Concept Questions with Answers. Concept Questions with Answers W11D2. Concept Questions Review


 Jane Howard
 6 years ago
 Views:
Transcription
1 Concept Questions with W11D2 Concept Questions Review W11D2 2 Concept Questions with W7D1 W07D1 Magnetic Dipoles, Force and Torque on a Dipole, Experiment 2 W07D1 Magnetic Dipoles, Torque and Force on a Dipole, Experiment 2: Magnetic Dipole in a Helmholtz Coil Reading Course Notes: Sections 8.4,8.11.6, Concept Question: Magnetic Field Lines The picture shows the field lines outside a permanent magnet The field lines inside the magnet point: Concept Q. Answer: Magnetic Field Lines Answer: 1. They point up inside the magnet 1. Up 2. Down 3. Left to right 4. Right to left 5. The field inside is zero 6. I don t know 5 Magnetic field lines are continuous. E field lines begin and end on charges. There are no magnetic charges (monopoles) so B field lines never begin or end 6 1
2 Concept Question: Parallel Wires Concept Q. Answer: Parallel Wires Consider two parallel current carrying wires. With the currents running in the opposite direction, the wires are Answer: 1. The wires are repelled I1 creates a magnetic field into the page at wire 2. That makes a force on wire 2 to the right. attracted (opposites attract?) repelled (opposites repel?) pushed another direction not pushed no net force I don t know I2 creates a magnetic field into the page at wire 1. That makes a force on wire 1 to the left. 7 Concept Question: Dipole in Uniform Magnetic Field 8 Concept Q. Answer: Dipole in Field From rest, the coil in a uniform magnetic field above will: rotate wise, not move rotate counterclockwise, not move move to the right, not rotate move to the left, not rotate move in another direction, without rotating both move and rotate neither rotate nor move I don t know 9 Concept Question: Dipole in Field Answer: 1. Coil will rotate clockwise (not move) No net force so no center of mass motion. BUT Magnetic dipoles rotate to align with external field (think compass) 10 Concept Q. Answer: Dipole in Field The current carrying coil above will feel a net force upwards downwards of zero I don t know Answer: 2. Feels downward force. The forces shown produce a net downward force
3 Concept Question: Dipole in Helmholtz Concept Q. Answer: Dipole in Helmholtz A dipole pointing along the positive xdirection and located at the center of a Helmholtz coil will feel: 1. a force but not a torque. 2. a torque but not a force. 3. both a torque and a force. 4. neither force nor torque. Answer: 2. a torque but not a force. The Helmholtz coil makes a UNIFORM FIELD. Dipole feels only torque (need gradient for force). Concept Question: Dipole in Anti Helmholtz Coil A dipole pointing along the positive zdirection and located at the center of an anti Helmholtz coil will feel: 1. a force but not a torque. 2. a torque but not a force. 3. both a torque and a force. 4. neither force nor torque. Concept Q. Answer: Dipole in Anti Helmholtz Coil Answer: 1. A force because there is a nongradient of the magnetic field but no torque because the magnetic field at the center is zero. Concept Questions with W09D1: Sources of Magnetic Fields: Ampere s Law W9D1 Today s Reading Assignment Course Notes: Sections
4 Concept Question: Line Integral The integral expression C.Q. Answer: Line Integral 2. A line integral by definition is the sum 1. is equal to the magnetic work done around a closed path. 2. is an infinite sum of the product of the tangent component of the magnetic field along a small element of the closed path with a small element of the path up to a choice of plus or minus sign. 3. is always zero. 4. is equal to the magnetic potential energy between two points. We need to make a choice of integration direction (circulation) for the line integral. The small line element is tangent to the line and points in the direction of circulation. The dot product therefore is the product of the tangent component of the magnetic field in the direction of the line element. So the answer depends on which way we circulate around the path. 5. None of the above Concept Question: Ampere s Law C.Q. Answer: Ampere s Law Integrating B around the loop shown gives us: 1. a positive number 2. a negative number 3. zero 21 Answer: 3. Total enclosed current is zero, so 22 Concept Question: Ampere s Law C.Q. Answer: Ampere s Law Integrating B around the loop in the clockwise direction shown gives us: 1. a positive number 2. a negative number 3. zero Answer: 2. Net enclosed current is out of the page, so field is counterclockwise (opposite to circulation direction)
5 Concept Questions with W09D2: Faraday s Law W9D2 Today s Reading Assignment Course Notes: Sections , Concept Question: Loop in Uniform Field Concept Q. Ans.: Loop in Uniform Field While a rectangular wire loop is pulled upward though a uniform magnetic field B field penetrating its bottom half, as shown, there is Answer: 1. The motion changes the magnetic flux through the loop. The magnetic flux is decreasing in time as more of the loop enters a region of zero magnetic field. According to Faraday s Law there is an induced current through the loop. 1. a current in the loop. 2. no current in the loop. 3. I do not understand the concepts of current and magnetic field. 4. I understand the concepts of current and magnetic field but am not sure of the answer Concept Q.: Loop in Uniform Field Concept Q. Ans.: Loop in Uniform Field While a rectangular wire loop is pulled sideways though a uniform magnetic field B field penetrating its bottom half, as shown, there is Answer: 2. The motion does not change the magnetic flux through the loop. The magnetic flux is constant in time. According to Faraday s Law there is no induced current through the loop. 1. a current in the loop. 2. no current in the loop. 3. I do not understand the concepts of current and magnetic field. 4. I understand the concepts of current and magnetic field but am not sure of the answer
6 Concept Question: Loop Concept Question Answer: Loop The magnetic field through a wire loop is pointed upwards and increasing with time. The induced current in the coil is Answer: 1. Induced current is clockwise This produces an induced B field pointing down over the area of the loop. 1. Clockwise as seen from the top 2. Counterclockwise 31 The induced B field opposes the increasing flux through the loop Lenz s Law 32 Concept Question: Moving Loop Concept Q. Answer: Moving Loop A circuit in the form of a rectangular piece of wire is pulled away from a long wire carrying current I in the direction shown in the sketch. The induced current in the rectangular circuit is 1. Clockwise 2. Counterclockwise 3. Neither, the current is zero 33 Answer: 1. Induced current is clockwise B due to I is into page; the flux through the circuit due to that field decreases as the circuit moves away. So the induced current is clockwise (to make a B into the page) Note: I ind dl x B force is left on the left segment and right on the right, but the force on the left is bigger. So the net force on the rectangular circuit is to the left, again trying to keep the flux from decreasing by slowing the circuit s motion 34 Concept Question: Faraday s Law: Loop A coil moves up from underneath a magnet with its north pole pointing upward. The current in the coil and the force on the coil: Concept Question Answer: Faraday s Law: Loop Answer: 3. Current is clockwise; force is down The clockwise current creates a selffield downward, trying to offset the increase of magnetic flux through the coil as it moves upward into stronger fields (Lenz s Law). 1. Current clockwise; force up 2. Current counterclockwise; force up 3. Current clockwise; force down The I dl x B force on the coil is a force which is trying to keep the flux through the coil from increasing by slowing it down (Lenz s Law again). 4. Current counterclockwise; force down
7 Concept Questions with W10D1: Inductance and Magnetic Field Energy W10D1 Today s Reading Assignment W10D1 Inductance & Magnetic Energy 38 Concept Question: Solenoid Concept Q. Ans.: Solenoid A very long solenoid consisting of N turns has radius R and length d, (d>>r). Suppose the number of turns is halved keeping all the other parameters fixed. The self inductance 1. remains the same. 2. doubles. 3. is halved. 4. is four times as large. 5. is four times as small. 6. None of the above. 39 Solution 5. The selfinduction of the solenoid is equal to the total flux through the object which is the product of the number of turns time the flux through each turn. The flux through each turn is proportional to the magnitude of magnetic field which is proportional to the number of turns per unit length or hence proportional to the number of turns. Hence the selfinduction of the solenoid is proportional to the square of the number of turns. If the number of turns is halved keeping all the other parameters fixed then he self inductance is four times as small. 40 7
W07D1 Magnetic Dipoles, Force and Torque on a Dipole, Experiment 2
W07D1 Magnetic Dipoles, Force and Torque on a Dipole, Experiment 2 W07D1 Magnetic Dipoles, Torque and Force on a Dipole, Experiment 2: Magnetic Dipole in a Helmholtz Coil http://web.mit.edu/8.02t/www/materials/experiments/expmagforcesdipolehelmholtz.pdf
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring Experiment 5: Faraday s Law
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2009 OBJECTIVES Experiment 5: Faraday s Law 1. To become familiar with the concepts of changing magnetic flux and induced current
More informationFaraday s Law. Underpinning of Much Technology
Module 21: Faraday s Law 1 Faraday s Law Fourth (Final) Maxwell s Equation Underpinning of Much Technology 2 Demonstration: Falling Magnet 3 Magnet Falling Through a Ring Link to movie Falling magnet slows
More informationweek 8 The Magnetic Field
week 8 The Magnetic Field General Principles General Principles Applications Start with magnetic forces on moving charges and currents A positive charge enters a uniform magnetic field as shown. What is
More informationGeneral Physics (PHY 2140)
General Physics (PHY 2140) Lecture 15 Electricity and Magnetism Magnetism Applications of magnetic forces Induced voltages and induction Magnetic flux and induced emf Faraday s law http://www.physics.wayne.edu/~apetrov/phy2140/
More informationCPS lesson Magnetism ANSWER KEY
CPS lesson Magnetism ANSWER KEY 1. Two wire strips carry currents from P to Q and from R to S. If the current directions in both wires are reversed, the net magnetic force of strip 1 on strip 2: * A. remains
More informationChapter 12. Magnetism and Electromagnetism
Chapter 12 Magnetism and Electromagnetism 167 168 AP Physics Multiple Choice Practice Magnetism and Electromagnetism SECTION A Magnetostatics 1. Four infinitely long wires are arranged as shown in the
More informationFARADAY S AND LENZ LAW B O O K P G
FARADAY S AND LENZ LAW B O O K P G. 4 3 6438 MOTIONAL EMF AND MAGNETIC FLUX (DERIVIATION) Motional emf = vbl Let a conducting rod being moved through a magnetic field B During time t 0 the rod has been
More informationPhysics 42 Exam 3 Fall 2013 PRINT Name:
Physics 42 Exam 3 Fall 2013 PRINT Name: 1 2 3 4 Conceptual Questions : Circle the BEST answer. (1 point each) 1. A small plastic ball has an excess negative charge on it. If a magnet is placed close to
More informationPhysics 1402: Lecture 18 Today s Agenda
Physics 1402: Lecture 18 Today s Agenda Announcements: Midterm 1 distributed available Homework 05 due Friday Magnetism Calculation of Magnetic Field Two ways to calculate the Magnetic Field: iotsavart
More informationChapter 30. Induction and Inductance
Chapter 30 Induction and Inductance 30.2: First Experiment: 1. A current appears only if there is relative motion between the loop and the magnet (one must move relative to the other); the current disappears
More informationFaraday's Law ds B B G G ΦB B ds Φ ε = d B dt
Faraday's Law ds ds ε= d Φ dt Φ Global Review Electrostatics» motion of q in external Efield» Efield generated by Σq i Magnetostatics» motion of q and i in external field» field generated by I Electrodynamics»
More informationmag ( ) 1 ). Since I m interested in the magnitude of the flux, I ll avoid the minus sign by taking the normal to point upward.
hysics 40 Homework olutions  Walker Chapter 3 Conceptual Questions CQ5. Before the switch is closed there is no current in the coil and therefore no netic flux through the metal ring. When the switch
More informationChapter 30. Induction and Inductance
Chapter 30 Induction and Inductance 30.2: First Experiment: 1. A current appears only if there is relative motion between the loop and the magnet (one must move relative to the other); the current disappears
More informationPHY101: Major Concepts in Physics I
Welcome back to PHY101: Major Concepts in Physics I Photo: J. M. Schwarz Announcements In class today we will finish Chapter 20 (sections 3, 4, and 7). and then move to Chapter 13 (the first six sections).
More informationAgenda for Today. Elements of Physics II. Lenz Law. Emf opposes change in flux Faraday s Law Induced EMF in a conducting loop
Lenz Law Physics 132: Lecture e 22 Elements of Physics II Agenda for Today Emf opposes change in flux Faraday s Law Induced EMF in a conducting loop Physics 201: Lecture 1, Pg 1 Lenz s Law Physics 201:
More information0 questions at random and keep in order
Page 1 of 10 This chapter has 54 questions. Scroll down to see and select individual questions or narrow the list using the checkboxes below. 0 questions at random and keep in order s  (46)  (6) Fill
More informationOur goal for today. 1. To go over the pictorial approach to Lenz s law.
Our goal for today 1. To go over the pictorial approach to Lenz s law. Lenz s Law Exposing a coil or loop to a changing magnetic flux will generate a current if the circuit is complete. The direction of
More informationPHYSICS 3204 PUBLIC EXAM QUESTIONS (Magnetism &Electromagnetism)
PHYSICS 3204 PUBLIC EXAM QUESTIONS (Magnetism &Electromagnetism) NAME: August 2009
More informationCH 191 Magnetic Field
CH 191 Magnetic Field Important Ideas A moving charged particle creates a magnetic field everywhere in space around it. If the particle has a velocity v, then the magnetic field at this instant is tangent
More informationPhysics 9 Wednesday, April 2, 2014
Physics 9 Wednesday, April 2, 2014 FYI: final exam is Friday, May 9th, at 9am, in DRL A2. HW10 due Friday. No quiz today. (HW8 too difficult for a quiz!) After this week: 2 weeks on circuits; then optics
More informationCan a Magnetic Field Produce a Current?
Can a Magnetic Field Produce a Current? In our study of magnetism we learned that an electric current through a wire, or moving electrically charged objects, produces a magnetic field. Could the reverse
More informationPhysics 54 Lecture March 1, Microquiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields
Physics 54 Lecture March 1, 2012 OUTLINE Microquiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields Electromagnetic induction Introduction to electromagnetic
More informationPhysics 212 Question Bank III 2010
A negative charge moves south through a magnetic field directed north. The particle will be deflected (A) North. () Up. (C) Down. (D) East. (E) not at all.. A positive charge moves West through a magnetic
More informationPhysics 182. Assignment 4
Physics 182 Assignment 4 1. A dipole (electric or magnetic) in a nonuniform field will in general experience a net force. The electric case was the subject of a problem on the midterm exam; here we examine
More informationPhysics 212 Question Bank III 2006
A negative charge moves south through a magnetic field directed north. The particle will be deflected (A) North. () Up. (C) Down. (D) East. (E) not at all. The magnetic force on a moving charge is (A)
More informationElectromagnetics in Medical Physics
Electromagnetics in Medical Physics Part 4. Biomagnetism Tong In Oh Department of Biomedical Engineering Impedance Imaging Research Center (IIRC) Kyung Hee University Korea tioh@khu.ac.kr Dot Product (Scalar
More informationAgenda for Today. Elements of Physics II. Forces on currents
Forces on currents Physics 132: Lecture e 14 Elements of Physics II Agenda for Today Currents are moving charges Torque on current loop Torque on rotated loop Currents create Bfields Adding magnetic fields
More informationInduction and Inductance
Welcome Back to Physics 1308 Induction and Inductance Michael Faraday 22 September 1791 25 August 1867 Announcements Assignments for Tuesday, November 6th:  Reading: Chapter 30.630.8  Watch Videos:
More information11 Magnetism. q ν B.(1) = q ( ) (2)
11 Magnetism Magnets exert forces on each other just like charges. You can draw magnetic field lines just like you drew electric field lines. Magnetic north and south pole s behavior is not unlike electric
More informationVersion The diagram below represents lines of magnetic flux within a region of space.
1. The diagram below represents lines of magnetic flux within a region of space. 5. The diagram below shows an electromagnet made from a nail, a coil of insulated wire, and a battery. The magnetic field
More informationPhysics 9 WS M5 (rev. 1.0) Page 1
Physics 9 WS M5 (rev. 1.0) Page 1 M3. Faraday s Law Questions for discussion 1. In the figure below, there is a nonuniform magnetic field pointing into the page. a) If you move the metal loop to the
More informationElements of Physics II. Agenda for Today. Induced EMF. Force on moving charges Induced Current Magnetic Flux Area Vector. Physics 201: Lecture 1, Pg 1
Induced EMF Physics 132: Lecture e 21 Elements of Physics II Agenda for Today Force on moving charges Induced Current Magnetic Flux Area Vector Physics 201: Lecture 1, Pg 1 Clicker Question 11: A rectangular
More informationGeneral Physics II. Magnetic Fields and Forces
General Physics II Magnetic Fields and Forces 1 Magnetism Magnetism underlies the operation of the hard disk drive, which is the mainstay of modern electronic information storage, from computers to ipods.
More informationSECTION A Magnetostatics
P Physics Multiple hoice Practice Magnetism and lectromagnetism NSWRS STION Magnetostatics Solution For the purposes of this solution guide. The following hand rules will be referred to. RHR means right
More informationPhysics 132: Lecture 15 Elements of Physics II Agenda for Today
Physics 132: Lecture 15 Elements of Physics II Agenda for Today Lenz Law Emf opposes change in flux Faraday s Law Induced EMF in a conducting loop Physics 132: Lecture 15, Pg 1 Lenz s Law Physics 132:
More information1) in the direction marked 1 2) in the direction marked 2 3) in the direction marked 3 4) out of the page 5) into the page
Q1) In the figure, the current element i dl, the point P, and the three vectors (1, 2, 3) are all in the plane of the page. The direction of db, due to this current element, at the point P is: 1) in the
More informationGood Luck! Exam 2 Review Phys 222 Supplemental Instruction SUNDAY SESSION AS NORMAL, INFORMAL Q/A
Good Luck! Exam 2 Review Phys 222 Supplemental Instruction SUNDAY SESSION AS NORMAL, INFORMAL Q/A The correct solution process is the right answer Do you know all the following? Circuits Current, Voltage,
More informationPhysics 202 Chapter 31 Oct 23, Faraday s Law. Faraday s Law
Physics 202 Chapter 31 Oct 23, 2007 Faraday s Law Faraday s Law The final step to ignite the industrial use of electromagnetism on a large scale. Light, toasters, cars, TVs, telephones, ipods, industrial
More information3/31/2014. Resistors in series. Resistors in parallel. Ohm s Law. Review for Test 2. Electric Power (cont d) V IR. R constant I
Ohm s Law eview for Test Ohm s law states that the current flowing through a piece of material is proportional to the voltage applied across the material. The resistance () is defined as the ratio of to.
More informationPHYSICS Fall Lecture 15. Electromagnetic Induction and Faraday s Law
PHYSICS 1444001 Fall 2012 Lecture 15 Electromagnetic Induction and Faraday s Law A current can be produced by a changing magnetic field First shown in an experiment by Michael Faraday Induced emf A primary
More information11/13/2018. The Hall Effect. The Hall Effect. The Hall Effect. Consider a magnetic field perpendicular to a flat, currentcarrying
The Hall Effect Consider a magnetic field perpendicular to a flat, currentcarrying conductor. As the charge carriers move at the drift speed v d, they will experience a magnetic force F B = ev d B perpendicular
More informationConsider a magnetic field perpendicular to a flat, currentcarrying
The Hall Effect Consider a magnetic field perpendicular to a flat, currentcarrying conductor. As the charge carriers move at the drift speed v d, they will experience a magnetic force F B = ev d B perpendicular
More informationFaraday s Law of Induction I
Faraday s Law of Induction I Physics 2415 Lecture 19 Michael Fowler, UVa Today s Topics Magnetic Permeability Faraday s Law of Induction Lenz s Law Paramagnets and Diamagnets Electromagnets Electromagnets
More informationLouisiana State University Physics 2102, Exam 3, November 11, 2010.
Name: Instructor: Louisiana State University Physics 2102, Exam 3, November 11, 2010. Please be sure to write your name and class instructor above. The test consists of 3 questions (multiple choice), and
More informationK204: FARADAY'S EXPERIMENT  EME K243: LENZ'S LAW  PERMANENT MAGNET AND COILS
K204: FARADAY'S EXPERIMENT  EME SET  20, 40, 80 TURN COILS K262: CAN SMASHER  ELECTROMAGNETIC K243: LENZ'S LAW  PERMANENT MAGNET AND COILS K244: EDDY CURRENT PENDULUM K406: MAGNETOELECTRIC GENERATOR
More information4. The last equation is Ampère's Law, which ultimately came from our derivation of the magnetic field from Coulomb's Law and special relativity.
lectromagnetic Theory Prof Ruiz, UNC Asheville, doctorphys on YouTube Chapter G Notes Maxwell's quations: Integral Form G1 No Magnetic Monopoles Q da ε da dl dl µ I The equations at the left summarize
More informationCan a Magnetic Field Produce a Current?
Can a Magnetic Field Produce a Current? In our study of magnetism we learned that an electric current through a wire, or moving electrically charged objects, produces a magnetic field. Could the reverse
More informationOutside the solenoid, the field lines are spread apart, and at any given distance from the axis, the field is weak.
Applications of Ampere s Law continued. 2. Field of a solenoid. A solenoid can have many (thousands) of turns, and perhaps many layers of windings. The figure shows a simple solenoid with just a few windings
More informationReading Question 24.1
Reading Question 24.1 A compass in a magnetic field will line up A. With the north pole pointing in the direction of the magnetic field. B. With the north pole pointing opposite the direction of the magnetic
More informationInduction and Inductance
Induction and Inductance Key Contents Faraday s law: induced emf Induction and energy transfer Inductors and inductance RL circuits Magnetic energy density The First Experiment 1. A current appears only
More informationAP Physics C  E & M
AP Physics C  E & M Electromagnetic Induction 20170714 www.njctl.org Table of Contents: Electromagnetic Induction Click on the topic to go to that section. Induced EMF Magnetic Flux and Gauss's Law
More informationElectromagnetic Induction. Bo Zhou Faculty of Science, Hokudai
Electromagnetic Induction Bo Zhou Faculty of Science, Hokudai Oersted's law Oersted s discovery in 1820 that there was a close connection between electricity and magnetism was very exciting until then,
More informationMagnetism. and its applications
Magnetism and its applications Laws of Magnetism 1) Like magnetic poles repel, and 2) unlike poles attract. Magnetic Direction and Strength Law 3  Magnetic force, either attractive or repelling varies
More informationExam 2 Review W11D2 1
Exam 2 Review W11D2 1 Exam 2 Announcements Exam Two: Thursday 20 April 7:309:30 pm Conflict Exam Two: If you have a regularly scheduled academic activity that conflicts with the Thursday evening exam,
More informationPhysics 180B Fall 2008 Test Points
Physics 180B Fall 2008 Test 2120 Points Name You can cross off questions or problems worth up to15 points. Circle your answers or pu them in the box provided. 1) The diagram represents a one loop coil
More informationPhysics 4. Magnetic Induction. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
Physics 4 Magnetic Induction Before we can talk about induction we need to understand magnetic flux. You can think of flux as the number of field lines passing through an area. Here is the formula: flux
More informationPHYSICS 1B. Today s lecture: Motional emf. and. Lenz s Law. Electricity & Magnetism
PHYSICS 1B Today s lecture: Motional emf and Lenz s Law Electricity & Magnetism PHYSICS 1B Faraday s Law Applications of Faraday s Law  GFCI A GFCI is a Ground Fault Circuit Interrupter. It is designed
More informationElements of Physics II. Agenda for Today. Physics 201: Lecture 1, Pg 1
Forces on currents Physics 132: Lecture e 19 Elements of Physics II Agenda for Today Currents are moving charges Torque on current loop Torque on rotated loop Currents create Bfields Adding magnetic fields
More informationPHYS102 Previous Exam Problems. Induction
PHYS102 Previous Exam Problems CHAPTER 30 Induction Magnetic flux Induced emf (Faraday s law) Lenz law Motional emf 1. A circuit is pulled to the right at constant speed in a uniform magnetic field with
More informationPhysics 115. Magnetic forces, Coils, Induction. General Physics II. Session 29
Physics 115 General Physics II Session 29 Magnetic forces, Coils, Induction R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 5/22/14 1 Lecture Schedule Today
More informationMagnetic Fields Due to Currents
PHYS102 Previous Exam Problems CHAPTER 29 Magnetic Fields Due to Currents Calculating the magnetic field Forces between currents Ampere s law Solenoids 1. Two long straight wires penetrate the plane of
More informationMagnetic Flux. Conference 8. Physics 102 General Physics II
Physics 102 Conference 8 Magnetic Flux Conference 8 Physics 102 General Physics II Monday, March 24th, 2014 8.1 Quiz Problem 8.1 Suppose we want to set up an EMF of 12 Volts in a circular loop of wire
More informationInduced Field Direction at Center of loop=
Worksheet for Exploration 29.1: Lenz's Law Lenz's law is the part of Faraday's law that tells you in which direction the current in a loop will flow. Current flows in such a way as to oppose the change
More information21 MAGNETIC FORCES AND MAGNETIC FIELDS
CHAPTER 1 MAGNETIC FORCES AND MAGNETIC FIELDS ANSWERS TO FOCUS ON CONCEPTS QUESTIONS 1 (d) RightHand Rule No 1 gives the direction of the magnetic force as x for both drawings A and B In drawing C, the
More informationAP Physics Electromagnetic Wrap Up
AP Physics Electromagnetic Wrap Up Here are the glorious equations for this wonderful section. This is the equation for the magnetic force acting on a moving charged particle in a magnetic field. The angle
More informationIII.Sources of Magnetic Fields  Ampere s Law  solenoids
Magnetism I. Magnetic Field  units, poles  effect on charge II. Magnetic Force on Current  parallel currents, motors III.Sources of Magnetic Fields  Ampere s Law  solenoids IV.Magnetic Induction 
More informationPhysics 1B Part II: Magnetism
Physics 1 Part : Magnetism colors reversed (color code varies) 6/5/2012 1 We start with the macroscopic What did historical people observe? How do magnets behave? s electricity related to magnetism? f
More informationPHY 131 Review Session Fall 2015 PART 1:
PHY 131 Review Session Fall 2015 PART 1: 1. Consider the electric field from a point charge. As you move farther away from the point charge, the electric field decreases at a rate of 1/r 2 with r being
More informationPhysics 8.02 Exam Two Mashup Spring 2003
Physics 8.0 Exam Two Mashup Spring 003 Some (possibly useful) Relations: closedsurface da Q κ d = ε E A inside points from inside to outside b V = V V = E d s moving from a to b b a E d s = 0 V many point
More informationPhysics 202, Lecture 13. Today s Topics. Magnetic Forces: Hall Effect (Ch. 27.8)
Physics 202, Lecture 13 Today s Topics Magnetic Forces: Hall Effect (Ch. 27.8) Sources of the Magnetic Field (Ch. 28) B field of infinite wire Force between parallel wires BiotSavart Law Examples: ring,
More informationLast Homework. Reading: Chap. 33 and Chap. 33. Suggested exercises: 33.1, 33.3, 33.5, 33.7, 33.9, 33.11, 33.13, 33.15,
Chapter 33. Electromagnetic Induction Electromagnetic induction is the scientific principle that underlies many modern technologies, from the generation of electricity to communications and data storage.
More informationChapter 23 Magnetic Flux and Faraday s Law of Induction
Chapter 23 Magnetic Flux and Faraday s Law of Induction Recall: right hand rule 2 10/28/2013 Units of Chapter 23 Induced Electromotive Force Magnetic Flux Faraday s Law of Induction Lenz s Law Mechanical
More informationIntroduction. First Experiment
Course : Bsc Applied Physical Science(Computer Science) IInd Year (Semester IV) Paper no : 14 Paper title : Electromagnetic Theory Lecture No : 14 Tittle : Faraday s Law of Induction Introduction Hello
More informationElectromagnetic Induction Practice Problems Homework PSI AP Physics B
Electromagnetic Induction Practice Problems Homework PSI AP Physics B Name Multiple Choice Questions 1. A square loop of wire is placed in a uniform magnetic field perpendicular to the magnetic lines.
More informationElectricity & Optics
Physics 24100 Electricity & Optics Lecture 16 Chapter 28 sec. 13 Fall 2017 Semester Professor Koltick Magnetic Flux We define magnetic flux in the same way we defined electric flux: φ e = n E da φ m =
More informationProblem Solving: Faraday s Law & Inductance. Faraday s Law
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics: 8.02 Problem Solving: Faraday s Law & Inductance Section Table Names Faraday s Law In Chapter 10 of the 8.02 Course Notes, we have seen that
More informationIntermediate Physics PHYS102
Intermediate Physics PHYS102 Dr Richard H. Cyburt Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 3846006 My email: rcyburt@concord.edu My webpage: www.concord.edu/rcyburt
More informationPhysics / Higher Physics 1A. Electricity and Magnetism Revision
Physics / Higher Physics 1A Electricity and Magnetism Revision Electric Charges Two kinds of electric charges Called positive and negative Like charges repel Unlike charges attract Coulomb s Law In vector
More informationPH 1120: Summary Homework 4 Solutions
PH 112: Summary Homework Solutions Term B8 1.(a) The path of the ion is a semicircle curving to the right from the point of entry, and terminating at the point X on the plate. (b) From the right hand rule,
More informationChapter 27, 28 & 29: Magnetism & Electromagnetic Induction. Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law
Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law 1 Magnetic Flux and Faraday s Law of Electromagnetic Induction We
More informationRecap (1) Maxwell s Equations describe the electric field E and magnetic field B generated by stationary charge density ρ and current density J:
Class 13 : Induction Phenomenon of induction and Faraday s Law How does a generator and transformer work? Self and mutual inductance Energy stored in Bfield Recap (1) Maxwell s Equations describe the
More informationPHY101: Major Concepts in Physics I
Welcome back to PHY101: Major Concepts in Physics I Photo: J. M. Schwarz Announcements In class today we will finish Chapter 20 (sections 3, 4, and 7). and then move to Chapter 13 (the first six sections).
More informationMagnets. Domain = small magnetized region of a magnetic material. all the atoms are grouped together and aligned
Magnetic Fields Magnets Domain = small magnetized region of a magnetic material all the atoms are grouped together and aligned Magnets Ferromagnetic materials domains can be forced to line up by applying
More informationLecture 29: MON 03 NOV
Physics 2113 Jonathan Dowling Lecture 29: MON 03 NOV Ch30.1 4 Induction and Inductance I Fender Stratocaster Solenoid Pickup Magnetic Circuit Breaker As the normal operating or "rated" current flows through
More informationChapter 7. Electrodynamics
Chapter 7. Electrodynamics 7.2 Electromagnetic Induction 7.2.1 Faraday's Law In 1831 Michael Faraday reported on a series of experiments: Experiment 1. He pulled a loop of wire to the right through a magnetic
More informationLECTURE 23 INDUCED EMF. Instructor: Kazumi Tolich
LECTURE 23 INDUCED EMF Instructor: Kazumi Tolich Lecture 23 2 Reading chapter 23.1 to 23.4. Induced emf Magnetic flux Faraday s law Lenz s law Quiz: 1 3 Consider the circuits shown. Which of the following
More informationMagnetic Fields and Forces
Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 20 Magnetic Fields and Forces Marilyn Akins, PhD Broome Community College Magnetism Magnetic fields are produced by moving electric charges
More informationMagnetism & EM Induction
Physics Traditional 1314 Williams Magnetism & EM Induction Chapters 19,20 2 Magnetism Notes Moving charges are the source of all magnetism. Since the smallest charge which can eist is an electron, and
More informationLast time. Gauss' Law: Examples (Ampere's Law)
Last time Gauss' Law: Examples (Ampere's Law) 1 Ampere s Law in Magnetostatics iotsavart s Law can be used to derive another relation: Ampere s Law The path integral of the dot product of magnetic field
More informationCHAPTER 4: MAGNETIC FIELD
CHAPTER 4: MAGNETIC FIELD PSPM II 2005/2006 NO. 4 4. FIGURE 3 A copper rod of mass 0.08 kg and length 0.20 m is attached to two thin current carrying wires, as shown in FIGURE 3. The rod is perpendicular
More informationUnit 3: Gravitational, Electric and Magnetic Fields Unit Test
Unit 3: Gravitational, Electric and Magnetic Fields Unit Test Name: Knowledge & Understanding Application Thinking & Inquiry Communication Total 15 18 5 6 44 Part 1: Multiple Choice 1. Two charged spheres
More informationKey Contents. Magnetic fields and the Lorentz force. Magnetic force on current. Ampere s law. The Hall effect
Magnetic Fields Key Contents Magnetic fields and the Lorentz force The Hall effect Magnetic force on current The magnetic dipole moment BiotSavart law Ampere s law The magnetic dipole field What is a
More informationAgenda for Today. Elements of Physics II. Forces on currents
Forces on currents Physics 132: Lecture e 19 Elements of Physics II Agenda for Today Currents are moving charges Torque on current loop Torque on rotated loop Currents create Bfields Adding magnetic fields
More informationDr. Fritz Wilhelm page 1 of 13 C:\physics\230 lecture\ch31 Faradays law.docx; 5/3/2009
Dr. Fritz Wilhelm page 1 of 13 C:\physics\3 lecture\ch31 Faradays law.docx; 5/3/9 Homework: See website. Table of Contents: 31.1 Faraday s Law of Induction, 31. Motional emf and Power, 4 31.a Transformation
More informationElectromagnetic Induction
Electromagnetic Induction PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html previously: electric currents generate magnetic field. If a current
More informationElements of Physics II. Agenda for Today
Physics 132: Lecture e 18 Elements of Physics II Agenda for Today Magnets and the Magnetic Field Magnetic fields caused by charged particles Bfield from a currentcarrying wire Magnetic fields and forces
More informationProblem Solving 6: Ampere s Law and Faraday s Law. Part One: Ampere s Law
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics: 8.02 Problem Solving 6: Ampere s Law and Faraday s Law Section Table Names Hand in one copy per group at the end of the Friday Problem Solving
More informationName: Class: Date: AP Physics Spring 2012 Q6 Practice. Multiple Choice Identify the choice that best completes the statement or answers the question.
ame: Class: Date: ID: A AP Physics Spring 2012 Q6 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. (2 points) A potential difference of 115 V across
More informationChapter 27 Magnetism. Copyright 2009 Pearson Education, Inc.
Chapter 27 Magnetism 271 Magnets and Magnetic Fields Magnets have two ends poles called north and south. Like poles repel; unlike poles attract. 271 Magnets and Magnetic Fields However, if you cut a
More information