD Students

Mathematics Review for Business PhD Students Mathematics Review for Business PhD Students Anthony M. Marino Department of Finance and Business Economics Marshall School of Business Lecture 1: Introductory Material Sets The Real Number System Functions,

More information

Logic, Sets, and Proofs

Logic, Sets, and Proofs Logic, Sets, and Proofs David A. Cox and Catherine C. McGeoch Amherst College 1 Logic Logical Operators. A logical statement is a mathematical statement that can be assigned a value either true or false.

More information

1. a. Give the converse and the contrapositive of the implication If it is raining then I get wet.

1. a. Give the converse and the contrapositive of the implication If it is raining then I get wet. VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF MATHEMATICS SUB CODE/ TITLE: MA6566 DISCRETE MATHEMATICS QUESTION BANK Academic Year : 015-016 UNIT I LOGIC AND PROOFS PART-A 1. Write the negation of the following

More information

Part II. Logic and Set Theory. Year

Part II. Logic and Set Theory. Year Part II Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 60 Paper 4, Section II 16G State and prove the ǫ-recursion Theorem. [You may assume the Principle of ǫ- Induction.]

More information

Foundations Revision Notes

Foundations Revision Notes oundations Revision Notes hese notes are designed as an aid not a substitute for revision. A lot of proofs have not been included because you should have them in your notes, should you need them. Also,

More information

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers.

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers. MATH 4 Summer 011 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

CS100: DISCRETE STRUCTURES

CS100: DISCRETE STRUCTURES 1 CS100: DISCRETE STRUCTURES Computer Science Department Lecture 2: Functions, Sequences, and Sums Ch2.3, Ch2.4 2.3 Function introduction : 2 v Function: task, subroutine, procedure, method, mapping, v

More information

CSCE 222 Discrete Structures for Computing. Review for the Final. Hyunyoung Lee

CSCE 222 Discrete Structures for Computing. Review for the Final. Hyunyoung Lee CSCE 222 Discrete Structures for Computing Review for the Final! Hyunyoung Lee! 1 Final Exam Section 501 (regular class time 8:00am) Friday, May 8, starting at 1:00pm in our classroom!! Section 502 (regular

More information

Set Theory. CSE 215, Foundations of Computer Science Stony Brook University

Set Theory. CSE 215, Foundations of Computer Science Stony Brook University Set Theory CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 Set theory Abstract set theory is one of the foundations of mathematical thought Most mathematical

More information

Relations Graphical View

Relations Graphical View Introduction Relations Computer Science & Engineering 235: Discrete Mathematics Christopher M. Bourke cbourke@cse.unl.edu Recall that a relation between elements of two sets is a subset of their Cartesian

More information

n CS 160 or CS122 n Sets and Functions n Propositions and Predicates n Inference Rules n Proof Techniques n Program Verification n CS 161

n CS 160 or CS122 n Sets and Functions n Propositions and Predicates n Inference Rules n Proof Techniques n Program Verification n CS 161 Discrete Math at CSU (Rosen book) Sets and Functions (Rosen, Sections 2.1,2.2, 2.3) TOPICS Discrete math Set Definition Set Operations Tuples 1 n CS 160 or CS122 n Sets and Functions n Propositions and

More information

CSCE 222 Discrete Structures for Computing

CSCE 222 Discrete Structures for Computing CSCE 222 Discrete Structures for Computing Sets and Functions Dr. Hyunyoung Lee Based on slides by Andreas Klappenecker 1 Sets Sets are the most fundamental discrete structure on which all other discrete

More information

Problem 1: Suppose A, B, C and D are finite sets such that A B = C D and C = D. Prove or disprove: A = B.

Problem 1: Suppose A, B, C and D are finite sets such that A B = C D and C = D. Prove or disprove: A = B. Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination III (Spring 2007) Problem 1: Suppose A, B, C and D are finite sets

More information

ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS

ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS 1. Cardinal number of a set The cardinal number (or simply cardinal) of a set is a generalization of the concept of the number of elements

More information

Sets and Functions. (As we will see, in describing a set the order in which elements are listed is irrelevant).

Sets and Functions. (As we will see, in describing a set the order in which elements are listed is irrelevant). Sets and Functions 1. The language of sets Informally, a set is any collection of objects. The objects may be mathematical objects such as numbers, functions and even sets, or letters or symbols of any

More information

n Empty Set:, or { }, subset of all sets n Cardinality: V = {a, e, i, o, u}, so V = 5 n Subset: A B, all elements in A are in B

n Empty Set:, or { }, subset of all sets n Cardinality: V = {a, e, i, o, u}, so V = 5 n Subset: A B, all elements in A are in B Discrete Math Review Discrete Math Review (Rosen, Chapter 1.1 1.7, 5.5) TOPICS Sets and Functions Propositional and Predicate Logic Logical Operators and Truth Tables Logical Equivalences and Inference

More information

3. Abstract Boolean Algebras

3. Abstract Boolean Algebras 3. ABSTRACT BOOLEAN ALGEBRAS 123 3. Abstract Boolean Algebras 3.1. Abstract Boolean Algebra. Definition 3.1.1. An abstract Boolean algebra is defined as a set B containing two distinct elements 0 and 1,

More information

Tools for reasoning: Logic. Ch. 1: Introduction to Propositional Logic Truth values, truth tables Boolean logic: Implications:

Tools for reasoning: Logic. Ch. 1: Introduction to Propositional Logic Truth values, truth tables Boolean logic: Implications: Tools for reasoning: Logic Ch. 1: Introduction to Propositional Logic Truth values, truth tables Boolean logic: Implications: 1 Why study propositional logic? A formal mathematical language for precise

More information

Automata and Languages

Automata and Languages Automata and Languages Prof. Mohamed Hamada Software Engineering Lab. The University of Aizu Japan Mathematical Background Mathematical Background Sets Relations Functions Graphs Proof techniques Sets

More information