II - Baseband pulse transmission

Size: px
Start display at page:

Download "II - Baseband pulse transmission"

Transcription

1 II - Baseband pulse transmission 1 Introduction We discuss how to transmit digital data symbols, which have to be converted into material form before they are sent or stored. In the sequel, we associate the symbols with pulses, and a sequence of these pulses are added up to form a pulse train that carries the entire message. Let the symbol duration be s. he reciprocal 1/ s is called the baud rate of the transmission. For a symbol representing n bits, the symbol duration and the bit duration are related by s = n b and the bit rate in bits/second is 1/ b = n/ s. If the pulse train itself or a similar waveform is transmitted, the communication system is said to be baseband. he simplest way to generate a pulse train is to assume that the pulses last only as long as the data symbols and do not overlap with succeeding pulses. he shape and relations among pulses are called their format. A format is sometimes called a line code. he next not so-easy way to generate a pulse train is to let the pulses overlap and explore the conditions under which the amplitudes of individual pulses may still be observed from samples of the entire pulse train; these are called Nyquist pulses. Finally, we consider orthogonal pulses which overlap more seriously, but in a way that makes all but one pulse in the train invisible to a properly designed detector. hese last two pulse classes introduce two basic detectors: the sampling receiver and the linear receiver. he former works with Nyquist pulses by simply observing the data symbol values at the right moments in the pulse train. he latter observes the entire signal and depends on the orthogonality property to separate out the data symbols [1]. 2 Power spectral density of PAM signals Consider the pulse amplitude modulation (PAM) signal FDNunes, IS

2 2 POWER SPECRAL DENSIY OF PAM SIGNALS 17 x(t) = k= A k p(t k s ) (1) where A k is a real discrete random variable that models the digital source and p(t) is the signaling pulse. Recall that the power spectrum is defined as G x (f) = lim E{ X (f) 2 } where X (f) is the Fourier transform of the truncated PAM signal x (t) in the interval of duration = (2L + 1) s, i.e., We get L x (t) = A k p(t k s ) k= L G x (f) = P (f) 2 lim L 1 (2L + 1) s L L k= L m= L R A (k m)e j2πf(k m)s where P (f) is the Fourier transform of p(t), R A (k m) = E{A k A m } is the autocorrelation of the time sequence of random variables, A k, assumed to be wide-sense stationary. Finally doing L we obtain G x (f) = P (f) 2 s n= R A (n)e j2πfn s If we consider that the data symbols are uncorrelated, that is we obtain R A (n) = { { A 2 k, n = σ 2 A k A k+n, n = A + m 2 A, n = m 2 A, n G x (f) = σa 2 P (f) 2 + m2 a P (f) 2 s s Using now the Poisson s sum formula n= e j2πfns (2) leads to e ±j2πnf/u = U δ(f mu) n= m= G x (f) = σa 2 P (f) 2 + m2 A s s 2 ( ) m P 2 ( δ f m ) m= s s (3)

3 2 POWER SPECRAL DENSIY OF PAM SIGNALS 18 he first part of the right-hand member is the continuous spectrum and the second part is the discrete spectrum, which is null if m A = and/or P (m/ s ) =, m [2]. In that case G x (f) = σa 2 P (f) 2 (4) s he previous result can be used to compute the power spectra of line codes. Examples of line codes are shown in Fig. 1 where NRZ stands for nonreturn-to-zero and RZ denotes return-to-zero. bit= bit=1 data = b b polar NRZ b b polar RZ b b unipolar NRZ b b bipolar RZ b b Manchester Figure 1: Examples of binary line codes based on the square pulse. he pulses corresponding to bits and 1 appear at left In the polar NRZ line code, symbols 1 and are represented by transmitting pulses of amplitudes +A and A, respectively. his code is relatively easy to generate but its disadvantage is that its power spectrum is large near zero frequency. In the unipolar NRZ line code symbol 1 is represented by transmitting a pulse of amplitude A for the duration of the symbol and symbol is represented by switching off the pulse (on-off signaling). Disadvantages of the on-off signaling are the waste of power due to the transmitted DC level and the fact that the power spectrum does not approach zero at zero frequency. he bipolar RZ line code uses three amplitude levels where positive and negative pulses are used alternatively for symbol 1, with each pulse having half-symbol wide, and no pulse is always used for symbol. his line code is also called alternate mark inversion (AMI) signaling. he power spectrum of the transmitted signal has no DC component and small low-frequency components when symbols and 1 occur

4 2 POWER SPECRAL DENSIY OF PAM SIGNALS 19 with equal probabilities. In the Manchester code symbol 1 is represented by a positive pulse of amplitude A followed by a negative pulse of amplitude A. For symbol, the polarities of these pulses are reversed. he Manchester code suppresses the DC component and has relatively small low-frequency components, regardless of the signal statistics [3]. Example: Determine the power spectral density (PSD) of the Manchester code for independent and equally likely bits and 1. We consider the basic pulse p(t) of Fig p(t) b t -1 Figure 2: Basic pulse of the Manchester code he digital source is formed by symbols A k = A and A k = A. he pdf of the r.v. A k is with mean and variance p Ak (a) = 1 2 δ(a + A) + 1 δ(a A) 2 m A = A k = ap Ak (a) da = σa 2 = E{(A k m A ) 2 } = he Fourier transform of p(t) is (a m A ) 2 p Ak (a) da = A 2 P (f) = b /2 e j2πft dt = j 2 πf e jπf b sin 2 b b /2 ( πfb 2 e j2πft dt )

5 3 MACHED FILER 2 leading to where sinc(x) = sin(πx)/(πx) and finally ( ) ( ) P (f) 2 = b 2 sinc 2 fb sin 2 πfb 2 2 ( ) ( ) G x (f) = A 2 b sinc 2 fb sin 2 πfb 2 2 he power spectrum has no discrete part as shown in Fig. 3. Manchester code PSD.25.2 A 2 b f b Figure 3: Power spectral density of the Manchester code with independent and equally likely symbols his spectrum has a null at frequency zero which may be useful for certain channels, as in digital recording using magnetic tapes. 3 Matched filter A basic problem that often arises is that of detecting a pulse transmitted over a channel that is corrupted by channel noise. Consider the receiver model shown in Fig. 4, involving a linear time-invariant filter of impulse response h(t). he filter input consists of a pulse signal g(t) corrupted by additive channel noise w(t) with x(t) = g(t) + w(t), t

6 3 MACHED FILER 21 where is an arbitrary observation interval and w(t) is the sample function of a zeromean white noise process with power spectral density G w (t) = N /2. he goal of the receiver is to detect the pulse signal g(t) in an optimum manner, given the received signal x(t). hus, we have to optimize the design of the filter in order to minimize the effects of noise at the filter output in some statistical sense. Since the filter is linear, the output may be expressed as y(t) = g o (t) + n(t) where g o (t) and n(t) are the filter responses to the signal and noise, respectively. he filter output is sampled at the optimal time t = where the peak pulse signal-to-noise ratio η = g o( ) 2 E[n 2 (t)] is maximized. he quantity g o ( ) 2 is the instantaneous power of the output signal and E[n 2 (t)] is the average output noise power. We wish to specify the filter s impulse response h(t) such that the signal-to-noise ratio η is maximized. signal g(t) + linear time-invariant filter of impulse response h(t) y(t) y() sample at time t= white noise w(t) hus Figure 4: Linear receiver he output signal g o (t) may be written as the inverse Fourier transform g o (t) = g o ( ) 2 = H(f)G(f)exp(j2πft) df H(f)G(f) exp(j2πf ) dt and we may re-write the expression for the peak pulse signal-to-noise ratio as η = H(f)G(f) exp(j2πf ) df 2 N (5) 2 H(f) 2 df he problem is to find, for a given G(f), the particular form of the frequency response H(f) that makes maximizes η. o solve this problem we resort to the Schwarz s inequality 2

7 3 MACHED FILER 22 2 H(f)G(f) exp(j2πf ) df H(f) 2 df G(f) exp(j2πf ) 2 df he equality holds if, and only, if H(f) = kg (f) exp( j2πf ) (6) where k is an arbitrary constant. Replacing (2) in (5) leads to η max = 2 G(f) 2 df = 2E g N N where E g is the energy of signal g(t) and the optimum value of H(f) is H opt (f) = kg (f) exp( j2πf ) he corresponding impulse response of the optimum filter is given by h opt (t) = kg( t) which is, except for the scaling factor k, the time-reversed and delayed version of the input signal g(t); that is, the impulse response is matched to the input signal [3]. Example: Matched filter for rectangular pulse Let g(t) = A ( ) t /2 he matched filter for additive white noise is h opt (t) = kg( t) and the matched filter output for signal g(t) is = ka ( ) /2 t = ka ( ) t /2 g o (t) = g(t) h opt (t) = = ka 2 h opt (λ)g(t λ) dλ ( λ /2 ) ( ) λ t + /2 dλ

8 3 MACHED FILER 23 or g (t) = ka 2 = ka 2 ( t ( ) λ t + /2 dλ he matched filter output is shown in Fig. 5. In the presence of noise with PSD G w (f) = N /2 the peak signal-to-noise ratio is ) η max = 2E g N = 2A2 N 3.1 integrate-and-dump circuit For the special case of a rectangular pulse, the matched filter can be implemented using an integrate-and-dump circuit, which is shown in Fig. 6. he integrator output is sampled at t =, where is the pulse duration. Immediately after t =, the integrator is restored to its initial condition; hence the name of the circuit. A g(t) t ka 2 g (t) o 2 t Figure 5: Rectangular pulse and matched filter response At the sampling time the integrator output is y( ) = [g(t) + w(t)] dt = A + n where n is a zero-mean random variable (r.v.) given by n = w(t) dt

9 3 MACHED FILER 24 noise w(t) t= g(t) rectangular pulse + (.)dt y() Figure 6: Integrate-and-dump receiver he variance of n is σ 2 n = E w(λ)w(α) dλdα = E{w(λ)w(α) dλdα yielding = N 2 δ(λ α) dλdα σ 2 n = N 2 hus, at the sampling time t = the signal-to-noise ratio is y 2 ( ) σ 2 n = 2A2 N which is equal to η max. herefore, at the sampling time the matched filter and the integrate-and-dump circuit are equivalent. 3.2 correlator circuit his result can be readily to non-rectangular pulses. In fact, the matched filter can be implemented using a correlator circuit, as shown in Fig. 7, where k is an arbitrary constant. At the sampling time the integrator output is y( ) = k g 2 (t) dt + k g(t)w(t) dt = ke g + n

10 4 NYQUIS PULSES 25 where n is a zero-mean r.v. with variance σ 2 n = k 2 g(λ)g(α)e{w(λ)w(α)} dλdα = N 2 k2 g 2 (α) dα = N 2 k2 E g and the signal-to-noise ratio at the sampling time is y 2 ( ) σ 2 n = k 2 E 2 g (N /2)k 2 E g = 2E g N which proves that the correlator is equivalent to the matched filter at the optimal sampling time. Note that the integrate-and-dump receiver is a particular case of the correlator receiver where g(t) is a rectangular pulse. noise w(t) t= g(t) pulse + (.)dt y() + kg(t) Figure 7: Correlator receiver 4 Nyquist pulses Although the previous line codes, based on the square pulse, are simple to implement, the small duration of the pulses and their discontinuities cause the line codes to have very large bandwidths. wo ways to reduce the bandwidth of any pulse are to round off its corners and transitions and to increase the pulse duration. Overlapping pulses interfere with each other. However, several kinds of interference still allow an effective detector to be built. he first class of such pulses obeys a zero-crossing criterion called the Nyquist pulse criterion. Let the basic pulse p(t) be centered at time zero. A pulse p(t) satisfies the Nyquist pulse criterion if it passes through at time t = n, n = ±1, ±2,... but not a t = p(n ) = { p(), n =, n (7)

11 4 NYQUIS PULSES 26 For Nyquist pulses the symbol detector (called sample detector) is quite simple: a sample at time n directly gives the value of the n.th transmission symbol. Consider that the PAM signal y(t) = is sampled at t = n. he result is y(n ) = k= k= A k p(t k ) A k p[(n k) ] = A n p() which is proportional to the transmitted symbol A n. Assume now that the sampling time is affected by a synchronization error ɛ with ɛ <. hen y(n + ɛ) = k= k= A k p[(n k) + ɛ] = A n p(ɛ) + k= k n A k p[(n k) + ɛ] } {{ } ISI he term ISI is the intersymbol interference. We can obtain an equivalent condition to (7) for the elimination of ISI in the frequency domain. Let P (f) be the Fourier transform of p(t). hen, the Poisson sum formula yields n= P ( f n ) = p(m )e j2πmf m= = p() (8) hus, the pulse p(t) satisfies the Nyquist pulse criterion (7) if and only if (Nyquist s first criterion) n= P ( f n ) = p() = constant (9) If P (f) is nonzero outside the Nyquist interval 1/(2 ) f 1/(2 ), many classes of pulses satisfy (9). hus, the Nyquist criterion does not uniquely specify the frequency response P (f). On the contrary, if P (f) is limited to an interval smaller than Nyquist s, it is impossible for (9) to hold [4] and ISI cannot be removed from the received signal.

12 4 NYQUIS PULSES 27 If P (f) is exactly bandlimited in the Nyquist interval 1/(2 ) f 1/(2 ), (9) requires that P (f) = { p(), f 1/(2 ), elsewhere hat is, the only pulse satisfying the Nyquist criterion is the pulse with rectangular spectrum and in the time domain P (f) = p() ( ) f = constant 1/ ( ) t p(t) = p() sinc here are two serious problems with this solution. First, it is not physically realizable because of its instantaneous jump to at f = ±1/(2 ). he second problem comes from the fact that even small synchronization errors of sampling times t = n would lead to the appearance of ISI. For this reason, it is convenient to use pulses with wider bandwidths to reduce sensitivity to inaccuracies in the sampling times. he most common example in practice is the raised cosine pulse, defined in frequency by, f { [ ( )]} 1 α 2 P (f) = 2 1 cos π α f 1+α 2, 1 α 1+α f < (1) 2 2, f 1+α 2 he spectra of the raised cosine pulse are plotted in Fig. 8 for different values of α. he parameter α is called the rolloff factor or excess bandwidth factor, since the bandwidth of p(t) is (1 + α)/(2 ), while the narrowest possible bandwidth (corresponding to p(t) = sinc(t/ )) is 1/(2 ). In the time domain the pulse is defined by ( ) t cos(απt/ ) p(t) = sinc 1 (2αt/ ) 2 and decays asymptotically as 1/ t 3 for t. he raised cosine pulses are shown in Fig. 9 for different values of α. Consider the PAM signal in (1) where the signalling pulse p(t) is raised cosine and A k = ±1. Assume that x(t) is sampled at t = ɛ, where ɛ is the synchronization error, with ɛ < ( is the symbol duration). We obtain y(ɛ) = y (ɛ) + y ISI (ɛ)

13 4 NYQUIS PULSES 28 spectrum of the raised cosine pulse, α= α=.2 α=.5 α= normalized frequency, f Figure 8: Raised cosine spectra for different values of the rolloff factor with and ( ) ɛ cos(απɛ/ ) y (ɛ) = A sinc 1 (2αɛ/ ) 2 y ISI (ɛ) = k= k A k sinc (ɛ/ k) cos (απ (ɛ/ k)) 1 (2α (ɛ/ k)) 2 he signal-to-noise ratio at the sampling time t = ɛ, due to ISI, is SNR(ɛ) = E{y2 (ɛ)} E{y 2 ISI(ɛ)} = sinc2 (ɛ/ ) cos 2 (απɛ/ ) [1 (2αɛ/ ) 2 ] 2 E{y 2 ISI(ɛ)} (11) Fig. 1 shows the signal-to-noise ratios versus the rolloff factor α for different normalized synchronization errors ɛ/. he plots were computed by Monte Carlo simulation assuming that the sequence of symbols {A k } is random. Notice that, for a constant value of ɛ, the signal-to-noise ratio grows with α; thus, the degradation due to ISI increases as α diminishes.

14 5 ORHOGONAL PULSES α= α=.2 α=.5 α=1..6 raised cosine pulse, p(t) normalized time, t/ Figure 9: Raised cosine pulses for different values of the rolloff factor 5 Orthogonal pulses So far, we have designed a class of pulse trains with relatively narrow bandwidth whose underlying symbols are easy to extract using the Nyquist criterion. he problem is that a simple receiver can have poor error probability in the presence of channel additive noise. he key to solving this problem is to make the pulses orthogonal. A pulse p(t) is orthogonal if p(t)p(t n ) dt =, n = ±1 ± 2,... where is the symbol interval. Consequently, a correlation of the pulse train s(t) = m a m p(t m ) with p(t n ) gives the symbol a n [ ] a m p(t m ) p(t n ) dt = a n p 2 (t n ) dt (12) m where E p is the energy of p(t). = a n E p

15 5 ORHOGONAL PULSES 3 35 raised cosine pulse with ISI 3 signal to noise ratio, db ε/=.5 ε/=.1 ε/= rolloff factor, α Figure 1: Signal-to-noise ratio due to ISI at the sampling time of a raised cosine pulse versus the rolloff factor for different normalized synchronization errors ɛ/ he correlation in (12) may be realized by a simple linear filter. We may rewrite (12) as s(t)p(t n ) dt = s(λ)p[ (n λ)] dt = s(t) p( t) = a n E p t=n hus, the desired correlation is the value of the convolution of the pulse train with a filter with impulse response h r (t) = p( t) at time t = n. We can implement this by applying the train to a filter with transfer function H r (f) = P (f) and sampling the output at time n. he corresponding communication system is sketched in Fig. 11. In the detector, the signal passes through the filter H r (f) and gets sampled at time t = n. If there is no noise, the sample gives the transmission symbol a n, thus eliminating the ISI. Otherwise, the sample is compared to the noise-free symbol values in a threshold (V th ) comparator. his detector circuit is known as linear receiver. Note that the Nyquist s first criterion (equation (9)) has to be verified for the pulse p(t) p( t) whose Fourier transform is P (f)p (f) = P (f) 2. hus, the Nyquist criterion for ISI elimination is now P n= ( f n ) 2 = constant (13) In the case the pulse p(t) is symmetric the spectrum P (f) is real and condition (13)

16 5 ORHOGONAL PULSES 31 may be written as n= ( P 2 f n ) = constant Probably the most common used pulse in sophisticated systems is the root raisedcosine pulse [1]. he pulse p(t) is symmetric in time, so expression (5) may be applied. he root raised cosine pulse spectrum, P (f), is such that P 2 (f) is expressed by (1). he root raised cosine pulse satisfies the orthogonality constraint and has the same excess bandwidth specified by the rolloff factor α. noise w(t) x(t)= Σ a m δ( t-m) P(f) + s(t)=σa m p(t-m) P *(f) r(t) t=n + - comparator binary decision V th receiver Figure 11: Communication system for orthogonal pulses and linear receiver Consider now a more complex communication system displayed in Fig. 12 and modeled as the cascade of a modulator having the ideal impulse δ(t) as its basic waveform, and of a shaping filter with frequency response S(f). he number of symbols to be transmitted per second is 1/. he channel is represented by a time-invariant linear system having known transfer function C(f) and a generator of additive noise w(t). We aim to design a receiver having the form of a linear filter followed by a sampler. After linear filtering, the received signal is sampled every seconds and the resulting sequence is sent to the detector. he detector makes decisions on a sampleby-sample basis. he design criterion concerns the elimination of ISI regarding the cascade Q(f) = S(f)C(f)U(f), leaving open the choice how to partition the overall transfer function between the transmitter and the receiver, i.e., how to choose S(f) and U(f) once the product S(f)C(f)U(f) has been specified. Note that the pulse corresponding to Q(f) must be a Nyquist pulse. he freedom to chose U(f) permits to impose one further condition, that is, the minimization of the error probability (in fact, in the absence of ISI, errors are caused only by additive noise). he average noise power at the receiving filter output is σ 2 n = G w (f) U(f) 2 df Since the overall channel frequency response is the fixed function Q(f), the signal power spectral density at the shaping filter output is (see equation (4))

17 5 ORHOGONAL PULSES 32 r(t) x(t) x k source modulator S(f) C(f) + U(f) sampler transmitter A k A k δ(t-k) w(t) channel detector receiver A ^ k Figure 12: ransmission system for linearly modulated data over a time-dispersive channel with sampling receiver and the corresponding signal power is σa 2 S(f) 2 = σ2 A Q(f) 2 C(f)U(f) 2 P = σ2 A Q(f) 2 df (14) C(f)U(f) 2 Minimization of σ 2 n under the constraint (14) can be performed using the Lagrange multipliers. he minimizing U(f) can be shown to be given by U(f) = Q(f) 1/2 and the corresponding shaping filter is obtained through S(f) = G 1/4 w (f) C(f) 1/2 (15) Q(f) C(f)U(f) In (15) and (16) it is assumed that Q(f) = at those frequencies for which the denominators are zero. In the special case of white noise and C(f) constant, we obtain where γ is a nonzero factor. hus U(f) = γ Q(f) 1/2 (16) U(f) = γ S(f) 1/2 U(f) 1/2 or U(f) = (γ ) 2 S(f) where γ is a nonzero factor. So, only one design has to be implemented for the shaping filter and the receiving filter.

18 6 ZERO-FORCING EQUALIZAION 33 6 Zero-forcing equalization he theory previously developed devoted to the design of an optimum receiver in the presence of channel distortion was based on the assumption of a linear channel and of the exact knowledge of its impulse response (or transfer function). While the former assumption is reasonable in many situations, the latter is often unrealistic. For instance, the channel may be static but selected randomly from an ensemble, as happens with telephone lines. Or, the channel may be vary randomly with time due to fading. hus, the receiver designed to cope with the effects of ISI and additive noise should be selfoptimizing or adaptive. hat is, its parameters should be automatically adjusted to an optimum operating point. wo philosophies can be adopted to design an adaptive receiver. he first, assumes that the relevant channel parameters are first estimated, then fed to a detector which is (approximately) optimum for those parameters. his can be, for example, a Viterbi detector, which requires the knowledge of the channel impulse response samples. he other approach consists of using an equalizer to compensate for the unwanted channel features, and feeds the detector with a sequence of samples that have been cleaned from ISI. Fig. 13 shows a transversal equalizer with 2N + 1 taps and total delay 2ND. he distorted pulse shape p(t) at the input to the equalizer is assumed to have its peak at t = and ISI on both sides. he equalized output pulse will be or doing t = t k (k + N)D p eq (t k ) = p eq (t) = N n= N N n= N c n p(t nd ND) c n p(kd nd) = N n= N c n p k n (17) with p k n = p[(k n)d]. Ideally, we would like the equalizer to eliminate all ISI, resulting in p eq (t k ) = { 1, k =, k But this cannot be achieved, in general, because the 2N + 1 tap gains are the only variables at our disposal. We may instead chose the tap gains such that p eq (t k ) = { 1, k =, k = ±1, ±2,..., ±N (18)

19 6 ZERO-FORCING EQUALIZAION 34 total delay 2ND p(t) D D... D c c c c c -N -N+1 -N+2 N-1 N + Σ p (t) eq Figure 13: ransversal equalizer with 2N + 1 taps thereby forcing N zero values on each side of the peak of p eq (t). he corresponding tap gains are computed from (17) and (18) combined in the matrix equation p p 2N c N p N 1 p N 1 c 1 p N p N c = 1 p N+1 p N+1 c p 2N p c N Equation (19) describes a zero-forcing equalizer. he equalized pulse will have a maximum value for k = and is forced to be zero for the N preceding and the N following decision instants, thus the name zero-forcing equalizer. his equalizer removes the ISI in 2N sampling instants. For an ideal equalizer N would have to be very large. Practical equalizers have taps in the range of 3 to several hundreds [5]. his equalization strategy is optimum in the sense that it minimizes the peak intersymbol interference, and it has the added advantage of simplicity [6]. Example: Consider that a three-tap zero forcing equalizer is to be designed for the distorted pulse p(t) plotted in Fig. 14 (solid line). Inserting the values of p k into (19) with N = 1, leads to (19)

20 7 MEAN SQUARE ERROR MINIMIZAION 35 herefore, c c = c 1 c 1 =.96, c =.96, c 1 =.2 he corresponding samples of p eq (t) are plotted in Fig. 14 (dashed line). As expected, there is one zero on each side of the peak. However, zero forcing has produced some small ISI at points further out where the unequalized pulse was zero p(t) p eq (t) time, D Figure 14: Distorted and equalized pulse he zero-forcing equalizer is relatively easy to implement because it ignores the effect of channel noise w(t). A serious consequence of this simplification is that it leads to overall performance degradation due to noise enhancement at frequencies where the equalizer gain is large. A more refined approach for the receiver design is to use the mean-square error criterion, which provides a balanced solution to the problem of reducing the effects of both channel noise and ISI. 7 Mean square error minimization We have thus far treated the following two channel conditions separately: - Channel noise acting alone, which led to the formulation of the matched filter receiver.

21 7 MEAN SQUARE ERROR MINIMIZAION 36 - Intersymbol interference (ISI) acting alone, which led to the formulation of the pulse-shaping transmit filter so as to realize the Nyquist channel. In a real-life situation, however, channel noise and ISI act together, affecting the behavior of a data transmission system in a combined manner. In the sequel, consider again the communication system of Fig. 12 and assume that U(f) must be chosen so as to minimize the effects of additive noise at the detector output, and hence to minimize the probability of error for the transmission system under the condition of no ISI. We shall consider the minimum mean-square error (MMSE) criterion for the system optimization; this choice allows ISI and noise to be taken jointly into account, and in most practical situations leads to values of error probability very close to their minimum [4]. Instead of constraining the noiseless samples to be equal to the transmitted symbols in Fig. 12, we can take into account the presence of additive noise and try to minimize the mean-squared difference between the sequence of transmitted symbols {A k } and the sampler outputs {x k }. By allowing for a channel delay of D symbol intervals, we want to determine the shaping filter S(f) and the receiving filter U(f) so that the mean-square value of ɛ k x k A k D is minimized. his will result in a system that, although not specifically designed for optimum error performance, should provide a satisfactory performance even in terms of error probability. For the special case of a channel bandlimited to the Nyquist interval [ 1/(2 ), 1/(2 )], it can be proved [4] that the transfer function of the optimum receiving filter is given by where U opt (f) = σ 2 AP (f) G w (f) + (σ 2 A/ ) P (f) 2 e j2πfd (2) σ 2 A P (f) 2 is the power spectral density of the received digital signal (see equation (4)), D is the channel delay in symbol intervals and P (f) S(f)C(f). Equation (2) shows that, in the absence of noise, the optimum receiving filter is simply the inverse of P (f). his results from having an overall transfer function that is constant in the Nyquist band, then verifying the Nyquist s first criterion for zero ISI. However, when G w (f), elimination of ISI does not provide the best solution. On the contrary, for spectral regions where the denominator of the right-hand side of (2) is dominated by G w (f), U opt (f) approaches the matched filter frequency response P (f)/g w (f).

22 REFERENCES 37 More generally, for a channel with nonzero transfer function outside the Nyquist interval, the transfer function of the optimum receiving filter is [4], [3] U opt (f) = P (f) Γ(f) (21) G w (f) where Γ(f) is a periodic function with period 1/ given by Γ(f) = σ2 Ae j2πfd 1 + σ 2 AL(f), L(f) = 1 k= P (f + k/ ) 2 G w (f + k/ ) Note that in (21) P (f)/g w (f) is the transfer function of a filter matched to the impulse response p(t) of the cascade of the shaping filter and the channel. Also, Γ(f), being a periodic transfer function with period 1/, can be thought of as the transfer function of a transversal filter whose taps are spaced seconds apart. hus, we can conclude that the optimum receiving filter is the cascade of a matched filter and a transversal equalizer, as shown in Fig. 15. he former reduces the noise effects and the latter reduces ISI. o implement (21) exactly we need an equalizer of infinite length. In practice, we may approximate the optimum solution by using an equalizer with a finite set of coefficients c k, N k N, provided N is large enough [3]. received signal matched filter p(-t) x(t) transversal equalizer N + c c c c c -N -N+1 -N+2 N-1 Σ y(t) y(n) Figure 15: Optimum linear receiver consisting of the cascade connection of matched filter and transversal equalizer References [1] John B. Anderson, Digital ransmission Engineering, IEEE Press, N. York, 1999.

23 REFERENCES 38 [2] Leon W. Couch II, Digital and Analog Communication Systems, Macmillan, N. York, 199. [3] Simon Haykin, Communication Systems, 4.th edition, Wiley, N. York, 21. [4] Sergio Benedetto and Ezio Biglieri, Principles of Digital ransmission with Wireless Applications, Kluwer, N. York, [5] Kamilo Feher, Digital Communications: microwave applications, Prentice-Hall, Englewood Cliffs, NJ, [6] A. Bruce Carlson, Communication Systems. An Introduction to Signals and Noise in Electrical Communication, McGraw-Hill, N. York, NJ, 1986.

EE5713 : Advanced Digital Communications

EE5713 : Advanced Digital Communications EE5713 : Advanced Digital Communications Week 12, 13: Inter Symbol Interference (ISI) Nyquist Criteria for ISI Pulse Shaping and Raised-Cosine Filter Eye Pattern Equalization (On Board) 20-May-15 Muhammad

More information

Example: Bipolar NRZ (non-return-to-zero) signaling

Example: Bipolar NRZ (non-return-to-zero) signaling Baseand Data Transmission Data are sent without using a carrier signal Example: Bipolar NRZ (non-return-to-zero signaling is represented y is represented y T A -A T : it duration is represented y BT. Passand

More information

Digital Baseband Systems. Reference: Digital Communications John G. Proakis

Digital Baseband Systems. Reference: Digital Communications John G. Proakis Digital Baseband Systems Reference: Digital Communications John G. Proais Baseband Pulse Transmission Baseband digital signals - signals whose spectrum extend down to or near zero frequency. Model of the

More information

Principles of Communications Lecture 8: Baseband Communication Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University

Principles of Communications Lecture 8: Baseband Communication Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University Principles of Communications Lecture 8: Baseband Communication Systems Chih-Wei Liu 劉志尉 National Chiao Tung University cwliu@twins.ee.nctu.edu.tw Outlines Introduction Line codes Effects of filtering Pulse

More information

Principles of Communications

Principles of Communications Principles of Communications Chapter V: Representation and Transmission of Baseband Digital Signal Yongchao Wang Email: ychwang@mail.xidian.edu.cn Xidian University State Key Lab. on ISN November 18, 2012

More information

Sample Problems for the 9th Quiz

Sample Problems for the 9th Quiz Sample Problems for the 9th Quiz. Draw the line coded signal waveform of the below line code for 0000. (a Unipolar nonreturn-to-zero (NRZ signaling (b Polar nonreturn-to-zero (NRZ signaling (c Unipolar

More information

Line Codes and Pulse Shaping Review. Intersymbol interference (ISI) Pulse shaping to reduce ISI Embracing ISI

Line Codes and Pulse Shaping Review. Intersymbol interference (ISI) Pulse shaping to reduce ISI Embracing ISI Line Codes and Pulse Shaping Review Line codes Pulse width and polarity Power spectral density Intersymbol interference (ISI) Pulse shaping to reduce ISI Embracing ISI Line Code Examples (review) on-off

More information

Signal Design for Band-Limited Channels

Signal Design for Band-Limited Channels Wireless Information Transmission System Lab. Signal Design for Band-Limited Channels Institute of Communications Engineering National Sun Yat-sen University Introduction We consider the problem of signal

More information

Digital Communications

Digital Communications Digital Communications Chapter 9 Digital Communications Through Band-Limited Channels Po-Ning Chen, Professor Institute of Communications Engineering National Chiao-Tung University, Taiwan Digital Communications:

More information

Square Root Raised Cosine Filter

Square Root Raised Cosine Filter Wireless Information Transmission System Lab. Square Root Raised Cosine Filter Institute of Communications Engineering National Sun Yat-sen University Introduction We consider the problem of signal design

More information

Weiyao Lin. Shanghai Jiao Tong University. Chapter 5: Digital Transmission through Baseband slchannels Textbook: Ch

Weiyao Lin. Shanghai Jiao Tong University. Chapter 5: Digital Transmission through Baseband slchannels Textbook: Ch Principles of Communications Weiyao Lin Shanghai Jiao Tong University Chapter 5: Digital Transmission through Baseband slchannels Textbook: Ch 10.1-10.5 2009/2010 Meixia Tao @ SJTU 1 Topics to be Covered

More information

A Family of Nyquist Filters Based on Generalized Raised-Cosine Spectra

A Family of Nyquist Filters Based on Generalized Raised-Cosine Spectra Proc. Biennial Symp. Commun. (Kingston, Ont.), pp. 3-35, June 99 A Family of Nyquist Filters Based on Generalized Raised-Cosine Spectra Nader Sheikholeslami Peter Kabal Department of Electrical Engineering

More information

that efficiently utilizes the total available channel bandwidth W.

that efficiently utilizes the total available channel bandwidth W. Signal Design for Band-Limited Channels Wireless Information Transmission System Lab. Institute of Communications Engineering g National Sun Yat-sen University Introduction We consider the problem of signal

More information

EE4061 Communication Systems

EE4061 Communication Systems EE4061 Communication Systems Week 11 Intersymbol Interference Nyquist Pulse Shaping 0 c 2015, Georgia Institute of Technology (lect10 1) Intersymbol Interference (ISI) Tx filter channel Rx filter a δ(t-nt)

More information

Lecture 5b: Line Codes

Lecture 5b: Line Codes Lecture 5b: Line Codes Dr. Mohammed Hawa Electrical Engineering Department University of Jordan EE421: Communications I Digitization Sampling (discrete analog signal). Quantization (quantized discrete

More information

Data Detection for Controlled ISI. h(nt) = 1 for n=0,1 and zero otherwise.

Data Detection for Controlled ISI. h(nt) = 1 for n=0,1 and zero otherwise. Data Detection for Controlled ISI *Symbol by symbol suboptimum detection For the duobinary signal pulse h(nt) = 1 for n=0,1 and zero otherwise. The samples at the output of the receiving filter(demodulator)

More information

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10 Digital Band-pass Modulation PROF. MICHAEL TSAI 211/11/1 Band-pass Signal Representation a t g t General form: 2πf c t + φ t g t = a t cos 2πf c t + φ t Envelope Phase Envelope is always non-negative,

More information

Summary: ISI. No ISI condition in time. II Nyquist theorem. Ideal low pass filter. Raised cosine filters. TX filters

Summary: ISI. No ISI condition in time. II Nyquist theorem. Ideal low pass filter. Raised cosine filters. TX filters UORIAL ON DIGIAL MODULAIONS Part 7: Intersymbol interference [last modified: 200--23] Roberto Garello, Politecnico di orino Free download at: www.tlc.polito.it/garello (personal use only) Part 7: Intersymbol

More information

2. SPECTRAL ANALYSIS APPLIED TO STOCHASTIC PROCESSES

2. SPECTRAL ANALYSIS APPLIED TO STOCHASTIC PROCESSES 2. SPECTRAL ANALYSIS APPLIED TO STOCHASTIC PROCESSES 2.0 THEOREM OF WIENER- KHINTCHINE An important technique in the study of deterministic signals consists in using harmonic functions to gain the spectral

More information

This examination consists of 11 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS

This examination consists of 11 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS THE UNIVERSITY OF BRITISH COLUMBIA Department of Electrical and Computer Engineering EECE 564 Detection and Estimation of Signals in Noise Final Examination 6 December 2006 This examination consists of

More information

Direct-Sequence Spread-Spectrum

Direct-Sequence Spread-Spectrum Chapter 3 Direct-Sequence Spread-Spectrum In this chapter we consider direct-sequence spread-spectrum systems. Unlike frequency-hopping, a direct-sequence signal occupies the entire bandwidth continuously.

More information

3.9 Diversity Equalization Multiple Received Signals and the RAKE Infinite-length MMSE Equalization Structures

3.9 Diversity Equalization Multiple Received Signals and the RAKE Infinite-length MMSE Equalization Structures Contents 3 Equalization 57 3. Intersymbol Interference and Receivers for Successive Message ransmission........ 59 3.. ransmission of Successive Messages.......................... 59 3.. Bandlimited Channels..................................

More information

LECTURE 16 AND 17. Digital signaling on frequency selective fading channels. Notes Prepared by: Abhishek Sood

LECTURE 16 AND 17. Digital signaling on frequency selective fading channels. Notes Prepared by: Abhishek Sood ECE559:WIRELESS COMMUNICATION TECHNOLOGIES LECTURE 16 AND 17 Digital signaling on frequency selective fading channels 1 OUTLINE Notes Prepared by: Abhishek Sood In section 2 we discuss the receiver design

More information

EE401: Advanced Communication Theory

EE401: Advanced Communication Theory EE401: Advanced Communication Theory Professor A. Manikas Chair of Communications and Array Processing Imperial College London Introductory Concepts Prof. A. Manikas (Imperial College) EE.401: Introductory

More information

Es e j4φ +4N n. 16 KE s /N 0. σ 2ˆφ4 1 γ s. p(φ e )= exp 1 ( 2πσ φ b cos N 2 φ e 0

Es e j4φ +4N n. 16 KE s /N 0. σ 2ˆφ4 1 γ s. p(φ e )= exp 1 ( 2πσ φ b cos N 2 φ e 0 Problem 6.15 : he received signal-plus-noise vector at the output of the matched filter may be represented as (see (5-2-63) for example) : r n = E s e j(θn φ) + N n where θ n =0,π/2,π,3π/2 for QPSK, and

More information

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATIONS

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATIONS page 1 of 5 (+ appendix) NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATIONS Contact during examination: Name: Magne H. Johnsen Tel.: 73 59 26 78/930 25 534

More information

EE303: Communication Systems

EE303: Communication Systems EE303: Communication Systems Professor A. Manikas Chair of Communications and Array Processing Imperial College London Introductory Concepts Prof. A. Manikas (Imperial College) EE303: Introductory Concepts

More information

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University ENSC327 Communications Systems 2: Fourier Representations Jie Liang School of Engineering Science Simon Fraser University 1 Outline Chap 2.1 2.5: Signal Classifications Fourier Transform Dirac Delta Function

More information

Revision of Lecture 4

Revision of Lecture 4 Revision of Lecture 4 We have discussed all basic components of MODEM Pulse shaping Tx/Rx filter pair Modulator/demodulator Bits map symbols Discussions assume ideal channel, and for dispersive channel

More information

Module 4. Signal Representation and Baseband Processing. Version 2 ECE IIT, Kharagpur

Module 4. Signal Representation and Baseband Processing. Version 2 ECE IIT, Kharagpur Module Signal Representation and Baseband Processing Version ECE II, Kharagpur Lesson 8 Response of Linear System to Random Processes Version ECE II, Kharagpur After reading this lesson, you will learn

More information

EE4601 Communication Systems

EE4601 Communication Systems EE4601 Communication Systems Week 13 Linear Zero Forcing Equalization 0 c 2012, Georgia Institute of Technology (lect13 1) Equalization The cascade of the transmit filter g(t), channel c(t), receiver filter

More information

Contents Equalization 148

Contents Equalization 148 Contents 3 Equalization 48 3. Intersymbol Interference and Receivers for Successive Message ransmission........ 50 3.. ransmission of Successive Messages.......................... 50 3.. Bandlimited Channels..................................

More information

This examination consists of 10 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS

This examination consists of 10 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS THE UNIVERSITY OF BRITISH COLUMBIA Department of Electrical and Computer Engineering EECE 564 Detection and Estimation of Signals in Noise Final Examination 08 December 2009 This examination consists of

More information

Linear Optimum Filtering: Statement

Linear Optimum Filtering: Statement Ch2: Wiener Filters Optimal filters for stationary stochastic models are reviewed and derived in this presentation. Contents: Linear optimal filtering Principle of orthogonality Minimum mean squared error

More information

MATHEMATICAL TOOLS FOR DIGITAL TRANSMISSION ANALYSIS

MATHEMATICAL TOOLS FOR DIGITAL TRANSMISSION ANALYSIS ch03.qxd 1/9/03 09:14 AM Page 35 CHAPTER 3 MATHEMATICAL TOOLS FOR DIGITAL TRANSMISSION ANALYSIS 3.1 INTRODUCTION The study of digital wireless transmission is in large measure the study of (a) the conversion

More information

Chapter [4] "Operations on a Single Random Variable"

Chapter [4] Operations on a Single Random Variable Chapter [4] "Operations on a Single Random Variable" 4.1 Introduction In our study of random variables we use the probability density function or the cumulative distribution function to provide a complete

More information

Power Spectral Density of Digital Modulation Schemes

Power Spectral Density of Digital Modulation Schemes Digital Communication, Continuation Course Power Spectral Density of Digital Modulation Schemes Mikael Olofsson Emil Björnson Department of Electrical Engineering ISY) Linköping University, SE-581 83 Linköping,

More information

a) Find the compact (i.e. smallest) basis set required to ensure sufficient statistics.

a) Find the compact (i.e. smallest) basis set required to ensure sufficient statistics. Digital Modulation and Coding Tutorial-1 1. Consider the signal set shown below in Fig.1 a) Find the compact (i.e. smallest) basis set required to ensure sufficient statistics. b) What is the minimum Euclidean

More information

Pulse Shaping and ISI (Proakis: chapter 10.1, 10.3) EEE3012 Spring 2018

Pulse Shaping and ISI (Proakis: chapter 10.1, 10.3) EEE3012 Spring 2018 Pulse Shaping and ISI (Proakis: chapter 10.1, 10.3) EEE3012 Spring 2018 Digital Communication System Introduction Bandlimited channels distort signals the result is smeared pulses intersymol interference

More information

7 The Waveform Channel

7 The Waveform Channel 7 The Waveform Channel The waveform transmitted by the digital demodulator will be corrupted by the channel before it reaches the digital demodulator in the receiver. One important part of the channel

More information

5 Analog carrier modulation with noise

5 Analog carrier modulation with noise 5 Analog carrier modulation with noise 5. Noisy receiver model Assume that the modulated signal x(t) is passed through an additive White Gaussian noise channel. A noisy receiver model is illustrated in

More information

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3.0 INTRODUCTION The purpose of this chapter is to introduce estimators shortly. More elaborated courses on System Identification, which are given

More information

Communications and Signal Processing Spring 2017 MSE Exam

Communications and Signal Processing Spring 2017 MSE Exam Communications and Signal Processing Spring 2017 MSE Exam Please obtain your Test ID from the following table. You must write your Test ID and name on each of the pages of this exam. A page with missing

More information

ECS 332: Principles of Communications 2012/1. HW 4 Due: Sep 7

ECS 332: Principles of Communications 2012/1. HW 4 Due: Sep 7 ECS 332: Principles of Communications 2012/1 HW 4 Due: Sep 7 Lecturer: Prapun Suksompong, Ph.D. Instructions (a) ONE part of a question will be graded (5 pt). Of course, you do not know which part will

More information

Estimation of the Capacity of Multipath Infrared Channels

Estimation of the Capacity of Multipath Infrared Channels Estimation of the Capacity of Multipath Infrared Channels Jeffrey B. Carruthers Department of Electrical and Computer Engineering Boston University jbc@bu.edu Sachin Padma Department of Electrical and

More information

3.2 Complex Sinusoids and Frequency Response of LTI Systems

3.2 Complex Sinusoids and Frequency Response of LTI Systems 3. Introduction. A signal can be represented as a weighted superposition of complex sinusoids. x(t) or x[n]. LTI system: LTI System Output = A weighted superposition of the system response to each complex

More information

2A1H Time-Frequency Analysis II

2A1H Time-Frequency Analysis II 2AH Time-Frequency Analysis II Bugs/queries to david.murray@eng.ox.ac.uk HT 209 For any corrections see the course page DW Murray at www.robots.ox.ac.uk/ dwm/courses/2tf. (a) A signal g(t) with period

More information

ω 0 = 2π/T 0 is called the fundamental angular frequency and ω 2 = 2ω 0 is called the

ω 0 = 2π/T 0 is called the fundamental angular frequency and ω 2 = 2ω 0 is called the he ime-frequency Concept []. Review of Fourier Series Consider the following set of time functions {3A sin t, A sin t}. We can represent these functions in different ways by plotting the amplitude versus

More information

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Definition of stochastic process (random

More information

LOPE3202: Communication Systems 10/18/2017 2

LOPE3202: Communication Systems 10/18/2017 2 By Lecturer Ahmed Wael Academic Year 2017-2018 LOPE3202: Communication Systems 10/18/2017 We need tools to build any communication system. Mathematics is our premium tool to do work with signals and systems.

More information

Tracking of Spread Spectrum Signals

Tracking of Spread Spectrum Signals Chapter 7 Tracking of Spread Spectrum Signals 7. Introduction As discussed in the last chapter, there are two parts to the synchronization process. The first stage is often termed acquisition and typically

More information

Time Series Analysis: 4. Digital Linear Filters. P. F. Góra

Time Series Analysis: 4. Digital Linear Filters. P. F. Góra Time Series Analysis: 4. Digital Linear Filters P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2018 Linear filters Filtering in Fourier domain is very easy: multiply the DFT of the input by a transfer

More information

Module 1: Signals & System

Module 1: Signals & System Module 1: Signals & System Lecture 6: Basic Signals in Detail Basic Signals in detail We now introduce formally some of the basic signals namely 1) The Unit Impulse function. 2) The Unit Step function

More information

EE538 Final Exam Fall :20 pm -5:20 pm PHYS 223 Dec. 17, Cover Sheet

EE538 Final Exam Fall :20 pm -5:20 pm PHYS 223 Dec. 17, Cover Sheet EE538 Final Exam Fall 005 3:0 pm -5:0 pm PHYS 3 Dec. 17, 005 Cover Sheet Test Duration: 10 minutes. Open Book but Closed Notes. Calculators ARE allowed!! This test contains five problems. Each of the five

More information

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Week 3. Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Week 3. Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process 1 ECE6604 PERSONAL & MOBILE COMMUNICATIONS Week 3 Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process 2 Multipath-Fading Mechanism local scatterers mobile subscriber base station

More information

EE4512 Analog and Digital Communications Chapter 4. Chapter 4 Receiver Design

EE4512 Analog and Digital Communications Chapter 4. Chapter 4 Receiver Design Chapter 4 Receiver Design Chapter 4 Receiver Design Probability of Bit Error Pages 124-149 149 Probability of Bit Error The low pass filtered and sampled PAM signal results in an expression for the probability

More information

RADIO SYSTEMS ETIN15. Lecture no: Equalization. Ove Edfors, Department of Electrical and Information Technology

RADIO SYSTEMS ETIN15. Lecture no: Equalization. Ove Edfors, Department of Electrical and Information Technology RADIO SYSTEMS ETIN15 Lecture no: 8 Equalization Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se Contents Inter-symbol interference Linear equalizers Decision-feedback

More information

Chapter 12 Variable Phase Interpolation

Chapter 12 Variable Phase Interpolation Chapter 12 Variable Phase Interpolation Contents Slide 1 Reason for Variable Phase Interpolation Slide 2 Another Need for Interpolation Slide 3 Ideal Impulse Sampling Slide 4 The Sampling Theorem Slide

More information

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals 1. Sampling and Reconstruction 2. Quantization 1 1. Sampling & Reconstruction DSP must interact with an analog world: A to D D to A x(t)

More information

ADAPTIVE EQUALIZATION AT MULTI-GHZ DATARATES

ADAPTIVE EQUALIZATION AT MULTI-GHZ DATARATES ADAPTIVE EQUALIZATION AT MULTI-GHZ DATARATES Department of Electrical Engineering Indian Institute of Technology, Madras 1st February 2007 Outline Introduction. Approaches to electronic mitigation - ADC

More information

Digital Transmission Methods S

Digital Transmission Methods S Digital ransmission ethods S-7.5 Second Exercise Session Hypothesis esting Decision aking Gram-Schmidt method Detection.K.K. Communication Laboratory 5//6 Konstantinos.koufos@tkk.fi Exercise We assume

More information

BASICS OF DETECTION AND ESTIMATION THEORY

BASICS OF DETECTION AND ESTIMATION THEORY BASICS OF DETECTION AND ESTIMATION THEORY 83050E/158 In this chapter we discuss how the transmitted symbols are detected optimally from a noisy received signal (observation). Based on these results, optimal

More information

Fourier Analysis and Power Spectral Density

Fourier Analysis and Power Spectral Density Chapter 4 Fourier Analysis and Power Spectral Density 4. Fourier Series and ransforms Recall Fourier series for periodic functions for x(t + ) = x(t), where x(t) = 2 a + a = 2 a n = 2 b n = 2 n= a n cos

More information

Analog Electronics 2 ICS905

Analog Electronics 2 ICS905 Analog Electronics 2 ICS905 G. Rodriguez-Guisantes Dépt. COMELEC http://perso.telecom-paristech.fr/ rodrigez/ens/cycle_master/ November 2016 2/ 67 Schedule Radio channel characteristics ; Analysis and

More information

Signals and Spectra - Review

Signals and Spectra - Review Signals and Spectra - Review SIGNALS DETERMINISTIC No uncertainty w.r.t. the value of a signal at any time Modeled by mathematical epressions RANDOM some degree of uncertainty before the signal occurs

More information

= 4. e t/a dt (2) = 4ae t/a. = 4a a = 1 4. (4) + a 2 e +j2πft 2

= 4. e t/a dt (2) = 4ae t/a. = 4a a = 1 4. (4) + a 2 e +j2πft 2 ECE 341: Probability and Random Processes for Engineers, Spring 2012 Homework 13 - Last homework Name: Assigned: 04.18.2012 Due: 04.25.2012 Problem 1. Let X(t) be the input to a linear time-invariant filter.

More information

Sensors. Chapter Signal Conditioning

Sensors. Chapter Signal Conditioning Chapter 2 Sensors his chapter, yet to be written, gives an overview of sensor technology with emphasis on how to model sensors. 2. Signal Conditioning Sensors convert physical measurements into data. Invariably,

More information

1 Understanding Sampling

1 Understanding Sampling 1 Understanding Sampling Summary. In Part I, we consider the analysis of discrete-time signals. In Chapter 1, we consider how discretizing a signal affects the signal s Fourier transform. We derive the

More information

Lecture 7: Wireless Channels and Diversity Advanced Digital Communications (EQ2410) 1

Lecture 7: Wireless Channels and Diversity Advanced Digital Communications (EQ2410) 1 Wireless : Wireless Advanced Digital Communications (EQ2410) 1 Thursday, Feb. 11, 2016 10:00-12:00, B24 1 Textbook: U. Madhow, Fundamentals of Digital Communications, 2008 1 / 15 Wireless Lecture 1-6 Equalization

More information

2A1H Time-Frequency Analysis II Bugs/queries to HT 2011 For hints and answers visit dwm/courses/2tf

2A1H Time-Frequency Analysis II Bugs/queries to HT 2011 For hints and answers visit   dwm/courses/2tf Time-Frequency Analysis II (HT 20) 2AH 2AH Time-Frequency Analysis II Bugs/queries to david.murray@eng.ox.ac.uk HT 20 For hints and answers visit www.robots.ox.ac.uk/ dwm/courses/2tf David Murray. A periodic

More information

Carrier frequency estimation. ELEC-E5410 Signal processing for communications

Carrier frequency estimation. ELEC-E5410 Signal processing for communications Carrier frequency estimation ELEC-E54 Signal processing for communications Contents. Basic system assumptions. Data-aided DA: Maximum-lielihood ML estimation of carrier frequency 3. Data-aided: Practical

More information

Representation of Signals and Systems. Lecturer: David Shiung

Representation of Signals and Systems. Lecturer: David Shiung Representation of Signals and Systems Lecturer: David Shiung 1 Abstract (1/2) Fourier analysis Properties of the Fourier transform Dirac delta function Fourier transform of periodic signals Fourier-transform

More information

Lecture 27 Frequency Response 2

Lecture 27 Frequency Response 2 Lecture 27 Frequency Response 2 Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/6/12 1 Application of Ideal Filters Suppose we can generate a square wave with a fundamental period

More information

2.1 Basic Concepts Basic operations on signals Classication of signals

2.1 Basic Concepts Basic operations on signals Classication of signals Haberle³me Sistemlerine Giri³ (ELE 361) 9 Eylül 2017 TOBB Ekonomi ve Teknoloji Üniversitesi, Güz 2017-18 Dr. A. Melda Yüksel Turgut & Tolga Girici Lecture Notes Chapter 2 Signals and Linear Systems 2.1

More information

EE Introduction to Digital Communications Homework 8 Solutions

EE Introduction to Digital Communications Homework 8 Solutions EE 2 - Introduction to Digital Communications Homework 8 Solutions May 7, 2008. (a) he error probability is P e = Q( SNR). 0 0 0 2 0 4 0 6 P e 0 8 0 0 0 2 0 4 0 6 0 5 0 5 20 25 30 35 40 SNR (db) (b) SNR

More information

Signals and Systems: Part 2

Signals and Systems: Part 2 Signals and Systems: Part 2 The Fourier transform in 2πf Some important Fourier transforms Some important Fourier transform theorems Convolution and Modulation Ideal filters Fourier transform definitions

More information

Channel Capacity under General Nonuniform Sampling

Channel Capacity under General Nonuniform Sampling 202 IEEE International Symposium on Information Theory Proceedings Channel Capacity under General Nonuniform Sampling Yuxin Chen EE, Stanford University Email: yxchen@stanford.edu Yonina C. Eldar EE, Technion

More information

References Ideal Nyquist Channel and Raised Cosine Spectrum Chapter 4.5, 4.11, S. Haykin, Communication Systems, Wiley.

References Ideal Nyquist Channel and Raised Cosine Spectrum Chapter 4.5, 4.11, S. Haykin, Communication Systems, Wiley. Baseand Data Transmission III Reerences Ideal yquist Channel and Raised Cosine Spectrum Chapter 4.5, 4., S. Haykin, Communication Systems, iley. Equalization Chapter 9., F. G. Stremler, Communication Systems,

More information

Time Series Analysis: 4. Linear filters. P. F. Góra

Time Series Analysis: 4. Linear filters. P. F. Góra Time Series Analysis: 4. Linear filters P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Linear filters in the Fourier domain Filtering: Multiplying the transform by a transfer function. g n DFT G

More information

Channel Estimation with Low-Precision Analog-to-Digital Conversion

Channel Estimation with Low-Precision Analog-to-Digital Conversion Channel Estimation with Low-Precision Analog-to-Digital Conversion Onkar Dabeer School of Technology and Computer Science Tata Institute of Fundamental Research Mumbai India Email: onkar@tcs.tifr.res.in

More information

DIGITAL COMMUNICATIONS. IAGlover and P M Grant. Prentice Hall 1997 PROBLEM SOLUTIONS CHAPTER 6

DIGITAL COMMUNICATIONS. IAGlover and P M Grant. Prentice Hall 1997 PROBLEM SOLUTIONS CHAPTER 6 DIGITAL COMMUNICATIONS IAGlover and P M Grant Prentice Hall 997 PROBLEM SOLUTIONS CHAPTER 6 6. P e erf V σ erf. 5 +. 5 0.705 [ erf (. 009)] [ 0. 999 979 ]. 0 0 5 The optimum DC level is zero. For equiprobable

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING Final Examination - Fall 2015 EE 4601: Communication Systems

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING Final Examination - Fall 2015 EE 4601: Communication Systems GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING Final Examination - Fall 2015 EE 4601: Communication Systems Aids Allowed: 2 8 1/2 X11 crib sheets, calculator DATE: Tuesday

More information

Capacity Penalty due to Ideal Zero-Forcing Decision-Feedback Equalization

Capacity Penalty due to Ideal Zero-Forcing Decision-Feedback Equalization Capacity Penalty due to Ideal Zero-Forcing Decision-Feedback Equalization John R. Barry, Edward A. Lee, and David. Messerschmitt John R. Barry, School of Electrical Engineering, eorgia Institute of Technology,

More information

EE 574 Detection and Estimation Theory Lecture Presentation 8

EE 574 Detection and Estimation Theory Lecture Presentation 8 Lecture Presentation 8 Aykut HOCANIN Dept. of Electrical and Electronic Engineering 1/14 Chapter 3: Representation of Random Processes 3.2 Deterministic Functions:Orthogonal Representations For a finite-energy

More information

CHAPTER 14. Based on the info about the scattering function we know that the multipath spread is T m =1ms, and the Doppler spread is B d =0.2 Hz.

CHAPTER 14. Based on the info about the scattering function we know that the multipath spread is T m =1ms, and the Doppler spread is B d =0.2 Hz. CHAPTER 4 Problem 4. : Based on the info about the scattering function we know that the multipath spread is T m =ms, and the Doppler spread is B d =. Hz. (a) (i) T m = 3 sec (ii) B d =. Hz (iii) ( t) c

More information

The Hilbert Transform

The Hilbert Transform The Hilbert Transform Frank R. Kschischang The Edward S. Rogers Sr. Department of Electrical and Computer Engineering University of Toronto October 22, 2006; updated March 0, 205 Definition The Hilbert

More information

Chapter 2 Random Processes

Chapter 2 Random Processes Chapter 2 Random Processes 21 Introduction We saw in Section 111 on page 10 that many systems are best studied using the concept of random variables where the outcome of a random experiment was associated

More information

EE456 Digital Communications

EE456 Digital Communications EE456 Digital Communications Professor Ha Nguyen September 5 EE456 Digital Communications Block Diagram of Binary Communication Systems m ( t { b k } b k = s( t b = s ( t k m ˆ ( t { bˆ } k r( t Bits in

More information

Lecture 28 Continuous-Time Fourier Transform 2

Lecture 28 Continuous-Time Fourier Transform 2 Lecture 28 Continuous-Time Fourier Transform 2 Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/6/14 1 Limit of the Fourier Series Rewrite (11.9) and (11.10) as As, the fundamental

More information

Sound & Vibration Magazine March, Fundamentals of the Discrete Fourier Transform

Sound & Vibration Magazine March, Fundamentals of the Discrete Fourier Transform Fundamentals of the Discrete Fourier Transform Mark H. Richardson Hewlett Packard Corporation Santa Clara, California The Fourier transform is a mathematical procedure that was discovered by a French mathematician

More information

ANALYSIS OF A PARTIAL DECORRELATOR IN A MULTI-CELL DS/CDMA SYSTEM

ANALYSIS OF A PARTIAL DECORRELATOR IN A MULTI-CELL DS/CDMA SYSTEM ANAYSIS OF A PARTIA DECORREATOR IN A MUTI-CE DS/CDMA SYSTEM Mohammad Saquib ECE Department, SU Baton Rouge, A 70803-590 e-mail: saquib@winlab.rutgers.edu Roy Yates WINAB, Rutgers University Piscataway

More information

UCSD ECE153 Handout #40 Prof. Young-Han Kim Thursday, May 29, Homework Set #8 Due: Thursday, June 5, 2011

UCSD ECE153 Handout #40 Prof. Young-Han Kim Thursday, May 29, Homework Set #8 Due: Thursday, June 5, 2011 UCSD ECE53 Handout #40 Prof. Young-Han Kim Thursday, May 9, 04 Homework Set #8 Due: Thursday, June 5, 0. Discrete-time Wiener process. Let Z n, n 0 be a discrete time white Gaussian noise (WGN) process,

More information

Fourier Methods in Digital Signal Processing Final Exam ME 579, Spring 2015 NAME

Fourier Methods in Digital Signal Processing Final Exam ME 579, Spring 2015 NAME Fourier Methods in Digital Signal Processing Final Exam ME 579, Instructions for this CLOSED BOOK EXAM 2 hours long. Monday, May 8th, 8-10am in ME1051 Answer FIVE Questions, at LEAST ONE from each section.

More information

DETECTION theory deals primarily with techniques for

DETECTION theory deals primarily with techniques for ADVANCED SIGNAL PROCESSING SE Optimum Detection of Deterministic and Random Signals Stefan Tertinek Graz University of Technology turtle@sbox.tugraz.at Abstract This paper introduces various methods for

More information

Digital Communications

Digital Communications Digital Communications Chapter 5 Carrier and Symbol Synchronization Po-Ning Chen, Professor Institute of Communications Engineering National Chiao-Tung University, Taiwan Digital Communications Ver 218.7.26

More information

ENEE 420 FALL 2007 COMMUNICATIONS SYSTEMS SAMPLING

ENEE 420 FALL 2007 COMMUNICATIONS SYSTEMS SAMPLING c 2008 by Armand M. Maowsi 1 ENEE 420 FALL 2007 COMMUNICATIONS SYSTEMS SAMPLING In these notes we discuss the sampling process and properties of some of its mathematical description. This culminates in

More information

FROM ANALOGUE TO DIGITAL

FROM ANALOGUE TO DIGITAL SIGNALS AND SYSTEMS: PAPER 3C1 HANDOUT 7. Dr David Corrigan 1. Electronic and Electrical Engineering Dept. corrigad@tcd.ie www.mee.tcd.ie/ corrigad FROM ANALOGUE TO DIGITAL To digitize signals it is necessary

More information

Residual Versus Suppressed-Carrier Coherent Communications

Residual Versus Suppressed-Carrier Coherent Communications TDA Progress Report -7 November 5, 996 Residual Versus Suppressed-Carrier Coherent Communications M. K. Simon and S. Million Communications and Systems Research Section This article addresses the issue

More information

ECE 564/645 - Digital Communications, Spring 2018 Homework #2 Due: March 19 (In Lecture)

ECE 564/645 - Digital Communications, Spring 2018 Homework #2 Due: March 19 (In Lecture) ECE 564/645 - Digital Communications, Spring 018 Homework # Due: March 19 (In Lecture) 1. Consider a binary communication system over a 1-dimensional vector channel where message m 1 is sent by signaling

More information

Performance Analysis of Spread Spectrum CDMA systems

Performance Analysis of Spread Spectrum CDMA systems 1 Performance Analysis of Spread Spectrum CDMA systems 16:33:546 Wireless Communication Technologies Spring 5 Instructor: Dr. Narayan Mandayam Summary by Liang Xiao lxiao@winlab.rutgers.edu WINLAB, Department

More information