Random Variable. Pr(X = a) = Pr(s)

Size: px
Start display at page:

Download "Random Variable. Pr(X = a) = Pr(s)"

Transcription

1 Random Variable Definition A random variable X on a sample space Ω is a real-valued function on Ω; that is, X : Ω R. A discrete random variable is a random variable that takes on only a finite or countably infinite number of values. Discrete random variable X and real value a: the event X = a represents the set {s Ω : X (s) = a}. Pr(X = a) = s Ω:X (s)=a Pr(s)

2 Independence Definition Two random variables X and Y are independent if and only if Pr((X = x) (Y = y)) = Pr(X = x) Pr(Y = y) for all values x and y. Similarly, random variables X 1, X 2,... X k are mutually independent if and only if for any subset I [1, k] and any values x i,i I, ( ) Pr X i = x i = Pr(X i = x i ). i I i I

3 Expectation Definition The expectation of a discrete random variable X, denoted by E[X ], is given by E[X ] = i i Pr(X = i), where the summation is over all values in the range of X. The expectation is finite if i i Pr(X = i) converges; otherwise, the expectation is unbounded. The expectation (or mean or average) is a weighted sum over all possible values of the random variable.

4 Median Definition The median of a random variable X is a value m such Pr(X < m) 1/2 and Pr(X > m) < 1/2.

5 Linearity of Expectation Theorem For any two random variables X and Y E[X + Y ] = E[X ] + E[Y ]. Lemma For any constant c and discrete random variable X, E[cX ] = ce[x ].

6 Bernoulli Random Variable A Bernoulli or an indicator random variable: { 1 if the experiment succeeds, Y = 0 otherwise. Let Pr(Y = 1) = p. E[Y ] = p 1 + (1 p) 0 = p = Pr(Y = 1).

7 Binomial Random Variable Definition A binomial random variable X with parameters n and p, denoted by B(n, p), is defined by the following probability distribution on j = 0, 1, 2,..., n: ( ) n Pr(X = j) = p j (1 p) n j. j

8 Expectation of a Binomial Random Variable E[X ] = = = n ( ) n j p j (1 p) n j j j=0 n n! j j!(n j)! pj (1 p) n j j=0 n j=1 = np n! (j 1)!(n j)! pj (1 p) n j n j=1 (n 1)! (j 1)!((n 1) (j 1))! pj 1 (1 p) (n 1) (j 1) n 1 (n 1)! = np k!((n 1) k)! pk (1 p) (n 1) k k=0 n 1 ( n 1 = np k k=0 ) p k (1 p) (n 1) k = np.

9 Binomial Random Variable X represents the number of successes in n independent experiments, each with success probability p. Let { 1 if the i-th experiment succeeds, X i = 0 otherwise. Using linearity of expectations [ n ] E[X ] = E X i = i=1 n E[X i ] = np. i=1

10 Example: Finding the k-smallest Element Procedure Order(S, k); Input: A set S, an integer k S = n. Output: The k smallest element in the set S.

11 Example: Finding the k-smallest Element Procedure Order(S, k); Input: A set S, an integer k S = n. Output: The k smallest element in the set S. 1 If S = k = 1 return S. 2 Choose a random element y uniformly from S. 3 Compare all elements of S to y. Let S 1 = {x S x y} and S 2 = {x S x > y}. 4 If k S 1 return Order(S 1, k) else return Order(S 2, k S 1 ). Theorem The algorithm returns the k-smallest element in S and performs O(n) comparisons in expectation.

12 Proof We say that a call to Order(S, k) was successful if the random element was in the middle 1/3 of the set S. A call is successful with probability 1/3. After the i-th successful call the size of the set S is bounded by n(2/3) i. Thus, need at most log 3/2 n successful calls. Let X be the total number of comparisons. Let T i be the number of iterations between the i-th successful call (included) and the i + 1-th (excluded): E[X ] log 3/2 n i=0 n(2/3) i E[T i ]. T i has a geometric distribution G(1/3).

13 The Geometric Distribution Definition A geometric random variable X with parameter p is given by the following probability distribution on n = 1, 2,.... Pr(X = n) = (1 p) n 1 p. Example: repeatedly draw independent Bernoulli random variables with parameter p > 0 until we get a 1. Let X be number of trials up to and including the first 1. Then X is a geometric random variable with parameter p.

14 Memoryless Property Lemma For a geometric random variable with parameter p and n > 0, Pr(X = n + k X > k) = Pr(X = n). Proof. Pr(X = n + k X > k) = = Pr(X = n + k) Pr(X > k) Pr((X = n + k) (X > k)) Pr(X > k) = (1 p)n+k 1 p i=k (1 p)i p = (1 p)n+k 1 p (1 p) k = (1 p) n 1 p = Pr(X = n).

15 Memoryless Property Intuition I have a coin and flip it a number of times without telling you neither the outcomes nor the number of times I flip it. I give the coin to you, asking what is the probability that the first head will come out after n times you have flipped it. Intuitively, this probability should not depend on the number of times I flip the coin and/or on the corresponding outcomes. The memoryless property tells us it is indeed so.

16 Lemma Let X be a discrete random variable that takes on only non-negative integer values. Then E[X ] = Pr(X i). i=1 Proof. Pr(X i) = i=1 = = Pr(X = j) i=1 j=i j=1 i=1 j Pr(X = j) j Pr(X = j) = E[X ]. j=1

17 For a geometric random variable X with parameter p, Pr(X i) = (1 p) n 1 p = (1 p) i 1. n=i E[X ] = = = Pr(X i) i=1 (1 p) i 1 i=1 1 1 (1 p) = 1 p

18 Alternative Proof For a geometric random variable X with parameter p, Let E 1 be the event X = 1 i.e. success in the first trial. E[X ] = E[X E 1 ]Pr(E 1 ) + E[X Ē 1 ]Pr(Ē 1 ) = 1 p + (1 + E[X ])(1 p) = 1 + (1 p)e[x ] Thus, E[X ] = 1 p.

19 Example: Finding the k-smallest Element Procedure Order(S, k); Input: A set S, an integer k S = n. Output: The k smallest element in the set S. 1 If S = k = 1 return S. 2 Choose a random element y uniformly from S. 3 Compare all elements of S to y. Let S 1 = {x S x y} and S 2 = {x S x > y}. 4 If k S 1 return Order(S 1, k) else return Order(S 2, k S 1 ). Theorem The algorithm returns the k-smallest element in S and performs O(n) comparisons in expectation.

20 Proof Let X be the total number of comparisons. Let T i be the number of iterations between the i-th successful call (included) and the i + 1-th (excluded): E[X ] log 3/2 n i=0 n(2/3) i E[T i ]. T i G(1/3), therefore E[T i ] = 3. Expected number of comparisons: E[X ] log 3/2 n j=0 3n ( ) 2 j 9n. 3

21 Example: Finding the k-smallest Element Procedure Order(S, k); Input: An array S, an integer k S = n. Output: The k smallest element in the set S. 1 If S = k = 1 return S. 2 Let y be the first element is S. 3 Compare all elements of S to y. Let S 1 = {x S x y} and S 2 = {x S x > y}. 4 If k S 1 return Order(S 1, k) else return Order(S 2, k S 1 ). Theorem The algorithm returns the k-smallest element in S and performs O(n) comparisons in expectation over all possible input permutations.

22 Randomized Algorithms: Analysis is true for any input. The sample space is the space of random choices made by the algorithm. Repeated runs are independent. Probabilistic Analysis: The sample space is the space of all possible inputs. If the algorithm is deterministic repeated runs give the same output.

23 Algorithm classification A Monte Carlo Algorithm is a randomized algorithm that may produce an incorrect solution. For decision problems: A one-side error Monte Carlo algorithm errs only one one possible output, otherwise it is a two-side error algorithm. A Las Vegas algorithm is a randomized algorithm that always produces the correct output. In both types of algorithms the run-time is a random variable.

Expected Value 7/7/2006

Expected Value 7/7/2006 Expected Value 7/7/2006 Definition Let X be a numerically-valued discrete random variable with sample space Ω and distribution function m(x). The expected value E(X) is defined by E(X) = x Ω x m(x), provided

More information

Randomized algorithms. Inge Li Gørtz

Randomized algorithms. Inge Li Gørtz Randomized algorithms Inge Li Gørtz Randomized algorithms Today What are randomized algorithms? Properties of randomized algorithms Two examples: Median/Select. Quick-sort Randomized Algorithms Randomized

More information

Example 1. The sample space of an experiment where we flip a pair of coins is denoted by:

Example 1. The sample space of an experiment where we flip a pair of coins is denoted by: Chapter 8 Probability 8. Preliminaries Definition (Sample Space). A Sample Space, Ω, is the set of all possible outcomes of an experiment. Such a sample space is considered discrete if Ω has finite cardinality.

More information

Theorem 1.7 [Bayes' Law]: Assume that,,, are mutually disjoint events in the sample space s.t.. Then Pr( )

Theorem 1.7 [Bayes' Law]: Assume that,,, are mutually disjoint events in the sample space s.t.. Then Pr( ) Theorem 1.7 [Bayes' Law]: Assume that,,, are mutually disjoint events in the sample space s.t.. Then Pr Pr = Pr Pr Pr() Pr Pr. We are given three coins and are told that two of the coins are fair and the

More information

Recap of Basic Probability Theory

Recap of Basic Probability Theory 02407 Stochastic Processes Recap of Basic Probability Theory Uffe Høgsbro Thygesen Informatics and Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby Denmark Email: uht@imm.dtu.dk

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms Prof. Tapio Elomaa tapio.elomaa@tut.fi Course Basics A new 4 credit unit course Part of Theoretical Computer Science courses at the Department of Mathematics There will be 4 hours

More information

Randomization in Algorithms

Randomization in Algorithms Randomization in Algorithms Randomization is a tool for designing good algorithms. Two kinds of algorithms Las Vegas - always correct, running time is random. Monte Carlo - may return incorrect answers,

More information

Recap of Basic Probability Theory

Recap of Basic Probability Theory 02407 Stochastic Processes? Recap of Basic Probability Theory Uffe Høgsbro Thygesen Informatics and Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby Denmark Email: uht@imm.dtu.dk

More information

Lecture 4: Two-point Sampling, Coupon Collector s problem

Lecture 4: Two-point Sampling, Coupon Collector s problem Randomized Algorithms Lecture 4: Two-point Sampling, Coupon Collector s problem Sotiris Nikoletseas Associate Professor CEID - ETY Course 2013-2014 Sotiris Nikoletseas, Associate Professor Randomized Algorithms

More information

CS5314 Randomized Algorithms. Lecture 5: Discrete Random Variables and Expectation (Conditional Expectation, Geometric RV)

CS5314 Randomized Algorithms. Lecture 5: Discrete Random Variables and Expectation (Conditional Expectation, Geometric RV) CS5314 Randomized Algorithms Lecture 5: Discrete Random Variables and Expectation (Conditional Expectation, Geometric RV) Objectives Introduce Geometric RV We then introduce Conditional Expectation Application:

More information

Random variables. DS GA 1002 Probability and Statistics for Data Science.

Random variables. DS GA 1002 Probability and Statistics for Data Science. Random variables DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Motivation Random variables model numerical quantities

More information

COMP 2804 Assignment 4

COMP 2804 Assignment 4 COMP 2804 Assignment 4 Due: Thursday April 5, before 11:55pm, through culearn. Assignment Policy: Your assignment must be submitted as one single PDF file through culearn. Late assignments will not be

More information

Guidelines for Solving Probability Problems

Guidelines for Solving Probability Problems Guidelines for Solving Probability Problems CS 1538: Introduction to Simulation 1 Steps for Problem Solving Suggested steps for approaching a problem: 1. Identify the distribution What distribution does

More information

Lecture 4: Probability and Discrete Random Variables

Lecture 4: Probability and Discrete Random Variables Error Correcting Codes: Combinatorics, Algorithms and Applications (Fall 2007) Lecture 4: Probability and Discrete Random Variables Wednesday, January 21, 2009 Lecturer: Atri Rudra Scribe: Anonymous 1

More information

Introduction to Randomized Algorithms: Quick Sort and Quick Selection

Introduction to Randomized Algorithms: Quick Sort and Quick Selection Chapter 14 Introduction to Randomized Algorithms: Quick Sort and Quick Selection CS 473: Fundamental Algorithms, Spring 2011 March 10, 2011 14.1 Introduction to Randomized Algorithms 14.2 Introduction

More information

CMPSCI 240: Reasoning Under Uncertainty

CMPSCI 240: Reasoning Under Uncertainty CMPSCI 240: Reasoning Under Uncertainty Lecture 5 Prof. Hanna Wallach wallach@cs.umass.edu February 7, 2012 Reminders Pick up a copy of B&T Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/

More information

Lecture 5: Two-point Sampling

Lecture 5: Two-point Sampling Randomized Algorithms Lecture 5: Two-point Sampling Sotiris Nikoletseas Professor CEID - ETY Course 2017-2018 Sotiris Nikoletseas, Professor Randomized Algorithms - Lecture 5 1 / 26 Overview A. Pairwise

More information

Topic 10: Hypothesis Testing

Topic 10: Hypothesis Testing Topic 10: Hypothesis Testing Course 003, 2016 Page 0 The Problem of Hypothesis Testing A statistical hypothesis is an assertion or conjecture about the probability distribution of one or more random variables.

More information

Overview. CSE 21 Day 5. Image/Coimage. Monotonic Lists. Functions Probabilistic analysis

Overview. CSE 21 Day 5. Image/Coimage. Monotonic Lists. Functions Probabilistic analysis Day 5 Functions/Probability Overview Functions Probabilistic analysis Neil Rhodes UC San Diego Image/Coimage The image of f is the set of values f actually takes on (a subset of the codomain) The inverse

More information

Essentials on the Analysis of Randomized Algorithms

Essentials on the Analysis of Randomized Algorithms Essentials on the Analysis of Randomized Algorithms Dimitris Diochnos Feb 0, 2009 Abstract These notes were written with Monte Carlo algorithms primarily in mind. Topics covered are basic (discrete) random

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables We have a probability space (S, Pr). A random variable is a function X : S V (X ) for some set V (X ). In this discussion, we must have V (X ) is the real numbers X induces a

More information

CS70: Jean Walrand: Lecture 26.

CS70: Jean Walrand: Lecture 26. CS70: Jean Walrand: Lecture 26. Expectation; Geometric & Poisson 1. Random Variables: Brief Review 2. Expectation 3. Linearity of Expectation 4. Geometric Distribution 5. Poisson Distribution Random Variables:

More information

Math 151. Rumbos Fall Solutions to Review Problems for Exam 2. Pr(X = 1) = ) = Pr(X = 2) = Pr(X = 3) = p X. (k) =

Math 151. Rumbos Fall Solutions to Review Problems for Exam 2. Pr(X = 1) = ) = Pr(X = 2) = Pr(X = 3) = p X. (k) = Math 5. Rumbos Fall 07 Solutions to Review Problems for Exam. A bowl contains 5 chips of the same size and shape. Two chips are red and the other three are blue. Draw three chips from the bowl at random,

More information

CSE 548: Analysis of Algorithms. Lectures 18, 19, 20 & 21 ( Randomized Algorithms & High Probability Bounds )

CSE 548: Analysis of Algorithms. Lectures 18, 19, 20 & 21 ( Randomized Algorithms & High Probability Bounds ) CSE 548: Analysis of Algorithms Lectures 18, 19, 20 & 21 ( Randomized Algorithms & High Probability Bounds ) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Fall 2012 Markov s Inequality

More information

Lecture 10: Bayes' Theorem, Expected Value and Variance Lecturer: Lale Özkahya

Lecture 10: Bayes' Theorem, Expected Value and Variance Lecturer: Lale Özkahya BBM 205 Discrete Mathematics Hacettepe University http://web.cs.hacettepe.edu.tr/ bbm205 Lecture 10: Bayes' Theorem, Expected Value and Variance Lecturer: Lale Özkahya Resources: Kenneth Rosen, Discrete

More information

Sample Spaces, Random Variables

Sample Spaces, Random Variables Sample Spaces, Random Variables Moulinath Banerjee University of Michigan August 3, 22 Probabilities In talking about probabilities, the fundamental object is Ω, the sample space. (elements) in Ω are denoted

More information

CS483 Design and Analysis of Algorithms

CS483 Design and Analysis of Algorithms CS483 Design and Analysis of Algorithms Lectures 4-5 Randomized Algorithms Instructor: Fei Li lifei@cs.gmu.edu with subject: CS483 Office hours: STII, Room 443, Friday 4:00pm - 6:00pm or by appointments

More information

STAT2201. Analysis of Engineering & Scientific Data. Unit 3

STAT2201. Analysis of Engineering & Scientific Data. Unit 3 STAT2201 Analysis of Engineering & Scientific Data Unit 3 Slava Vaisman The University of Queensland School of Mathematics and Physics What we learned in Unit 2 (1) We defined a sample space of a random

More information

Entropy. Probability and Computing. Presentation 22. Probability and Computing Presentation 22 Entropy 1/39

Entropy. Probability and Computing. Presentation 22. Probability and Computing Presentation 22 Entropy 1/39 Entropy Probability and Computing Presentation 22 Probability and Computing Presentation 22 Entropy 1/39 Introduction Why randomness and information are related? An event that is almost certain to occur

More information

Topic 3: The Expectation of a Random Variable

Topic 3: The Expectation of a Random Variable Topic 3: The Expectation of a Random Variable Course 003, 2017 Page 0 Expectation of a discrete random variable Definition (Expectation of a discrete r.v.): The expected value (also called the expectation

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 16. Random Variables: Distribution and Expectation

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 16. Random Variables: Distribution and Expectation CS 70 Discrete Mathematics and Probability Theory Spring 206 Rao and Walrand Note 6 Random Variables: Distribution and Expectation Example: Coin Flips Recall our setup of a probabilistic experiment as

More information

X = X X n, + X 2

X = X X n, + X 2 CS 70 Discrete Mathematics for CS Fall 2003 Wagner Lecture 22 Variance Question: At each time step, I flip a fair coin. If it comes up Heads, I walk one step to the right; if it comes up Tails, I walk

More information

Notes on Discrete Probability

Notes on Discrete Probability Columbia University Handout 3 W4231: Analysis of Algorithms September 21, 1999 Professor Luca Trevisan Notes on Discrete Probability The following notes cover, mostly without proofs, the basic notions

More information

Math 180B Homework 4 Solutions

Math 180B Homework 4 Solutions Math 80B Homework 4 Solutions Note: We will make repeated use of the following result. Lemma. Let (X n ) be a time-homogeneous Markov chain with countable state space S, let A S, and let T = inf { n 0

More information

Topic 10: Hypothesis Testing

Topic 10: Hypothesis Testing Topic 10: Hypothesis Testing Course 003, 2017 Page 0 The Problem of Hypothesis Testing A statistical hypothesis is an assertion or conjecture about the probability distribution of one or more random variables.

More information

Discrete Random Variables

Discrete Random Variables Chapter 5 Discrete Random Variables Suppose that an experiment and a sample space are given. A random variable is a real-valued function of the outcome of the experiment. In other words, the random variable

More information

7. Be able to prove Rules in Section 7.3, using only the Kolmogorov axioms.

7. Be able to prove Rules in Section 7.3, using only the Kolmogorov axioms. Midterm Review Solutions for MATH 50 Solutions to the proof and example problems are below (in blue). In each of the example problems, the general principle is given in parentheses before the solution.

More information

Discrete Mathematics and Probability Theory Fall 2014 Anant Sahai Note 15. Random Variables: Distributions, Independence, and Expectations

Discrete Mathematics and Probability Theory Fall 2014 Anant Sahai Note 15. Random Variables: Distributions, Independence, and Expectations EECS 70 Discrete Mathematics and Probability Theory Fall 204 Anant Sahai Note 5 Random Variables: Distributions, Independence, and Expectations In the last note, we saw how useful it is to have a way of

More information

2. AXIOMATIC PROBABILITY

2. AXIOMATIC PROBABILITY IA Probability Lent Term 2. AXIOMATIC PROBABILITY 2. The axioms The formulation for classical probability in which all outcomes or points in the sample space are equally likely is too restrictive to develop

More information

CS Homework Chapter 6 ( 6.14 )

CS Homework Chapter 6 ( 6.14 ) CS50 - Homework Chapter 6 ( 6. Dan Li, Xiaohui Kong, Hammad Ibqal and Ihsan A. Qazi Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 560 Intelligent Systems Program, University

More information

CS155: Probability and Computing: Randomized Algorithms and Probabilistic Analysis

CS155: Probability and Computing: Randomized Algorithms and Probabilistic Analysis CS155: Probability and Computing: Randomized Algorithms and Probabilistic Analysis Eli Upfal Eli Upfal@brown.edu Office: 319 TA s: Lorenzo De Stefani and Sorin Vatasoiu cs155tas@cs.brown.edu It is remarkable

More information

CS70: Jean Walrand: Lecture 19.

CS70: Jean Walrand: Lecture 19. CS70: Jean Walrand: Lecture 19. Random Variables: Expectation 1. Random Variables: Brief Review 2. Expectation 3. Important Distributions Random Variables: Definitions Definition A random variable, X,

More information

Janson s Inequality and Poisson Heuristic

Janson s Inequality and Poisson Heuristic Janson s Inequality and Poisson Heuristic Dinesh K CS11M019 IIT Madras April 30, 2012 Dinesh (IITM) Janson s Inequality April 30, 2012 1 / 11 Outline 1 Motivation Dinesh (IITM) Janson s Inequality April

More information

Math 564 Homework 1. Solutions.

Math 564 Homework 1. Solutions. Math 564 Homework 1. Solutions. Problem 1. Prove Proposition 0.2.2. A guide to this problem: start with the open set S = (a, b), for example. First assume that a >, and show that the number a has the properties

More information

Lecture 13 (Part 2): Deviation from mean: Markov s inequality, variance and its properties, Chebyshev s inequality

Lecture 13 (Part 2): Deviation from mean: Markov s inequality, variance and its properties, Chebyshev s inequality Lecture 13 (Part 2): Deviation from mean: Markov s inequality, variance and its properties, Chebyshev s inequality Discrete Structures II (Summer 2018) Rutgers University Instructor: Abhishek Bhrushundi

More information

Kousha Etessami. U. of Edinburgh, UK. Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 7) 1 / 13

Kousha Etessami. U. of Edinburgh, UK. Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 7) 1 / 13 Discrete Mathematics & Mathematical Reasoning Chapter 7 (continued): Markov and Chebyshev s Inequalities; and Examples in probability: the birthday problem Kousha Etessami U. of Edinburgh, UK Kousha Etessami

More information

Expectation of Random Variables

Expectation of Random Variables 1 / 19 Expectation of Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay February 13, 2015 2 / 19 Expectation of Discrete

More information

Carleton University. Final Examination Fall DURATION: 2 HOURS No. of students: 195

Carleton University. Final Examination Fall DURATION: 2 HOURS No. of students: 195 Carleton University Final Examination Fall 15 DURATION: 2 HOURS No. of students: 195 Department Name & Course Number: Computer Science COMP 2804A Course Instructor: Michiel Smid Authorized memoranda: Calculator

More information

Lecture 3. Discrete Random Variables

Lecture 3. Discrete Random Variables Math 408 - Mathematical Statistics Lecture 3. Discrete Random Variables January 23, 2013 Konstantin Zuev (USC) Math 408, Lecture 3 January 23, 2013 1 / 14 Agenda Random Variable: Motivation and Definition

More information

Chapter 1. Sets and probability. 1.3 Probability space

Chapter 1. Sets and probability. 1.3 Probability space Random processes - Chapter 1. Sets and probability 1 Random processes Chapter 1. Sets and probability 1.3 Probability space 1.3 Probability space Random processes - Chapter 1. Sets and probability 2 Probability

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 3 Luca Trevisan August 31, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 3 Luca Trevisan August 31, 2017 U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 3 Luca Trevisan August 3, 207 Scribed by Keyhan Vakil Lecture 3 In which we complete the study of Independent Set and Max Cut in G n,p random graphs.

More information

CSE525: Randomized Algorithms and Probabilistic Analysis April 2, Lecture 1

CSE525: Randomized Algorithms and Probabilistic Analysis April 2, Lecture 1 CSE525: Randomized Algorithms and Probabilistic Analysis April 2, 2013 Lecture 1 Lecturer: Anna Karlin Scribe: Sonya Alexandrova and Eric Lei 1 Introduction The main theme of this class is randomized algorithms.

More information

Binomial and Poisson Probability Distributions

Binomial and Poisson Probability Distributions Binomial and Poisson Probability Distributions Esra Akdeniz March 3, 2016 Bernoulli Random Variable Any random variable whose only possible values are 0 or 1 is called a Bernoulli random variable. What

More information

Random Variables Example:

Random Variables Example: Random Variables Example: We roll a fair die 6 times. Suppose we are interested in the number of 5 s in the 6 rolls. Let X = number of 5 s. Then X could be 0, 1, 2, 3, 4, 5, 6. X = 0 corresponds to the

More information

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 20

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 20 CS 70 Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 20 Today we shall discuss a measure of how close a random variable tends to be to its expectation. But first we need to see how to compute

More information

Bandits, Experts, and Games

Bandits, Experts, and Games Bandits, Experts, and Games CMSC 858G Fall 2016 University of Maryland Intro to Probability* Alex Slivkins Microsoft Research NYC * Many of the slides adopted from Ron Jin and Mohammad Hajiaghayi Outline

More information

Lecture Notes 7 Random Processes. Markov Processes Markov Chains. Random Processes

Lecture Notes 7 Random Processes. Markov Processes Markov Chains. Random Processes Lecture Notes 7 Random Processes Definition IID Processes Bernoulli Process Binomial Counting Process Interarrival Time Process Markov Processes Markov Chains Classification of States Steady State Probabilities

More information

CS 580: Algorithm Design and Analysis

CS 580: Algorithm Design and Analysis CS 580: Algorithm Design and Analysis Jeremiah Blocki Purdue University Spring 2018 Announcements: Homework 6 deadline extended to April 24 th at 11:59 PM Course Evaluation Survey: Live until 4/29/2018

More information

Lecture 4: Probability, Proof Techniques, Method of Induction Lecturer: Lale Özkahya

Lecture 4: Probability, Proof Techniques, Method of Induction Lecturer: Lale Özkahya BBM 205 Discrete Mathematics Hacettepe University http://web.cs.hacettepe.edu.tr/ bbm205 Lecture 4: Probability, Proof Techniques, Method of Induction Lecturer: Lale Özkahya Resources: Kenneth Rosen, Discrete

More information

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 12. Random Variables: Distribution and Expectation

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 12. Random Variables: Distribution and Expectation CS 70 Discrete Mathematics and Probability Theory Fall 203 Vazirani Note 2 Random Variables: Distribution and Expectation We will now return once again to the question of how many heads in a typical sequence

More information

MARKING A BINARY TREE PROBABILISTIC ANALYSIS OF A RANDOMIZED ALGORITHM

MARKING A BINARY TREE PROBABILISTIC ANALYSIS OF A RANDOMIZED ALGORITHM MARKING A BINARY TREE PROBABILISTIC ANALYSIS OF A RANDOMIZED ALGORITHM XIANG LI Abstract. This paper centers on the analysis of a specific randomized algorithm, a basic random process that involves marking

More information

ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables

ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Random Variable Discrete Random

More information

Lecture 4: Bernoulli Process

Lecture 4: Bernoulli Process Lecture 4: Bernoulli Process Hyang-Won Lee Dept. of Internet & Multimedia Eng. Konkuk University Lecture 4 Hyang-Won Lee 1 / 12 Stochastic Process A stochastic process is a mathematical model of a probabilistic

More information

Expectation is linear. So far we saw that E(X + Y ) = E(X) + E(Y ). Let α R. Then,

Expectation is linear. So far we saw that E(X + Y ) = E(X) + E(Y ). Let α R. Then, Expectation is linear So far we saw that E(X + Y ) = E(X) + E(Y ). Let α R. Then, E(αX) = ω = ω (αx)(ω) Pr(ω) αx(ω) Pr(ω) = α ω X(ω) Pr(ω) = αe(x). Corollary. For α, β R, E(αX + βy ) = αe(x) + βe(y ).

More information

An Introduction to Randomized algorithms

An Introduction to Randomized algorithms An Introduction to Randomized algorithms C.R. Subramanian The Institute of Mathematical Sciences, Chennai. Expository talk presented at the Research Promotion Workshop on Introduction to Geometric and

More information

1. Discrete Distributions

1. Discrete Distributions Virtual Laboratories > 2. Distributions > 1 2 3 4 5 6 7 8 1. Discrete Distributions Basic Theory As usual, we start with a random experiment with probability measure P on an underlying sample space Ω.

More information

EXAM. Exam #1. Math 3342 Summer II, July 21, 2000 ANSWERS

EXAM. Exam #1. Math 3342 Summer II, July 21, 2000 ANSWERS EXAM Exam # Math 3342 Summer II, 2 July 2, 2 ANSWERS i pts. Problem. Consider the following data: 7, 8, 9, 2,, 7, 2, 3. Find the first quartile, the median, and the third quartile. Make a box and whisker

More information

IEOR 6711: Stochastic Models I SOLUTIONS to the First Midterm Exam, October 7, 2008

IEOR 6711: Stochastic Models I SOLUTIONS to the First Midterm Exam, October 7, 2008 IEOR 6711: Stochastic Models I SOLUTIONS to the First Midterm Exam, October 7, 2008 Justify your answers; show your work. 1. A sequence of Events. (10 points) Let {B n : n 1} be a sequence of events in

More information

Expectation of geometric distribution

Expectation of geometric distribution Expectation of geometric distribution What is the probability that X is finite? Can now compute E(X): Σ k=1f X (k) = Σ k=1(1 p) k 1 p = pσ j=0(1 p) j = p 1 1 (1 p) = 1 E(X) = Σ k=1k (1 p) k 1 p = p [ Σ

More information

CS 125 Section #10 (Un)decidability and Probability November 1, 2016

CS 125 Section #10 (Un)decidability and Probability November 1, 2016 CS 125 Section #10 (Un)decidability and Probability November 1, 2016 1 Countability Recall that a set S is countable (either finite or countably infinite) if and only if there exists a surjective mapping

More information

Week 12-13: Discrete Probability

Week 12-13: Discrete Probability Week 12-13: Discrete Probability November 21, 2018 1 Probability Space There are many problems about chances or possibilities, called probability in mathematics. When we roll two dice there are possible

More information

Probability Dr. Manjula Gunarathna 1

Probability Dr. Manjula Gunarathna 1 Probability Dr. Manjula Gunarathna Probability Dr. Manjula Gunarathna 1 Introduction Probability theory was originated from gambling theory Probability Dr. Manjula Gunarathna 2 History of Probability Galileo

More information

Why study probability? Set theory. ECE 6010 Lecture 1 Introduction; Review of Random Variables

Why study probability? Set theory. ECE 6010 Lecture 1 Introduction; Review of Random Variables ECE 6010 Lecture 1 Introduction; Review of Random Variables Readings from G&S: Chapter 1. Section 2.1, Section 2.3, Section 2.4, Section 3.1, Section 3.2, Section 3.5, Section 4.1, Section 4.2, Section

More information

Lecture 5: The Principle of Deferred Decisions. Chernoff Bounds

Lecture 5: The Principle of Deferred Decisions. Chernoff Bounds Randomized Algorithms Lecture 5: The Principle of Deferred Decisions. Chernoff Bounds Sotiris Nikoletseas Associate Professor CEID - ETY Course 2013-2014 Sotiris Nikoletseas, Associate Professor Randomized

More information

1 Review of Probability

1 Review of Probability 1 Review of Probability Random variables are denoted by X, Y, Z, etc. The cumulative distribution function (c.d.f.) of a random variable X is denoted by F (x) = P (X x), < x

More information

Advanced Algorithms (2IL45)

Advanced Algorithms (2IL45) Technische Universiteit Eindhoven University of Technology Course Notes Fall 2013 Advanced Algorithms (2IL45) Mark de Berg Contents 1 Introduction to randomized algorithms 4 1.1 Some probability-theory

More information

Approximate Counting and Markov Chain Monte Carlo

Approximate Counting and Markov Chain Monte Carlo Approximate Counting and Markov Chain Monte Carlo A Randomized Approach Arindam Pal Department of Computer Science and Engineering Indian Institute of Technology Delhi March 18, 2011 April 8, 2011 Arindam

More information

CSE 103 Homework 8: Solutions November 30, var(x) = np(1 p) = P r( X ) 0.95 P r( X ) 0.

CSE 103 Homework 8: Solutions November 30, var(x) = np(1 p) = P r( X ) 0.95 P r( X ) 0. () () a. X is a binomial distribution with n = 000, p = /6 b. The expected value, variance, and standard deviation of X is: E(X) = np = 000 = 000 6 var(x) = np( p) = 000 5 6 666 stdev(x) = np( p) = 000

More information

Discrete Mathematics and Probability Theory Fall 2012 Vazirani Note 14. Random Variables: Distribution and Expectation

Discrete Mathematics and Probability Theory Fall 2012 Vazirani Note 14. Random Variables: Distribution and Expectation CS 70 Discrete Mathematics and Probability Theory Fall 202 Vazirani Note 4 Random Variables: Distribution and Expectation Random Variables Question: The homeworks of 20 students are collected in, randomly

More information

Lecture 5: January 30

Lecture 5: January 30 CS71 Randomness & Computation Spring 018 Instructor: Alistair Sinclair Lecture 5: January 30 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

Chernoff Bounds. Theme: try to show that it is unlikely a random variable X is far away from its expectation.

Chernoff Bounds. Theme: try to show that it is unlikely a random variable X is far away from its expectation. Chernoff Bounds Theme: try to show that it is unlikely a random variable X is far away from its expectation. The more you know about X, the better the bound you obtain. Markov s inequality: use E[X ] Chebyshev

More information

Conditional Probability

Conditional Probability Conditional Probability Idea have performed a chance experiment but don t know the outcome (ω), but have some partial information (event A) about ω. Question: given this partial information what s the

More information

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Definitions Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

Discrete Probability

Discrete Probability MAT 258 Discrete Mathematics Discrete Probability Kenneth H. Rosen and Kamala Krithivasan Discrete Mathematics 7E Global Edition Chapter 7 Reproduced without explicit consent Fall 2016 Week 11 Probability

More information

Discrete Mathematics for CS Spring 2006 Vazirani Lecture 22

Discrete Mathematics for CS Spring 2006 Vazirani Lecture 22 CS 70 Discrete Mathematics for CS Spring 2006 Vazirani Lecture 22 Random Variables and Expectation Question: The homeworks of 20 students are collected in, randomly shuffled and returned to the students.

More information

RANDOM WALKS AND THE PROBABILITY OF RETURNING HOME

RANDOM WALKS AND THE PROBABILITY OF RETURNING HOME RANDOM WALKS AND THE PROBABILITY OF RETURNING HOME ELIZABETH G. OMBRELLARO Abstract. This paper is expository in nature. It intuitively explains, using a geometrical and measure theory perspective, why

More information

Origins of Probability Theory

Origins of Probability Theory 1 16.584: INTRODUCTION Theory and Tools of Probability required to analyze and design systems subject to uncertain outcomes/unpredictability/randomness. Such systems more generally referred to as Experiments.

More information

MATH 3510: PROBABILITY AND STATS June 15, 2011 MIDTERM EXAM

MATH 3510: PROBABILITY AND STATS June 15, 2011 MIDTERM EXAM MATH 3510: PROBABILITY AND STATS June 15, 2011 MIDTERM EXAM YOUR NAME: KEY: Answers in Blue Show all your work. Answers out of the blue and without any supporting work may receive no credit even if they

More information

Chapter 2: Random Variables

Chapter 2: Random Variables ECE54: Stochastic Signals and Systems Fall 28 Lecture 2 - September 3, 28 Dr. Salim El Rouayheb Scribe: Peiwen Tian, Lu Liu, Ghadir Ayache Chapter 2: Random Variables Example. Tossing a fair coin twice:

More information

Lecture 1 : Probabilistic Method

Lecture 1 : Probabilistic Method IITM-CS6845: Theory Jan 04, 01 Lecturer: N.S.Narayanaswamy Lecture 1 : Probabilistic Method Scribe: R.Krithika The probabilistic method is a technique to deal with combinatorial problems by introducing

More information

MATH MW Elementary Probability Course Notes Part I: Models and Counting

MATH MW Elementary Probability Course Notes Part I: Models and Counting MATH 2030 3.00MW Elementary Probability Course Notes Part I: Models and Counting Tom Salisbury salt@yorku.ca York University Winter 2010 Introduction [Jan 5] Probability: the mathematics used for Statistics

More information

Stat 516, Homework 1

Stat 516, Homework 1 Stat 516, Homework 1 Due date: October 7 1. Consider an urn with n distinct balls numbered 1,..., n. We sample balls from the urn with replacement. Let N be the number of draws until we encounter a ball

More information

CS6999 Probabilistic Methods in Integer Programming Randomized Rounding Andrew D. Smith April 2003

CS6999 Probabilistic Methods in Integer Programming Randomized Rounding Andrew D. Smith April 2003 CS6999 Probabilistic Methods in Integer Programming Randomized Rounding April 2003 Overview 2 Background Randomized Rounding Handling Feasibility Derandomization Advanced Techniques Integer Programming

More information

Probability & Computing

Probability & Computing Probability & Computing Stochastic Process time t {X t t 2 T } state space Ω X t 2 state x 2 discrete time: T is countable T = {0,, 2,...} discrete space: Ω is finite or countably infinite X 0,X,X 2,...

More information

Math Bootcamp 2012 Miscellaneous

Math Bootcamp 2012 Miscellaneous Math Bootcamp 202 Miscellaneous Factorial, combination and permutation The factorial of a positive integer n denoted by n!, is the product of all positive integers less than or equal to n. Define 0! =.

More information

ECE 313: Conflict Final Exam Tuesday, May 13, 2014, 7:00 p.m. 10:00 p.m. Room 241 Everitt Lab

ECE 313: Conflict Final Exam Tuesday, May 13, 2014, 7:00 p.m. 10:00 p.m. Room 241 Everitt Lab University of Illinois Spring 1 ECE 313: Conflict Final Exam Tuesday, May 13, 1, 7: p.m. 1: p.m. Room 1 Everitt Lab 1. [18 points] Consider an experiment in which a fair coin is repeatedly tossed every

More information

Chapter 1 Statistical Reasoning Why statistics? Section 1.1 Basics of Probability Theory

Chapter 1 Statistical Reasoning Why statistics? Section 1.1 Basics of Probability Theory Chapter 1 Statistical Reasoning Why statistics? Uncertainty of nature (weather, earth movement, etc. ) Uncertainty in observation/sampling/measurement Variability of human operation/error imperfection

More information

Lecture 20 : Markov Chains

Lecture 20 : Markov Chains CSCI 3560 Probability and Computing Instructor: Bogdan Chlebus Lecture 0 : Markov Chains We consider stochastic processes. A process represents a system that evolves through incremental changes called

More information

Discrete Random Variables

Discrete Random Variables CPSC 53 Systems Modeling and Simulation Discrete Random Variables Dr. Anirban Mahanti Department of Computer Science University of Calgary mahanti@cpsc.ucalgary.ca Random Variables A random variable is

More information

Notes 1 : Measure-theoretic foundations I

Notes 1 : Measure-theoretic foundations I Notes 1 : Measure-theoretic foundations I Math 733-734: Theory of Probability Lecturer: Sebastien Roch References: [Wil91, Section 1.0-1.8, 2.1-2.3, 3.1-3.11], [Fel68, Sections 7.2, 8.1, 9.6], [Dur10,

More information