Faraday s Law. Underpinning of Much Technology


 Oswin Cook
 4 years ago
 Views:
Transcription
1 Module 21: Faraday s Law 1
2 Faraday s Law Fourth (Final) Maxwell s Equation Underpinning of Much Technology 2
3 Demonstration: Falling Magnet 3
4 Magnet Falling Through a Ring Link to movie Falling magnet slows as it approaches a copper ring which has been immersed in liquid nitrogen. 4
5 Demonstration: Jumping Rings 5
6 Jumping Ring An aluminum ring jumps into the air when the solenoid beneath it is energized 6
7 What is Going On? It looks as though the conducting loops have current in them (they behave like magnetic dipoles) even though they aren t hooked up 7
8 Demonstration: t Induction Link to movie 8
9 Electromagnetic Induction 9
10 Faraday s Law of Induction = dφ B dt A changing magnetic flux induces an EMF 10
11 What is EMF? G G = E d s Looks like potential. It s a driving force for current 11
12 Magnetic Flux Thru Wire Loop Analogous to Electric Flux (Gauss Law) (1) Uniform B Φ B = BA = BA cos θ = B G A G (2) NonUniform B G G Φ = B dd A = Φ B S 12
13 Faraday s Law of Induction G G d Φ = E d s = B dt A changing magnetic flux induces an EMF, a curling E field 13
14 Faraday s Law of Induction = dφ B dt A changing magnetic flux induces an EMF 14
15 Minus Sign? Lenz s Law Induced EMF is in direction that opposes the change in flux that caused it 15
16 Concept Question: Loop The magnetic field through a wire loop is pointed upwards and increasing with time. The induced current in the coil is 1. Clockwise as seen from the top 2. Counterclockwise 16
17 Concept Question: Loop The magnetic field through a wire loop is pointed upwards and decreasing with time. The induced current in the coil is 1. Clockwise as seen from the top 2. Counterclockwise 17
18 Ways to Induce EMF ε = d BAcosθ ( ) dt Quantities which can vary with time: Magnitude of B Area A enclosed by the loop Angle θ between B and loop normal 18
19 Ways to Induce EMF ε = d BAcosθ ( ) dt Quantities which can vary with time: Magnitude of B Area A enclosed by the loop Angle θ between B and loop normal 19
20 Magnet Falling Through h a Ring Link to movie Falling magnet slows as it approaches a copper ring which h has been immersed in liquid id nitrogen. 20
21 Concept Question: Loop in Uniform B out Field A rectangular wire loop is pulled thru a uniform B field penetrating its top half, as shown. The induced current and the force and torque on the loop are: 1. Current CW, Force Left, No Torque 2. Current CW, No Force, Torque Rotates CCW 3. Current CCW, Force Left, No Torque 4. Current CCW, No Force, Torque Rotates CCW 5. No current, force or torque 21 v
22 Concept Question: Faraday s Law: A coil moves up from underneath a magnet with its north pole pointing upward. The current ti in the coil and the force on the coil: Loop 1. Current clockwise; force up 2. Current counterclockwise; force up 3. Current clockwise; force down 4. Current counterclockwise; force down 22
23 Technology Many Applications of Faraday s Law 23
24 Electric Guitar 24
25 Metal Detector See Animation of how VLF metal detectors t work: Induction Stovetops t Ground Fault Interrupters t (GFI) 25
26 Experiment 5: Faraday s a Law of Induction 26
27 Example: Magnitude of B Magnet Falling Through h a Ring Falling magnet approaches a copper ring or Copper Ring approaches Magnet 27
28 Moving Towards Dipole Move ring down As ring approaches, what happens to flux? Flux up increases 28
29 Part 1: Current & Flux I > 0 BLACK RED Current? Flux? Φ = ( ) t () t = R I t ' dt ' 0 29
30 Concept Question Predictions: Flux & Current 30
31 Concept Q. : Flux Measurement (A) t (B) t (C) (D) t t Moving from above to below and back, you will measure a flux of: 1. A then A 5. B then B 2. C then C 6. D then D 3. A then C 7. B then D 4. C then A 8. D then B 31
32 Concept Q.: Current Measurement (A) t (B) t (C) t NOTE: CCW is positive! (D) Moving from above to below and back, you will measure a current of: 1. A then A 5. B then B 2. C then C 6. D then D 3. Ath then C 7. B then D 4. C then A 8. D then B t 32
33 Part 2: Force Direction Force when Move Down? Move Up? Test with aluminum sleeve 33
34 Concept Question: Flux Behavior (1) t (2) t (3) (4) t NOTE: Magnet Upside Down t Moving from below to above, you would measure a flux best represented by which plot above (taking upward flux as positive)? 34
35 Concept Q.: Current Behavior (1) t (2) t (3) (4) t NOTE: Magnet Upside Down t Moving from above to below, you would measure a current best represented by which plot above (taking counterclockwise current as positive)? 35
36 Concept Question Confirming Predictions? Flux & Current 36
37 Concept Question Question: WrapUp Faraday s Law 37
38 Concept Q.: Loop Below Magnet A conducting loop is below a magnet and moving downwards. d This induces a current as pictured. The I ds x B force on the coil is 0% 1. Up 0% 2. Down 0% 3. Zero 38
39 Ways to Induce EMF ε = d BAcosθ ( ) dt Quantities which can vary with time: Magnitude of B Area A enclosed by the loop Angle θ between B and loop normal 39
40 The last of the Maxwell s Equations (Kind of) 40
41 Maxwell s Equations Creating Electric Fields G G Q E d A = in w S G G v E d s = v C ε 0 dφ dt B (Gauss's Law) (Faraday'sLaw) Creating G G Magnetic Fields w B da = 0 (Magnetic Gauss's Law) S G G B d s = μ I (Ampere's Law) 0 enc v v C 42
42 Faraday s Law of Induction = dφ B dt Changing magnetic flux induces an EMF Lenz: Induction opposes change 43
43 Faraday s Law Problem Solving Session 43
44 Ways to Induce EMF ε = d BAcosθ ( ) dt Quantities which can vary with time: Magnitude of B e.g. Falling Magnet Area A enclosed by the loop Angle θ between B and loop normal 44
45 Problem: Changing g Area Conducting rod pulled along two conducting rails in a uniform magnetic field B at constant velocity v l 1. Direction of induced current? 2. Direction of resultant force? 3. Magnitude of EMF? 4. Magnitude of current? 5. Power externally supplied to move at constant v? 45
46 Ways to Induce EMF ε = d ( dt BAcosθ) Quantities which can vary with time: Magnitude of B Area A enclosed e.g. Moving Coil & Dipole e.g. Sliding bar Angle θ between B and loop normal 46
47 Changing g Angle r r r Φ = B A= BA Φ = B A= 0 B B r 47
48 Motors & Generators 48
49 Concept Question Question: Generator 49
50 Concept Question: Generator A square coil rotates in a magnetic field directed d to the right. At the time shown, the current in the square, when looking down from the top of the square loop, will be 1. Clockwise 2. Counterclockwise 3. Neither, the current is zero 4. Id don t know 50
51 Problem: Generator Square loop (side L) spins with angular frequency ω in a field of strength B. It is hooked to a load R. 1) Write an expression for current I(t) ( assuming the loop is vertical at time t = 0. 2) How much work from generator per revolution? 3) To make it twice as hard to turn, what do you do to R? 51
52 Concept Question Question: WrapUp Faraday s Law 52
53 Concept Question: Circuit A circuit in the form of a rectangular piece of wire is pulled away from a long wire carrying current I in the direction shown in the sketch. The induced current in the rectangular circuit is 1. Clockwise 2. Counterclockwise 3. Neither, the current is zero 53
54 MIT OpenCourseWare SC Physics II: Electricity and Magnetism Fall 2010 For information about citing these materials or our Terms of Use, visit:
FARADAY S AND LENZ LAW B O O K P G
FARADAY S AND LENZ LAW B O O K P G. 4 3 6438 MOTIONAL EMF AND MAGNETIC FLUX (DERIVIATION) Motional emf = vbl Let a conducting rod being moved through a magnetic field B During time t 0 the rod has been
More informationConcept Questions with Answers. Concept Questions with Answers W11D2. Concept Questions Review
Concept Questions with W11D2 Concept Questions Review W11D2 2 Concept Questions with W7D1 W07D1 Magnetic Dipoles, Force and Torque on a Dipole, Experiment 2 W07D1 Magnetic Dipoles, Torque and Force on
More informationFaraday's Law ds B B G G ΦB B ds Φ ε = d B dt
Faraday's Law ds ds ε= d Φ dt Φ Global Review Electrostatics» motion of q in external Efield» Efield generated by Σq i Magnetostatics» motion of q and i in external field» field generated by I Electrodynamics»
More informationLast Homework. Reading: Chap. 33 and Chap. 33. Suggested exercises: 33.1, 33.3, 33.5, 33.7, 33.9, 33.11, 33.13, 33.15,
Chapter 33. Electromagnetic Induction Electromagnetic induction is the scientific principle that underlies many modern technologies, from the generation of electricity to communications and data storage.
More informationPhysics 202 Chapter 31 Oct 23, Faraday s Law. Faraday s Law
Physics 202 Chapter 31 Oct 23, 2007 Faraday s Law Faraday s Law The final step to ignite the industrial use of electromagnetism on a large scale. Light, toasters, cars, TVs, telephones, ipods, industrial
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring Experiment 5: Faraday s Law
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2009 OBJECTIVES Experiment 5: Faraday s Law 1. To become familiar with the concepts of changing magnetic flux and induced current
More informationChapter 23 Magnetic Flux and Faraday s Law of Induction
Chapter 23 Magnetic Flux and Faraday s Law of Induction Recall: right hand rule 2 10/28/2013 Units of Chapter 23 Induced Electromotive Force Magnetic Flux Faraday s Law of Induction Lenz s Law Mechanical
More informationGeneral Physics (PHY 2140)
General Physics (PHY 2140) Lecture 15 Electricity and Magnetism Magnetism Applications of magnetic forces Induced voltages and induction Magnetic flux and induced emf Faraday s law http://www.physics.wayne.edu/~apetrov/phy2140/
More informationElectromagnetic Induction and Faraday s Law
Electromagnetic Induction and Faraday s Law Induced EMF Almost 200 years ago, Faraday looked for evidence that a magnetic field would induce an electric current with this apparatus: He found no evidence
More informationElectricity & Optics
Physics 24100 Electricity & Optics Lecture 16 Chapter 28 sec. 13 Fall 2017 Semester Professor Koltick Magnetic Flux We define magnetic flux in the same way we defined electric flux: φ e = n E da φ m =
More informationInduced Electric Field
Lecture 18 Chapter 33 Physics II Induced Electric Field Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Applications of Faraday s Law (some leftovers from the previous class) Applications
More informationFaraday s Law. Lecture 17. Chapter 33. Physics II. Course website:
Lecture 17 Chapter 33 Physics II Faraday s Law Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html Electromagnetic
More informationInduced Electric Field
Lecture 20 Chapter 30 Induced Electric Field This fool said some nonsense that the electric field can be produced from the magnetic field. Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii
More informationInduced Electric Field
Lecture 18 Chapter 30 Physics II Induced Electric Field Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Today we are going to discuss: Chapter 30: Section 30.5, 30.6 Section 30.7
More informationIntroduction. First Experiment
Course : Bsc Applied Physical Science(Computer Science) IInd Year (Semester IV) Paper no : 14 Paper title : Electromagnetic Theory Lecture No : 14 Tittle : Faraday s Law of Induction Introduction Hello
More informationPhysics 54 Lecture March 1, Microquiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields
Physics 54 Lecture March 1, 2012 OUTLINE Microquiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields Electromagnetic induction Introduction to electromagnetic
More informationSliding Conducting Bar
Motional emf, final For equilibrium, qe = qvb or E = vb A potential difference is maintained between the ends of the conductor as long as the conductor continues to move through the uniform magnetic field
More informationPhysics 1402: Lecture 18 Today s Agenda
Physics 1402: Lecture 18 Today s Agenda Announcements: Midterm 1 distributed available Homework 05 due Friday Magnetism Calculation of Magnetic Field Two ways to calculate the Magnetic Field: iotsavart
More informationFaraday s Law. Lecture 17. Chapter 33. Physics II. Course website:
Lecture 17 Chapter 33 Physics II Faraday s Law Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Electromagnetic induction We saw that a magnetic field could be produced with an
More informationRevision Guide for Chapter 15
Revision Guide for Chapter 15 Contents tudent s Checklist Revision otes Transformer... 4 Electromagnetic induction... 4 Generator... 5 Electric motor... 6 Magnetic field... 8 Magnetic flux... 9 Force on
More informationCourse Updates. 2) Assignment #9 posted by Friday (due Mar 29)
Course Updates http://www.phys.hawaii.edu/~varner/phys272spr10/physics272.html Reminders: 1) Assignment #8 due now 2) Assignment #9 posted by Friday (due Mar 29) 3) Chapter 29 this week (start Inductance)
More informationPhysics 11b Lecture #13
Physics 11b Lecture #13 Faraday s Law S&J Chapter 31 Midterm #2 Midterm #2 will be on April 7th by popular vote Covers lectures #8 through #14 inclusive Textbook chapters from 27 up to 32.4 There will
More informationLecture 29: MON 03 NOV
Physics 2113 Jonathan Dowling Lecture 29: MON 03 NOV Ch30.1 4 Induction and Inductance I Fender Stratocaster Solenoid Pickup Magnetic Circuit Breaker As the normal operating or "rated" current flows through
More informationChapter 30. Induction and Inductance
Chapter 30 Induction and Inductance 30.2: First Experiment: 1. A current appears only if there is relative motion between the loop and the magnet (one must move relative to the other); the current disappears
More informationCHAPTER 29: ELECTROMAGNETIC INDUCTION
CHAPTER 29: ELECTROMAGNETIC INDUCTION So far we have seen that electric charges are the source for both electric and magnetic fields. We have also seen that these fields can exert forces on other electric
More informationChapter 27, 28 & 29: Magnetism & Electromagnetic Induction. Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law
Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law 1 Magnetic Flux and Faraday s Law of Electromagnetic Induction We
More informationElectromagnetic Induction Practice Problems Homework PSI AP Physics B
Electromagnetic Induction Practice Problems Homework PSI AP Physics B Name Multiple Choice Questions 1. A square loop of wire is placed in a uniform magnetic field perpendicular to the magnetic lines.
More informationElectromagnetics in Medical Physics
Electromagnetics in Medical Physics Part 4. Biomagnetism Tong In Oh Department of Biomedical Engineering Impedance Imaging Research Center (IIRC) Kyung Hee University Korea tioh@khu.ac.kr Dot Product (Scalar
More informationChapter 20: Electromagnetic Induction. PHY2054: Chapter 20 1
Chapter 20: Electromagnetic Induction PHY2054: Chapter 20 1 Electromagnetic Induction Magnetic flux Induced emf Faraday s Law Lenz s Law Motional emf Magnetic energy Inductance RL circuits Generators and
More informationRevision Guide for Chapter 15
Revision Guide for Chapter 15 Contents Revision Checklist Revision otes Transformer...4 Electromagnetic induction...4 Lenz's law...5 Generator...6 Electric motor...7 Magnetic field...9 Magnetic flux...
More informationPhysics 132: Lecture 15 Elements of Physics II Agenda for Today
Physics 132: Lecture 15 Elements of Physics II Agenda for Today Lenz Law Emf opposes change in flux Faraday s Law Induced EMF in a conducting loop Physics 132: Lecture 15, Pg 1 Lenz s Law Physics 132:
More informationElements of Physics II. Agenda for Today. Induced EMF. Force on moving charges Induced Current Magnetic Flux Area Vector. Physics 201: Lecture 1, Pg 1
Induced EMF Physics 132: Lecture e 21 Elements of Physics II Agenda for Today Force on moving charges Induced Current Magnetic Flux Area Vector Physics 201: Lecture 1, Pg 1 Clicker Question 11: A rectangular
More informationPhysics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1
Physics 201 p. 1/1 Physics 201 Professor P. Q. Hung 311B, Physics Building Physics 201 p. 2/1 Magnetic flux What is a magnetic flux? This is very similar to the concept of an electric flux through an area
More informationElectroMagnetic Induction
ElectroMagnetic Induction Physics 1 What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday first
More informationLast time. Gauss' Law: Examples (Ampere's Law)
Last time Gauss' Law: Examples (Ampere's Law) 1 Ampere s Law in Magnetostatics iotsavart s Law can be used to derive another relation: Ampere s Law The path integral of the dot product of magnetic field
More informationmag ( ) 1 ). Since I m interested in the magnitude of the flux, I ll avoid the minus sign by taking the normal to point upward.
hysics 40 Homework olutions  Walker Chapter 3 Conceptual Questions CQ5. Before the switch is closed there is no current in the coil and therefore no netic flux through the metal ring. When the switch
More informationExam 3 Topics. Displacement Current Poynting Vector. Faraday s Law Self Inductance. Circuits. Energy Stored in Inductor/Magnetic Field
Exam 3 Topics Faraday s Law Self Inductance Energy Stored in Inductor/Magnetic Field Circuits LR Circuits Undriven (R)LC Circuits Driven RLC Circuits Displacement Current Poynting Vector NO: B Materials,
More informationLecture 33. PHYC 161 Fall 2016
Lecture 33 PHYC 161 Fall 2016 Faraday s law of induction When the magnetic flux through a single closed loop changes with time, there is an induced emf that can drive a current around the loop: Recall
More informationApplication Of Faraday s Law
Application Of Faraday s Law Dr Miguel Cavero September 2, 2014 Application Of Faraday s Law September 2, 2014 1 / 23 The PHYS120 Exam will be divided into three sections as follows: Section A: Short Questions
More informationPhysics 9 Wednesday, April 2, 2014
Physics 9 Wednesday, April 2, 2014 FYI: final exam is Friday, May 9th, at 9am, in DRL A2. HW10 due Friday. No quiz today. (HW8 too difficult for a quiz!) After this week: 2 weeks on circuits; then optics
More informationProblem Solving: Faraday s Law & Inductance. Faraday s Law
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics: 8.02 Problem Solving: Faraday s Law & Inductance Section Table Names Faraday s Law In Chapter 10 of the 8.02 Course Notes, we have seen that
More informationChapter 21 Magnetic Induction Lecture 12
Chapter 21 Magnetic Induction Lecture 12 21.1 Why is it called Electromagnetism? 21.2 Magnetic Flux and Faraday s Law 21.3 Lenz s Law and WorkEnergy Principles 21.4 Inductance 21.5 RL Circuits 21.6 Energy
More informationOctober 23. Physics 272. Fall Prof. Philip von Doetinchem
Physics 272 October 23 Fall 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_fall_272_uhm.html Prof. Philip von Doetinchem philipvd@hawaii.edu Phys272  Fall 14  von Doetinchem  170 Motional electromotive
More informationAP Physics C Unit 11: Electromagnetic Induction. Part 1  Faraday s Law and Lenz s Law
AP Physics C Unit 11: Electromagnetic Induction Part 1  Faraday s Law and Lenz s Law What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in
More informationLECTURE 23 INDUCED EMF. Instructor: Kazumi Tolich
LECTURE 23 INDUCED EMF Instructor: Kazumi Tolich Lecture 23 2 Reading chapter 23.1 to 23.4. Induced emf Magnetic flux Faraday s law Lenz s law Quiz: 1 3 Consider the circuits shown. Which of the following
More informationDemo: Solenoid and Magnet. Topics. Chapter 22 Electromagnetic Induction. EMF Induced in a Moving Conductor
Topics Chapter 22 Electromagnetic Induction EMF Induced in a Moving Conductor Magnetic Flux EMF Induced in a Moving Conductor Demo: Solenoid and Magnet v 1 EMF Induced in a Moving Conductor q Work done
More informationGeneral Review. LECTURE 16 Faraday s Law of Induction
Electrostatics General Review Motion of q in eternal Efield Efield generated b Sq i Magnetostatics Motion of q and I in eternal Bfield Bfield generated b I Electrodnamics Time dependent Bfield generates
More informationAgenda for Today. Elements of Physics II. Forces on currents
Forces on currents Physics 132: Lecture e 14 Elements of Physics II Agenda for Today Currents are moving charges Torque on current loop Torque on rotated loop Currents create Bfields Adding magnetic fields
More informationChapters 34,36: Electromagnetic Induction. PHY2061: Chapter
Chapters 34,36: Electromagnetic Induction PHY2061: Chapter 3435 1 Electromagnetic Induction Magnetic flux Induced emf Faraday s Law Lenz s Law Motional emf Magnetic energy Inductance RL circuits Generators
More informationInduction and Inductance
Welcome Back to Physics 1308 Induction and Inductance Michael Faraday 22 September 1791 25 August 1867 Announcements Assignments for Tuesday, November 6th:  Reading: Chapter 30.630.8  Watch Videos:
More informationPhysics 122 Class #29 (4/30/15) Announcements. Faraday's Law Flux Solenoids Generators
Physics 122 Class #29 (4/30/15) Announcements Faraday's Law Flux Solenoids Generators Exam 3 Solutions posted. Can review in review session. Practice Final is posted http://kestrel.nmt.edu/~rsonnenf/phys122/homeworksolns/
More informationLecture 29: MON 02 NOV
Physics 2113 Jonathan Dowling Lecture 29: MON 02 NOV Induction and Inductance I Fender Stratocaster Solenoid Pickup F a r a d a y ' s E x p e r i m e n t s I n a s e r i e s o f e x p e r i m e n t s,
More informationPHY 1214 General Physics II
PHY 1214 General Physics II Lecture 20 Magnetic Flux and Faraday s Law July 67, 2005 Weldon J. Wilson Professor of Physics & Engineering Howell Hall 221H wwilson@ucok.edu Lecture Schedule (Weeks 46)
More informationFaraday s Law. Faraday s Law of Induction Motional emf. Lenz s Law. Motors and Generators. Eddy Currents
Faraday s Law Faraday s Law of Induction Motional emf Motors and Generators Lenz s Law Eddy Currents Induced EMF A current flows through the loop when a magnet is moved near it, without any batteries!
More informationPHYSICS 1B. Today s lecture: Motional emf. and. Lenz s Law. Electricity & Magnetism
PHYSICS 1B Today s lecture: Motional emf and Lenz s Law Electricity & Magnetism PHYSICS 1B Faraday s Law Applications of Faraday s Law  GFCI A GFCI is a Ground Fault Circuit Interrupter. It is designed
More informationAP Physics C  E & M
AP Physics C  E & M Electromagnetic Induction 20170714 www.njctl.org Table of Contents: Electromagnetic Induction Click on the topic to go to that section. Induced EMF Magnetic Flux and Gauss's Law
More informationElectricity & Magnetism
Ch 31 Faraday s Law Electricity & Magnetism Up to this point, we ve seen electric fields produced by electric charges... E =... and magnetic fields produced by moving charges... k dq E da = q in r 2 B
More informationPHY101: Major Concepts in Physics I
Welcome back to PHY101: Major Concepts in Physics I Photo: J. M. Schwarz Announcements In class today we will finish Chapter 20 (sections 3, 4, and 7). and then move to Chapter 13 (the first six sections).
More informationCHAPTER 5: ELECTROMAGNETIC INDUCTION
CHAPTER 5: ELECTROMAGNETIC INDUCTION PSPM II 2005/2006 NO. 5 5. An AC generator consists a coil of 30 turns with cross sectional area 0.05 m 2 and resistance 100 Ω. The coil rotates in a magnetic field
More informationGeneral Physics II. Electromagnetic Induction and Electromagnetic Waves
General Physics II Electromagnetic Induction and Electromagnetic Waves 1 Induced emf We have seen that an electric current produces a magnetic field. Michael Faraday demonstrated that a magnetic field
More informationOutside the solenoid, the field lines are spread apart, and at any given distance from the axis, the field is weak.
Applications of Ampere s Law continued. 2. Field of a solenoid. A solenoid can have many (thousands) of turns, and perhaps many layers of windings. The figure shows a simple solenoid with just a few windings
More informationPHYS102 Previous Exam Problems. Induction
PHYS102 Previous Exam Problems CHAPTER 30 Induction Magnetic flux Induced emf (Faraday s law) Lenz law Motional emf 1. A circuit is pulled to the right at constant speed in a uniform magnetic field with
More informationChapter 30. Induction and Inductance
Chapter 30 Induction and Inductance 30.2: First Experiment: 1. A current appears only if there is relative motion between the loop and the magnet (one must move relative to the other); the current disappears
More informationK204: FARADAY'S EXPERIMENT  EME K243: LENZ'S LAW  PERMANENT MAGNET AND COILS
K204: FARADAY'S EXPERIMENT  EME SET  20, 40, 80 TURN COILS K262: CAN SMASHER  ELECTROMAGNETIC K243: LENZ'S LAW  PERMANENT MAGNET AND COILS K244: EDDY CURRENT PENDULUM K406: MAGNETOELECTRIC GENERATOR
More informationC. Incorrect! Use the formula for magnetic flux. This is the product of magnetic field, times area, times the angle between them.
AP Physics  Problem Drill 17: Electromagnetism Instruction: (1) Read the problem statement and answer choices carefully (2) Work the problems on paper as 1. A house has a wall that has an area of 28 m
More informationChapter 23: Magnetic Flux and Faraday s Law of Induction
Chapter 3: Magnetic Flux and Faraday s Law of Induction Answers Conceptual Questions 6. Nothing. In this case, the break prevents a current from circulating around the ring. This, in turn, prevents the
More informationProblem Solving 6: Ampere s Law and Faraday s Law. Part One: Ampere s Law
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics: 8.02 Problem Solving 6: Ampere s Law and Faraday s Law Section Table Names Hand in one copy per group at the end of the Friday Problem Solving
More informationSlide 1 / 50. Electromagnetic Induction and Faraday s Law
Slide 1 / 50 Electromagnetic Induction and Faraday s Law Slide 2 / 50 Electromagnetic Induction and Faraday s Law Induced EMF Faraday s Law of Induction Lenz s Law EMF Induced in a Moving Conductor Changing
More informationChapter 9 FARADAY'S LAW Recommended Problems:
Chapter 9 FARADAY'S LAW Recommended Problems: 5,7,9,10,11,13,15,17,20,21,28,29,31,32,33,34,49,50,52,58,63,64. Faraday's Law of Induction We learned that e. current produces magnetic field. Now we want
More informationAP Physics 2 Electromagnetic Induction Multiple Choice
Slide 1 / 50 AP Physics 2 Electromagnetic Induction Multiple Choice www.njctl.org Slide 2 / 50 1 A beam of electrons travels between two parallel coils of wire, as shown in the figures above. When the
More informationYell if you have any questions
Class 31: Outline Hour 1: Concept Review / Overview PRS Questions possible exam questions Hour : Sample Exam Yell if you have any questions P31 1 Exam 3 Topics Faraday s Law Self Inductance Energy Stored
More informationChapter 12. Magnetism and Electromagnetism
Chapter 12 Magnetism and Electromagnetism 167 168 AP Physics Multiple Choice Practice Magnetism and Electromagnetism SECTION A Magnetostatics 1. Four infinitely long wires are arranged as shown in the
More informationAgenda for Today. Elements of Physics II. Lenz Law. Emf opposes change in flux Faraday s Law Induced EMF in a conducting loop
Lenz Law Physics 132: Lecture e 22 Elements of Physics II Agenda for Today Emf opposes change in flux Faraday s Law Induced EMF in a conducting loop Physics 201: Lecture 1, Pg 1 Lenz s Law Physics 201:
More informationMagnetic inductance & Solenoids. P.Ravindran, PHY041: Electricity & Magnetism 22 February 2013: Magnetic inductance, and Solenoid
Magnetic inductance & Solenoids Changing Magnetic Flux A changing magnetic flux in a wire loop induces an electric current. The induced current is always in a direction that opposes the change in flux.
More informationPhysics 4. Magnetic Induction. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
Physics 4 Magnetic Induction Before we can talk about induction we need to understand magnetic flux. You can think of flux as the number of field lines passing through an area. Here is the formula: flux
More informationPS I AP Physics 2 Electromagnetic Induction Multiple Choice Questions
PS I AP Physics 2 Electromagnetic Induction Multiple Choice Questions 1. A beam of electrons travels between two parallel coils of wire, as shown in the figures above. When the coils do not carry a current,
More informationCh. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies
Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies Induced emf  Faraday s Experiment When a magnet moves toward a loop of wire, the ammeter shows the presence of a current When
More informationMotional EMF & Lenz law
Phys 102 Lecture 13 Motional EMF & Lenz law 1 Physics 102 recently Basic principles of magnetism Lecture 10 magnetic fields & forces Lecture 11 magnetic dipoles & current loops Lecture 12 currents & magneticfields
More informationLecture 30: WED 04 NOV
Physics 2113 Jonathan Dowling Lecture 30: WED 04 NOV Induction and Inductance II Fender Stratocaster Solenoid Pickup F a r a d a y ' s E x p e r i m e n t s I n a s e r i e s o f e x p e r i m e n t s,
More informationSlide 1 / 24. Electromagnetic Induction 2011 by Bryan Pflueger
Slide 1 / 24 Electromagnetic Induction 2011 by Bryan Pflueger Slide 2 / 24 Induced Currents If we have a galvanometer attached to a coil of wire we can induce a current simply by changing the magnetic
More informationPHYSICS Fall Lecture 15. Electromagnetic Induction and Faraday s Law
PHYSICS 1444001 Fall 2012 Lecture 15 Electromagnetic Induction and Faraday s Law A current can be produced by a changing magnetic field First shown in an experiment by Michael Faraday Induced emf A primary
More informationLecture 10 Induction and Inductance Ch. 30
Lecture 10 Induction and Inductance Ch. 30 Cartoon  Faraday Induction Opening Demo  Thrust bar magnet through coil and measure the current Topics Faraday s Law Lenz s Law Motional Emf Eddy Currents LR
More informationPhysics 115. Induction Induced currents. General Physics II. Session 30
Physics 115 General Physics II Session 30 Induction Induced currents R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 1 Lecture Schedule Today 5/23/14 2 Physics
More informationFaraday s Law; Inductance
This test covers Faraday s Law of induction, motional emf, Lenz s law, induced emf and electric fields, eddy currents, selfinductance, inductance, RL circuits, and energy in a magnetic field, with some
More informationProblem Fig
Problem 9.53 A flexible circular loop 6.50 cm in diameter lies in a magnetic field with magnitude 0.950 T, directed into the plane of the page, as shown. The loop is pulled at the points indicated by the
More informationElectromagnetic Induction
Chapter 29 Electromagnetic Induction PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 8_4_2008 Topics for Chapter
More informationPulling or pushing a wire through a magnetic field creates a motional EMF in the wire and a current I = E/R in the circuit.
A Generator! Pulling or pushing a wire through a magnetic field creates a motional EMF in the wire and a current I = E/R in the circuit. Neil Alberding (SFU Physics) Physics 121: Optics, Electricity &
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2013 Exam 3 Equation Sheet. closed fixed path. ! = I ind.
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.0 Spring 013 Exam 3 Equation Sheet Force Law: F q = q( E ext + v q B ext ) Force on Current Carrying Wire: F = Id s " B # wire ext Magnetic
More informationSlide 1 / 50. Slide 2 / 50. Slide 3 / 50. Electromagnetic Induction and Faraday s Law. Electromagnetic Induction and Faraday s Law.
Electromagnetic Induction and Faraday s Law Slide 1 / 50 Electromagnetic Induction and Faraday s Law Slide 2 / 50 Induced EMF Faraday s Law of Induction Lenz s Law EMF Induced in a Moving Conductor Changing
More informationUniversity Physics Volume II Unit 2: Electricity and Magnetism Chapter 13: Electromagnetic Induction Conceptual Questions
University Physics Volume II Conceptual Questions 1. A stationary coil is in a magnetic field that is changing with time. Does the emf induced in the coil depend on the actual values of the magnetic field?
More informationPHYSICS  GIANCOLI CALC 4E CH 29: ELECTROMAGNETIC INDUCTION.
!! www.clutchprep.com CONCEPT: ELECTROMAGNETIC INDUCTION A coil of wire with a VOLTAGE across each end will have a current in it  Wire doesn t HAVE to have voltage source, voltage can be INDUCED i V Common
More informationPart 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is
1 Part 4: Electromagnetism 4.1: Induction A. Faraday's Law The magnetic flux through a loop of wire is Φ = BA cos θ B A B = magnetic field penetrating loop [T] A = area of loop [m 2 ] = angle between field
More informationModifying Ampere's Law to include the possibility of time varying electric fields gives the fourth Maxwell's Equations.
Induction In 1831831, Joseph Henry & Michael Faraday discovered electromagnetic induction. Induction requires time varying magnetic fields and is the subject of another of Maxwell's Equations. Modifying
More informationA Generator! Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 22
A Generator! Pulling or pushing a wire through a magnetic field creates a motional EMF in the wire and a current I = E/R in the circuit. To keep the wire moving you must supply a force to overcome the
More informationMagnetic flux. where θ is the angle between the magnetic field and the area vector. The unit of magnetic flux is the weber. 1 Wb = 1 T m 2.
Magnetic flux Magnetic flux is a measure of the number of magnetic field lines passing through something, such as a loop. If we define the area of the loop as a vector, with its direction perpendicular
More informationMichael Faraday. Chapter 31. EMF Produced by a Changing Magnetic Field, 1. Induction. Faraday s Law
Michael Faraday Chapter 31 Faraday s Law Great experimental physicist and chemist 1791 1867 Contributions to early electricity include: Invention of motor, generator, and transformer Electromagnetic induction
More informationPhysics 212 Question Bank III 2010
A negative charge moves south through a magnetic field directed north. The particle will be deflected (A) North. () Up. (C) Down. (D) East. (E) not at all.. A positive charge moves West through a magnetic
More informationW07D1 Magnetic Dipoles, Force and Torque on a Dipole, Experiment 2
W07D1 Magnetic Dipoles, Force and Torque on a Dipole, Experiment 2 W07D1 Magnetic Dipoles, Torque and Force on a Dipole, Experiment 2: Magnetic Dipole in a Helmholtz Coil http://web.mit.edu/8.02t/www/materials/experiments/expmagforcesdipolehelmholtz.pdf
More informationElectromagnetic Induction. Bo Zhou Faculty of Science, Hokudai
Electromagnetic Induction Bo Zhou Faculty of Science, Hokudai Oersted's law Oersted s discovery in 1820 that there was a close connection between electricity and magnetism was very exciting until then,
More informationFaraday s Law. Physics 102: Lecture 10. Exam 1 tonight. All you need is a #2 pencil, calculator, and your ID. CHEATING we will prosecute!
Physics 102: Lecture 10 Faraday s Law Changing Magnetic Fields create Electric Fields Exam 1 tonight Be sure to bring your ID and go to correct room All you need is a #2 pencil, calculator, and your ID
More information