ON THE BIVARIATE GENERALIZED POISSON DISTRIBUTION. University "Ovidius" Constanta, Romania

Size: px
Start display at page:

Download "ON THE BIVARIATE GENERALIZED POISSON DISTRIBUTION. University "Ovidius" Constanta, Romania"

Transcription

1 ON THE BIVARIATE GENERALIZED POISSON DISTRIBUTION RALUCA VERNIC University "Ovidius" Constanta, Romania ABSTRACT This paper deals with the bivariate generalized Poisson distribution. The distribution is fitted to the aggregate amount of claims for a compound class of policies submitted to claims of two kinds whose yearly frequencies are a priori dependent. A comparative study with the bivariate Poisson distribution and with two bivariate mixed Poisson distributions has been carried out, based on data concerning natural events insurance in the USA and third party liability automobile insurance in France. KEYWORDS Bivariate generalized Poisson distribution; generalized Poisson distribution; bivariate mixed Poisson distributions.. INTRODUCTION Whereas numerous bivariate discrete distributions are used in the statistic field (KOCHERLAKOTA and KOCHERLAKOTA, 99), only a few of them, apart from the bivariate Poisson distribution, have been applied in the insurance field. It is worth noting the studys by PlCARD (976), LEMAIRE (985) and PARTRAT (993). In this paper, we discuss the bivariate generalized Poisson distribution (BGPD) in detail. The distribution is derived from the generalized Poisson distribution (CONSUL, 989; AMBAGASPITIYA and BALAKRISHNAN, 994) using the trivariate reduction method. In section we present some properties of the BGPD. The method of moments is used in section 3 for estimation of the parameters. We illustrate the usage of this method through two examples in section 4.. BIVARIATE GENERALIZED POISSON DISTRIBUTION (BGPD). Development of the distribution We use the trivariate reduction method to construct the distribution (KOCHERLAKOTA and KOCHERLAKOTA, 99). Let N,,N and N 3 be independent generalized Poisson ASTIN BULLETIN, Vol. 7, No. I, 997. pp. 3-3 Downloaded from IP address: , on 3 Apr 8 at :55:, subject to the Cambridge Core terms of use, available at

2 4 RALUCA VERNIC random variables (GPD), N, ~ GPD (\,,), i =,, 3. Let X = N { + N 3 and Y - N + N 3. We get the joint probability function (p.f.) of (X, Y) as mm(r,s) P {X = r,y = s)= ^Mr-k)f (s-k)f 3 (k), (.) k= where f t (n) is the p.f. of the random variable N,. Since N ~ GPD(k, ), if its p.f. is given by (CONSUL and SHOUKRI, 985) 'exik-a-hfl), U,l,,...l, otherwise where X >, max(-l, -^/m) < < and m > 4 is the largest positive integer for which X + 9m > when <, from (.) we have P(X = r,y = s) = p(r,s) = A[A A 3 exp{-(a, + A + A 3 )-r, -.? } ^ (A, + (r - Jk), ) r "*"' (A + (s - k)6 ) s ~ k ~ X (A 3 + Jfc, )*"' (.3) (r-jt)!(s-jk)!jfc! )}, r, sejv.. Properties of the distribution Remark All the formulas that follows for the GPD are taken from AMBAGASPITIYA and BALAKRISHNAN (994) and the general equations for a bidimensional distribution are from KOCHERLAKOTA and KOCHERLAKOTA (99). Probability generating function (pgf) The pgf of a random variable N is defined by Y\ of random variables (X, Y) is J~[ (t x, t ) =E[t*tl). ( = ( f N ) an d tne Pgf f tne P a i r Let the pgf's of the random variables under consideration be Y\ (. i =., 3. Then the joint pgf of (X, Y) is For simplicity, we assume the parameters, >, i =,, 3. AMBAGASPITIYA and BALAKRISHNAN (994) has expressed the pgf of the GPD in terms of Lambert's W function when >, as follows: Y\ N U) = expj - - [w(-dz exp(-)) + d] L (.5) Downloaded from IP address: , on 3 Apr 8 at :55:, subject to the Cambridge Core terms of use, available at

3 ON THE BIVARIATE GENERALIZED POISSON DISTRIBUTION 5 where the Lambert's W function is defined as W(x) expf W(x)) - x. For more details about this function see CORLESS et al. (994). From (.4) and (.5), the pgf of (X, Y) is i, t ) = exp-j L W(-6 x t x exp(-,)) W(-8 t exp(- )) - (.6) with X = A,, + A + A,,. Moment generating function (mgf) If the mgf of N, is M, (t), i =,, 3 then the mgf of (X, Y) is M(t,, f ) = Afi (?! )M (r )M 3 (fj +t ). (.7) The mgf of the GPD, when 6 >, is given by M w ( = exp j - ~ [W(-O exp(- +)) + e\ \. (.8) Using (.8) in (.7) we get, Qi - + ))- (.9) Moments The expressions for the first four central moments of the GPD are as follows: E(N) = H =AM V(N) = ju = AM 3 H 3 = A(3M - )M 4 /I 4 =3A M 6 +A(I5M -M + 6)M 5, where M = ( - )". (.) Since X = N, + N, and Af,, ^ independent, we have fxj = far,j + E(N 3 ) and = V(N,) + V(NJ, so that E(Y) = A M + A3M3 (.) Downloaded from IP address: , on 3 Apr 8 at :55:, subject to the Cambridge Core terms of use, available at

4 6 RALUCA VERNIC Let /i rs =E\(X-n x ) r (Y-Hy) s } be the (r, s) th central moment of (X, Y). The equation for fi rs given fi^} the k'* central moment of N,, i -,, 3, is Hence This is enough to apply the method of moments. Recurrence relations The terms in the first row and column can be computed using the univariate generalized Poisson distribution, as is seen from /?(,) = exp{-a} p(o,s) =^(^+^) s expr_ A _^j = f{s-x,e )exp{-(x l + A,)}, s > )r + A,)}, r >. Given the probabilities in the first row and column, the probabilities for r >, s > can be computed recursively as min{r,?} * p(r,s) A 3 exp{a} jt p(r k,)p(, s k= * Independence Using (.) we have cov(x,y) = A3M3 3, hence Px,Y = / Since A, 3 > and M 3 >, it follows that for this model p x v >. This shows that the condition of zero correlation is a necessary and sufficient condition for the independence of the random variables X and Y. Downloaded from IP address: , on 3 Apr 8 at :55:, subject to the Cambridge Core terms of use, available at

5 ON THE BIVARIATE GENERALIZED POISSON DISTRIBUTION 7 Marginal distributions The marginal distributions are: (-/ \r-i-l! j ^ _ exp{-/(,-,)}.) _. \s-i-l exp{-i( -,)}. In particular, if 9, - 6 = G 3 =, this reduces tox ~ GP(X, + X 3, 6) and Y ~ GP(X + 3, 6). 3. ESTIMATION OF THE PARAMETERS: METHOD OF MOMENTS Let (x f y,), /=,,..., nbea random sample of size n from the population. We will assume that the frequency of the pair (r, s) is n rs for r =,,,..., s =,,,... We recall that ^ n rs = n. Also i = i x=-^(r-x) n r+ r= r= = s= (3.) = = r,s=o n r,s= The classical method of moments consists of equating the sample moments to their populations equivalents, expressed in terms of the parameters. The number of moments required is six, equal to the number of parameters. Using (3.), (.) and (.) we have Downloaded from IP address: , on 3 Apr 8 at :55:, subject to the Cambridge Core terms of use, available at

6 8 RALUCA VERNIC X = A Mj + A3M3 y = X M + A3M3 _ Mil M 3 CT = A M 3 3 +A 3 M 3 CTy=A M 3 3 +A 3 M 3 All =^3 M 3 <=> M,=. X - A3M3 A, = M l (3.) A =- M where a = We use the fact that <, so M = - =,,3. >, when chosen the solution for M,, 4. NUMERICAL EXAMPLES Example : The North atlantic coastal states in the USA (from Texas to Maine) can be affected by tropical cyclones. We divided these states into three geographical zones: Zone : Texas, Louisiane, The Mississipi, Alabama; Zone : Florida; Zone 3: Other states. We were interested in studying the joint distribution of the pair (X, Y), where X and Y are the yearly frequency of hurricanes affecting respectively zone and zone 3. To do that we used the data in table, first row in each cell, giving the realizations of (X, Y) observed during the 93 years from 899 to 99 (PARTRAT, 993). For these data we compute x =.7494, a\ =.658, /},, =.53, y=.473, ^^ =.5885, A =.834. Under the hypothesis (X, Y) bivariate Poisson distributed P (X I,X, fi), we have from PARTRAT (993), method of maximum likelihood, the m.l.e. A, =.7876, Downloaded from IP address: , on 3 Apr 8 at :55:, subject to the Cambridge Core terms of use, available at

7 ON THE BIVARIATE GENERALIZED POISSON DISTRIBUTION 9 A =.44994, /} =.37. The theoretical frequencies for table, middle row in each cell. P [i Y,i, i\ are given in TABLE COMPARISON OF OBSERVED AND THEORETICAL YEARLY FREQUENCIES OF HURRICANES (899-99) HAVING AFFECTED ZONE AND ZONE 3 Zone 3 Zonel 3 I s first row : observed frequency middle row : theoretical frequency for P last row : theoretical frequency for BGPD. The x goodness-of-fit test, after grouping in 7 categories: (, ), (, ), (, and above), (, ), (, ), (, ), (other cases) to fulfill the Cochran cntenum, lead us to zlbi = ^(obs-th) lth = 5.96 and a significance value a verifying. < a < 54. We consider now the case of (X, Y) BGPD-distributed. Then from the method of moments we have A, =.857, #! =-.868 l =.44555, 6 =.3995 A 3 =.538, 3 =.436 The theoretical frequencies in this case are given in table, last row in each cell, and xlbs = -66 for the same categories; < a <.85. Downloaded from IP address: , on 3 Apr 8 at :55:, subject to the Cambridge Core terms of use, available at

8 3 RALUCA VERNIC Example : Automobile third party liability insurance. The claims experience of a large automobile portfolio in France including 838 liability policies was observed during the year 989. The corresponding yearly claim frequencies, collected in table (first row in each cell), have been divided into material damage only (type ) and bodily injury (type ) claims. We obtain x =.5, y =.553, & X=.5388, n =.9, a\ =.55,, -.3. TABLE COMPARISON OF OBSERVED AND THEORETICAL YEARLY FREQUENCIES Type Typel and above I and above I first row : observed frequency second row : theoretical frequency for P-G third row : theoretical frequency for P-IG last row : theoretical frequency for BGPD Downloaded from IP address: , on 3 Apr 8 at :55:, subject to the Cambridge Core terms of use, available at

9 ON THE BIVARIATE GENERALIZED POISSON DISTRIBUTION 3 For the comparative study we have, from PARTRAT (993): a =.84 Bivariate Poisson Gamma P-G (a; r, [}): the m.l.e. f=.77 The theoretical frequencies are provided in table, second row in each cell. a =.84 Bivariate Poisson Inverse Gaussian P-IG (a; jx, y): the m.l.e. =.5 7 =.555 The theoretical frequencies are provided in table, third row. Under the hypothesis (X, Y) BGPD, we have, using (3.) 4 =.4945,,=.7 A =.537, =-.66, the theoretical frequencies are given in table, last 4=.6, 3 =.4976 row. The x goodness-of-fit test is applied on the 9 following categories: (, ); (, ); (, and above); (, ); (, and above); (, ); (3, ); (4 and above, ); (other cases). For this grouping we obtain: In the P-G case: xlb.s =.94 and a significance value.3 < a <.5; In the P-IG case: xlbs ~ 8.8 and a significance value. < a <.36. In the BGPD case we used 7 categories: (, ); (, ); (, ); (, ); (, ); (3, ); (other cases), and we have xlbs ~ 6.36 with a significance value. < a <.4. REFERENCES AMBAOASPITIYA, R. S. & BALAKRISHNAN, N. (994). On the compound generalized Poisson distributions. ASTIN Bulletin 4, CONSUL, P. C. (989). Generalized Poisson Distributions: Properties and Applications. Marcel Dekker Inc., New York/Basel. CONSUL, P. C. & SHOUKRI, M. M. (985). The generalized Poisson distribution when the sample mean is larger than the sample variance. Communications in Statistics-Simulation and Computation 4, CORLESS, R. M., GONNET, G. H., HARE, D.E.G. &JEFFREY, D. J. (994). The Lambert W function. To appear in Advances in Computational Mathematics. KOCHERLAKOTA, S. & KOCHERLAKOTA, K. (99). Bivariate discrete distributions, Marcel Dekker Inc. LEMAIRE, J. (985). Automobile insurance: Actuarial models, Kluwer Publ. Downloaded from IP address: , on 3 Apr 8 at :55:, subject to the Cambridge Core terms of use, available at

10 3 RALUCA VERNIC PARTRAT, C (993) Compound model for two dependent kinds of claim, XXIVe ASTIN Colloquium, Cambridge PICARD, P (976) Generalisation de l'etude sur la survenance des sinistres en assurance automobile, Bulletin de I'lnstitut des Actuaires Frangms, Vol. 97, 4-67 RALUCA VERNIC Department of Mathematics and Informatics University "Ovidius" of Constanta Bd. Mamaia 4 87 Constanta Romania Downloaded from IP address: , on 3 Apr 8 at :55:, subject to the Cambridge Core terms of use, available at

EVALUATING THE BIVARIATE COMPOUND GENERALIZED POISSON DISTRIBUTION

EVALUATING THE BIVARIATE COMPOUND GENERALIZED POISSON DISTRIBUTION An. Şt. Univ. Ovidius Constanţa Vol. 92), 2001, 181 192 EVALUATING THE BIVARIATE COMPOUND GENERALIZED POISSON DISTRIBUTION Raluca Vernic Dedicated to Professor Mirela Ştefănescu on the occasion of her

More information

Discrete Distributions Chapter 6

Discrete Distributions Chapter 6 Discrete Distributions Chapter 6 Negative Binomial Distribution section 6.3 Consider k r, r +,... independent Bernoulli trials with probability of success in one trial being p. Let the random variable

More information

0, otherwise. U = Y 1 Y 2 Hint: Use either the method of distribution functions or a bivariate transformation. (b) Find E(U).

0, otherwise. U = Y 1 Y 2 Hint: Use either the method of distribution functions or a bivariate transformation. (b) Find E(U). 1. Suppose Y U(0, 2) so that the probability density function (pdf) of Y is 1 2, 0 < y < 2 (a) Find the pdf of U = Y 4 + 1. Make sure to note the support. (c) Suppose Y 1, Y 2,..., Y n is an iid sample

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION 1.0 Discrete distributions in statistical analysis Discrete models play an extremely important role in probability theory and statistics for modeling count data. The use of discrete

More information

Two binomial methods for evaluating the aggregate claims distribution in De Pril s individual risk model

Two binomial methods for evaluating the aggregate claims distribution in De Pril s individual risk model Two binomial methods for evaluating the aggregate claims distribution in De Pril s individual risk model Sundt, Bjørn Vital Forsikring ASA P.O.Box 250, N-1326 Lysaker, Norway Phone: (+47) 67 83 44 71 Fax:

More information

Multivariate count data generalized linear models: Three approaches based on the Sarmanov distribution. Catalina Bolancé & Raluca Vernic

Multivariate count data generalized linear models: Three approaches based on the Sarmanov distribution. Catalina Bolancé & Raluca Vernic Institut de Recerca en Economia Aplicada Regional i Pública Research Institute of Applied Economics Document de Treball 217/18 1/25 pág. Working Paper 217/18 1/25 pág. Multivariate count data generalized

More information

STA2603/205/1/2014 /2014. ry II. Tutorial letter 205/1/

STA2603/205/1/2014 /2014. ry II. Tutorial letter 205/1/ STA263/25//24 Tutorial letter 25// /24 Distribution Theor ry II STA263 Semester Department of Statistics CONTENTS: Examination preparation tutorial letterr Solutions to Assignment 6 2 Dear Student, This

More information

Ratemaking with a Copula-Based Multivariate Tweedie Model

Ratemaking with a Copula-Based Multivariate Tweedie Model with a Copula-Based Model joint work with Xiaoping Feng and Jean-Philippe Boucher University of Wisconsin - Madison CAS RPM Seminar March 10, 2015 1 / 18 Outline 1 2 3 4 5 6 2 / 18 Insurance Claims Two

More information

Polynomial approximation of mutivariate aggregate claim amounts distribution

Polynomial approximation of mutivariate aggregate claim amounts distribution Polynomial approximation of mutivariate aggregate claim amounts distribution Applications to reinsurance P.O. Goffard Axa France - Mathematics Institute of Marseille I2M Aix-Marseille University 19 th

More information

Part 6: Multivariate Normal and Linear Models

Part 6: Multivariate Normal and Linear Models Part 6: Multivariate Normal and Linear Models 1 Multiple measurements Up until now all of our statistical models have been univariate models models for a single measurement on each member of a sample of

More information

1.12 Multivariate Random Variables

1.12 Multivariate Random Variables 112 MULTIVARIATE RANDOM VARIABLES 59 112 Multivariate Random Variables We will be using matrix notation to denote multivariate rvs and their distributions Denote by X (X 1,,X n ) T an n-dimensional random

More information

ON A MULTIVARIATE PARETO DISTRIBUTION 1

ON A MULTIVARIATE PARETO DISTRIBUTION 1 ON A MULTIVARIATE PARETO DISTRIBUTION 1 Alexandru V. Asimit School of Mathematics, University of Manchester, Manchester M13 9PL, United Kingdom. E-mail: Vali.Asimit@manchester.ac.uk Edward Furman 2, 3

More information

Modelling Dependent Credit Risks

Modelling Dependent Credit Risks Modelling Dependent Credit Risks Filip Lindskog, RiskLab, ETH Zürich 30 November 2000 Home page:http://www.math.ethz.ch/ lindskog E-mail:lindskog@math.ethz.ch RiskLab:http://www.risklab.ch Modelling Dependent

More information

STA 256: Statistics and Probability I

STA 256: Statistics and Probability I Al Nosedal. University of Toronto. Fall 2017 My momma always said: Life was like a box of chocolates. You never know what you re gonna get. Forrest Gump. There are situations where one might be interested

More information

On the Importance of Dispersion Modeling for Claims Reserving: Application of the Double GLM Theory

On the Importance of Dispersion Modeling for Claims Reserving: Application of the Double GLM Theory On the Importance of Dispersion Modeling for Claims Reserving: Application of the Double GLM Theory Danaïl Davidov under the supervision of Jean-Philippe Boucher Département de mathématiques Université

More information

Ruin Probabilities of a Discrete-time Multi-risk Model

Ruin Probabilities of a Discrete-time Multi-risk Model Ruin Probabilities of a Discrete-time Multi-risk Model Andrius Grigutis, Agneška Korvel, Jonas Šiaulys Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 4, Vilnius LT-035, Lithuania

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 2016 MODULE 1 : Probability distributions Time allowed: Three hours Candidates should answer FIVE questions. All questions carry equal marks.

More information

Unconditional Distributions Obtained from Conditional Specification Models with Applications in Risk Theory

Unconditional Distributions Obtained from Conditional Specification Models with Applications in Risk Theory Unconditional Distributions Obtained from Conditional Specification Models with Applications in Risk Theory E. Gómez-Déniz a and E. Calderín Ojeda b Abstract Bivariate distributions, specified in terms

More information

ON THE TRUNCATED COMPOSITE WEIBULL-PARETO MODEL

ON THE TRUNCATED COMPOSITE WEIBULL-PARETO MODEL ON THE TRUNCATED COMPOSITE WEIBULL-PARETO MODEL SANDRA TEODORESCU and EUGENIA PANAITESCU The composite Weibull-Pareto model 2] was introduced as an alternative to the composite Lognormal-Pareto ] used

More information

On the existence of maximum likelihood estimators in a Poissongamma HGLM and a negative binomial regression model

On the existence of maximum likelihood estimators in a Poissongamma HGLM and a negative binomial regression model Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin Session CPS027) p.6433 On the existence of maximum likelihood estimators in a Poissongamma HGLM and a negative binomial regression

More information

A Study of the Impact of a Bonus-Malus System in Finite and Continuous Time Ruin Probabilities in Motor Insurance

A Study of the Impact of a Bonus-Malus System in Finite and Continuous Time Ruin Probabilities in Motor Insurance A Study of the Impact of a Bonus-Malus System in Finite and Continuous Time Ruin Probabilities in Motor Insurance L.B. Afonso, R.M.R. Cardoso, A.D. Egídio dos Reis, G.R Guerreiro This work was partially

More information

Type II Bivariate Generalized Power Series Poisson Distribution and its Applications in Risk Analysis

Type II Bivariate Generalized Power Series Poisson Distribution and its Applications in Risk Analysis Type II Bivariate Generalized Power Series Poisson Distribution and its Applications in Ris Analysis KK Jose a, and Shalitha Jacob a,b a Department of Statistics, St Thomas College, Pala, Arunapuram, Kerala-686574,

More information

Neural, Parallel, and Scientific Computations 18 (2010) A STOCHASTIC APPROACH TO THE BONUS-MALUS SYSTEM 1. INTRODUCTION

Neural, Parallel, and Scientific Computations 18 (2010) A STOCHASTIC APPROACH TO THE BONUS-MALUS SYSTEM 1. INTRODUCTION Neural, Parallel, and Scientific Computations 18 (2010) 283-290 A STOCHASTIC APPROACH TO THE BONUS-MALUS SYSTEM KUMER PIAL DAS Department of Mathematics, Lamar University, Beaumont, Texas 77710, USA. ABSTRACT.

More information

Random Variables and Their Distributions

Random Variables and Their Distributions Chapter 3 Random Variables and Their Distributions A random variable (r.v.) is a function that assigns one and only one numerical value to each simple event in an experiment. We will denote r.vs by capital

More information

Copula Regression RAHUL A. PARSA DRAKE UNIVERSITY & STUART A. KLUGMAN SOCIETY OF ACTUARIES CASUALTY ACTUARIAL SOCIETY MAY 18,2011

Copula Regression RAHUL A. PARSA DRAKE UNIVERSITY & STUART A. KLUGMAN SOCIETY OF ACTUARIES CASUALTY ACTUARIAL SOCIETY MAY 18,2011 Copula Regression RAHUL A. PARSA DRAKE UNIVERSITY & STUART A. KLUGMAN SOCIETY OF ACTUARIES CASUALTY ACTUARIAL SOCIETY MAY 18,2011 Outline Ordinary Least Squares (OLS) Regression Generalized Linear Models

More information

Claims Reserving under Solvency II

Claims Reserving under Solvency II Claims Reserving under Solvency II Mario V. Wüthrich RiskLab, ETH Zurich Swiss Finance Institute Professor joint work with Michael Merz (University of Hamburg) April 21, 2016 European Congress of Actuaries,

More information

The finite-time Gerber-Shiu penalty function for two classes of risk processes

The finite-time Gerber-Shiu penalty function for two classes of risk processes The finite-time Gerber-Shiu penalty function for two classes of risk processes July 10, 2014 49 th Actuarial Research Conference University of California, Santa Barbara, July 13 July 16, 2014 The finite

More information

Tail negative dependence and its applications for aggregate loss modeling

Tail negative dependence and its applications for aggregate loss modeling Tail negative dependence and its applications for aggregate loss modeling Lei Hua Division of Statistics Oct 20, 2014, ISU L. Hua (NIU) 1/35 1 Motivation 2 Tail order Elliptical copula Extreme value copula

More information

Standard Error of Technical Cost Incorporating Parameter Uncertainty

Standard Error of Technical Cost Incorporating Parameter Uncertainty Standard Error of Technical Cost Incorporating Parameter Uncertainty Christopher Morton Insurance Australia Group This presentation has been prepared for the Actuaries Institute 2012 General Insurance

More information

Chapter 5. Chapter 5 sections

Chapter 5. Chapter 5 sections 1 / 43 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

MATH c UNIVERSITY OF LEEDS Examination for the Module MATH2715 (January 2015) STATISTICAL METHODS. Time allowed: 2 hours

MATH c UNIVERSITY OF LEEDS Examination for the Module MATH2715 (January 2015) STATISTICAL METHODS. Time allowed: 2 hours MATH2750 This question paper consists of 8 printed pages, each of which is identified by the reference MATH275. All calculators must carry an approval sticker issued by the School of Mathematics. c UNIVERSITY

More information

HW4 : Bivariate Distributions (1) Solutions

HW4 : Bivariate Distributions (1) Solutions STAT/MATH 395 A - PROBABILITY II UW Winter Quarter 7 Néhémy Lim HW4 : Bivariate Distributions () Solutions Problem. The joint probability mass function of X and Y is given by the following table : X Y

More information

The Multivariate Normal Distribution 1

The Multivariate Normal Distribution 1 The Multivariate Normal Distribution 1 STA 302 Fall 2017 1 See last slide for copyright information. 1 / 40 Overview 1 Moment-generating Functions 2 Definition 3 Properties 4 χ 2 and t distributions 2

More information

Multivariate negative binomial models for insurance claim counts

Multivariate negative binomial models for insurance claim counts Multivariate negative binomial models for insurance claim counts Peng Shi (Northern Illinois University) and Emiliano A. Valdez (University of Connecticut) 9 November 0, Montréal, Quebec Université de

More information

Institute of Actuaries of India

Institute of Actuaries of India Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2018 Examinations Subject CT3 Probability and Mathematical Statistics Core Technical Syllabus 1 June 2017 Aim The

More information

This exam contains 6 questions. The questions are of equal weight. Print your name at the top of this page in the upper right hand corner.

This exam contains 6 questions. The questions are of equal weight. Print your name at the top of this page in the upper right hand corner. GROUND RULES: This exam contains 6 questions. The questions are of equal weight. Print your name at the top of this page in the upper right hand corner. This exam is closed book and closed notes. Show

More information

Multiple Random Variables

Multiple Random Variables Multiple Random Variables This Version: July 30, 2015 Multiple Random Variables 2 Now we consider models with more than one r.v. These are called multivariate models For instance: height and weight An

More information

arxiv: v1 [stat.me] 6 Jun 2016

arxiv: v1 [stat.me] 6 Jun 2016 A gamma approximation to the Bayesian posterior distribution of a discrete parameter of the Generalized Poisson model arxiv:1606.01749v1 [stat.me] 6 Jun 2016 Tsung Fei Khang Institute of Mathematical Sciences,

More information

More on Distribution Function

More on Distribution Function More on Distribution Function The distribution of a random variable X can be determined directly from its cumulative distribution function F X. Theorem: Let X be any random variable, with cumulative distribution

More information

Chapter 8. Some Approximations to Probability Distributions: Limit Theorems

Chapter 8. Some Approximations to Probability Distributions: Limit Theorems Chapter 8. Some Approximations to Probability Distributions: Limit Theorems Sections 8.2 -- 8.3: Convergence in Probability and in Distribution Jiaping Wang Department of Mathematical Science 04/22/2013,

More information

On a simple construction of bivariate probability functions with fixed marginals 1

On a simple construction of bivariate probability functions with fixed marginals 1 On a simple construction of bivariate probability functions with fixed marginals 1 Djilali AIT AOUDIA a, Éric MARCHANDb,2 a Université du Québec à Montréal, Département de mathématiques, 201, Ave Président-Kennedy

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 12 Dynamical Models CS/CNS/EE 155 Andreas Krause Homework 3 out tonight Start early!! Announcements Project milestones due today Please email to TAs 2 Parameter learning

More information

Three hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER.

Three hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER. Three hours To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER EXTREME VALUES AND FINANCIAL RISK Examiner: Answer QUESTION 1, QUESTION

More information

David P. M. Scollnik, Ph.D., A.S.A. Department of Mathematics and Statistics University of Calgary Calgary, Alberta, T2N 1N4

David P. M. Scollnik, Ph.D., A.S.A. Department of Mathematics and Statistics University of Calgary Calgary, Alberta, T2N 1N4 ACTUARIAL RESEARCH CLEARING HOUSE i995 VOL. I The Bayesian Analysis of Generalized Poisson Models for Claim Frequency Data Utilising Markov Chain Monte Carlo Methods David P. M. Scollnik, Ph.D., A.S.A.

More information

Contents 1. Contents

Contents 1. Contents Contents 1 Contents 6 Distributions of Functions of Random Variables 2 6.1 Transformation of Discrete r.v.s............. 3 6.2 Method of Distribution Functions............. 6 6.3 Method of Transformations................

More information

Chapter 2. Discrete Distributions

Chapter 2. Discrete Distributions Chapter. Discrete Distributions Objectives ˆ Basic Concepts & Epectations ˆ Binomial, Poisson, Geometric, Negative Binomial, and Hypergeometric Distributions ˆ Introduction to the Maimum Likelihood Estimation

More information

Bonus Malus Systems in Car Insurance

Bonus Malus Systems in Car Insurance Bonus Malus Systems in Car Insurance Corina Constantinescu Institute for Financial and Actuarial Mathematics Joint work with Weihong Ni Croatian Actuarial Conference, Zagreb, June 5, 2017 Car Insurance

More information

Chapter 4. Discrete Probability Distributions

Chapter 4. Discrete Probability Distributions Chapter 4. Discrete Probability Distributions Sections 4.9, 4.10: Moment Generating Function and Probability Generating Function Jiaping Wang Department of Mathematical Science 03/06/2013, Wednesday Outline

More information

Spring 2012 Math 541A Exam 1. X i, S 2 = 1 n. n 1. X i I(X i < c), T n =

Spring 2012 Math 541A Exam 1. X i, S 2 = 1 n. n 1. X i I(X i < c), T n = Spring 2012 Math 541A Exam 1 1. (a) Let Z i be independent N(0, 1), i = 1, 2,, n. Are Z = 1 n n Z i and S 2 Z = 1 n 1 n (Z i Z) 2 independent? Prove your claim. (b) Let X 1, X 2,, X n be independent identically

More information

(y 1, y 2 ) = 12 y3 1e y 1 y 2 /2, y 1 > 0, y 2 > 0 0, otherwise.

(y 1, y 2 ) = 12 y3 1e y 1 y 2 /2, y 1 > 0, y 2 > 0 0, otherwise. 54 We are given the marginal pdfs of Y and Y You should note that Y gamma(4, Y exponential( E(Y = 4, V (Y = 4, E(Y =, and V (Y = 4 (a With U = Y Y, we have E(U = E(Y Y = E(Y E(Y = 4 = (b Because Y and

More information

PANJER CLASS UNITED One formula for the probabilities of the Poisson, Binomial, and Negative Binomial distribution.

PANJER CLASS UNITED One formula for the probabilities of the Poisson, Binomial, and Negative Binomial distribution. PANJER CLASS UNITED One formula for the probabilities of the Poisson, Binomial, and Negative Binomial distribution Michael Facler 1 Abstract. This paper gives a formula representing all discrete loss distributions

More information

Severity Models - Special Families of Distributions

Severity Models - Special Families of Distributions Severity Models - Special Families of Distributions Sections 5.3-5.4 Stat 477 - Loss Models Sections 5.3-5.4 (Stat 477) Claim Severity Models Brian Hartman - BYU 1 / 1 Introduction Introduction Given that

More information

Two hours. Statistical Tables to be provided THE UNIVERSITY OF MANCHESTER. 14 January :45 11:45

Two hours. Statistical Tables to be provided THE UNIVERSITY OF MANCHESTER. 14 January :45 11:45 Two hours Statistical Tables to be provided THE UNIVERSITY OF MANCHESTER PROBABILITY 2 14 January 2015 09:45 11:45 Answer ALL four questions in Section A (40 marks in total) and TWO of the THREE questions

More information

INSTITUTE OF ACTUARIES OF INDIA

INSTITUTE OF ACTUARIES OF INDIA INSTITUTE OF ACTUARIES OF INDIA EXAMINATIONS 4 th November 008 Subject CT3 Probability & Mathematical Statistics Time allowed: Three Hours (10.00 13.00 Hrs) Total Marks: 100 INSTRUCTIONS TO THE CANDIDATES

More information

1.1 Review of Probability Theory

1.1 Review of Probability Theory 1.1 Review of Probability Theory Angela Peace Biomathemtics II MATH 5355 Spring 2017 Lecture notes follow: Allen, Linda JS. An introduction to stochastic processes with applications to biology. CRC Press,

More information

STAT 414: Introduction to Probability Theory

STAT 414: Introduction to Probability Theory STAT 414: Introduction to Probability Theory Spring 2016; Homework Assignments Latest updated on April 29, 2016 HW1 (Due on Jan. 21) Chapter 1 Problems 1, 8, 9, 10, 11, 18, 19, 26, 28, 30 Theoretical Exercises

More information

Parameter estimation of a Lévy copula of a discretely observed bivariate compound Poisson process with an application to operational risk modelling

Parameter estimation of a Lévy copula of a discretely observed bivariate compound Poisson process with an application to operational risk modelling Parameter estimation of a Lévy copula of a discretely observed bivariate compound Poisson process with an application to operational risk modelling J. L. van Velsen 1,2 arxiv:1212.0092v1 [q-fin.rm] 1 Dec

More information

Chapter 5 continued. Chapter 5 sections

Chapter 5 continued. Chapter 5 sections Chapter 5 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Put your solution to each problem on a separate sheet of paper. Problem 1. (5106) Let X 1, X 2,, X n be a sequence of i.i.d. observations from a

More information

Continuous Random Variables

Continuous Random Variables 1 / 24 Continuous Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay February 27, 2013 2 / 24 Continuous Random Variables

More information

DELTA METHOD and RESERVING

DELTA METHOD and RESERVING XXXVI th ASTIN COLLOQUIUM Zurich, 4 6 September 2005 DELTA METHOD and RESERVING C.PARTRAT, Lyon 1 university (ISFA) N.PEY, AXA Canada J.SCHILLING, GIE AXA Introduction Presentation of methods based on

More information

Exam P Review Sheet. for a > 0. ln(a) i=0 ari = a. (1 r) 2. (Note that the A i s form a partition)

Exam P Review Sheet. for a > 0. ln(a) i=0 ari = a. (1 r) 2. (Note that the A i s form a partition) Exam P Review Sheet log b (b x ) = x log b (y k ) = k log b (y) log b (y) = ln(y) ln(b) log b (yz) = log b (y) + log b (z) log b (y/z) = log b (y) log b (z) ln(e x ) = x e ln(y) = y for y > 0. d dx ax

More information

Chapter 2. Review of basic Statistical methods 1 Distribution, conditional distribution and moments

Chapter 2. Review of basic Statistical methods 1 Distribution, conditional distribution and moments Chapter 2. Review of basic Statistical methods 1 Distribution, conditional distribution and moments We consider two kinds of random variables: discrete and continuous random variables. For discrete random

More information

A polynomial expansion to approximate ruin probabilities

A polynomial expansion to approximate ruin probabilities A polynomial expansion to approximate ruin probabilities P.O. Goffard 1 X. Guerrault 2 S. Loisel 3 D. Pommerêt 4 1 Axa France - Institut de mathématiques de Luminy Université de Aix-Marseille 2 Axa France

More information

Modeling with Bivariate Geometric Distributions

Modeling with Bivariate Geometric Distributions Modeling with Bivariate Geometric Distributions JING LI AND SUNIL DHAR Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey, USA Abstract We study systems with several

More information

Nonlife Actuarial Models. Chapter 5 Ruin Theory

Nonlife Actuarial Models. Chapter 5 Ruin Theory Nonlife Actuarial Models Chapter 5 Ruin Theory Learning Objectives 1. Surplus function, premium rate and loss process 2. Probability of ultimate ruin 3. Probability of ruin before a finite time 4. Adjustment

More information

Introduction to Computational Finance and Financial Econometrics Probability Theory Review: Part 2

Introduction to Computational Finance and Financial Econometrics Probability Theory Review: Part 2 Introduction to Computational Finance and Financial Econometrics Probability Theory Review: Part 2 Eric Zivot July 7, 2014 Bivariate Probability Distribution Example - Two discrete rv s and Bivariate pdf

More information

MLE for a logit model

MLE for a logit model IGIDR, Bombay September 4, 2008 Goals The link between workforce participation and education Analysing a two-variable data-set: bivariate distributions Conditional probability Expected mean from conditional

More information

Actuarial Science Exam 1/P

Actuarial Science Exam 1/P Actuarial Science Exam /P Ville A. Satopää December 5, 2009 Contents Review of Algebra and Calculus 2 2 Basic Probability Concepts 3 3 Conditional Probability and Independence 4 4 Combinatorial Principles,

More information

Multivariate Random Variable

Multivariate Random Variable Multivariate Random Variable Author: Author: Andrés Hincapié and Linyi Cao This Version: August 7, 2016 Multivariate Random Variable 3 Now we consider models with more than one r.v. These are called multivariate

More information

STAT 135 Lab 7 Distributions derived from the normal distribution, and comparing independent samples.

STAT 135 Lab 7 Distributions derived from the normal distribution, and comparing independent samples. STAT 135 Lab 7 Distributions derived from the normal distribution, and comparing independent samples. Rebecca Barter March 16, 2015 The χ 2 distribution The χ 2 distribution We have seen several instances

More information

This midterm covers Chapters 6 and 7 in WMS (and the notes). The following problems are stratified by chapter.

This midterm covers Chapters 6 and 7 in WMS (and the notes). The following problems are stratified by chapter. This midterm covers Chapters 6 and 7 in WMS (and the notes). The following problems are stratified by chapter. Chapter 6 Problems 1. Suppose that Y U(0, 2) so that the probability density function (pdf)

More information

Peng Shi. Actuarial Research Conference August 5-8, 2015

Peng Shi. Actuarial Research Conference August 5-8, 2015 Multivariate Longitudinal of Using Copulas joint work with Xiaoping Feng and Jean-Philippe Boucher University of Wisconsin - Madison Université du Québec à Montréal Actuarial Research Conference August

More information

Notes for Math 324, Part 20

Notes for Math 324, Part 20 7 Notes for Math 34, Part Chapter Conditional epectations, variances, etc.. Conditional probability Given two events, the conditional probability of A given B is defined by P[A B] = P[A B]. P[B] P[A B]

More information

Solutions to the Spring 2015 CAS Exam ST

Solutions to the Spring 2015 CAS Exam ST Solutions to the Spring 2015 CAS Exam ST (updated to include the CAS Final Answer Key of July 15) There were 25 questions in total, of equal value, on this 2.5 hour exam. There was a 10 minute reading

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 11 CRFs, Exponential Family CS/CNS/EE 155 Andreas Krause Announcements Homework 2 due today Project milestones due next Monday (Nov 9) About half the work should

More information

Stochastic Incremental Approach for Modelling the Claims Reserves

Stochastic Incremental Approach for Modelling the Claims Reserves International Mathematical Forum, Vol. 8, 2013, no. 17, 807-828 HIKARI Ltd, www.m-hikari.com Stochastic Incremental Approach for Modelling the Claims Reserves Ilyes Chorfi Department of Mathematics University

More information

Counts using Jitters joint work with Peng Shi, Northern Illinois University

Counts using Jitters joint work with Peng Shi, Northern Illinois University of Claim Longitudinal of Claim joint work with Peng Shi, Northern Illinois University UConn Actuarial Science Seminar 2 December 2011 Department of Mathematics University of Connecticut Storrs, Connecticut,

More information

Probability and Stochastic Processes

Probability and Stochastic Processes Probability and Stochastic Processes A Friendly Introduction Electrical and Computer Engineers Third Edition Roy D. Yates Rutgers, The State University of New Jersey David J. Goodman New York University

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes Neil D. Lawrence GPSS 10th June 2013 Book Rasmussen and Williams (2006) Outline The Gaussian Density Covariance from Basis Functions Basis Function Representations Constructing

More information

Parameter Estimation and Statistical Test in Modeling Geographically Weighted Poisson Inverse Gaussian Regression

Parameter Estimation and Statistical Test in Modeling Geographically Weighted Poisson Inverse Gaussian Regression PROCEEDING OF 3 RD INTERNATIONAL CONFERENCE ON RESEARCH, IMPLEMENTATION AND EDUCATION OF MATHEMATICS AND SCIENCE YOGYAKARTA, 16 17 MAY 2016 M 08 Parameter Estimation and Statistical Test in Modeling Geographically

More information

HANDBOOK OF APPLICABLE MATHEMATICS

HANDBOOK OF APPLICABLE MATHEMATICS HANDBOOK OF APPLICABLE MATHEMATICS Chief Editor: Walter Ledermann Volume II: Probability Emlyn Lloyd University oflancaster A Wiley-Interscience Publication JOHN WILEY & SONS Chichester - New York - Brisbane

More information

1 Solution to Problem 2.1

1 Solution to Problem 2.1 Solution to Problem 2. I incorrectly worked this exercise instead of 2.2, so I decided to include the solution anyway. a) We have X Y /3, which is a - function. It maps the interval, ) where X lives) onto

More information

Algorithms for Uncertainty Quantification

Algorithms for Uncertainty Quantification Algorithms for Uncertainty Quantification Tobias Neckel, Ionuț-Gabriel Farcaș Lehrstuhl Informatik V Summer Semester 2017 Lecture 2: Repetition of probability theory and statistics Example: coin flip Example

More information

A Few Special Distributions and Their Properties

A Few Special Distributions and Their Properties A Few Special Distributions and Their Properties Econ 690 Purdue University Justin L. Tobias (Purdue) Distributional Catalog 1 / 20 Special Distributions and Their Associated Properties 1 Uniform Distribution

More information

EEL 5544 Noise in Linear Systems Lecture 30. X (s) = E [ e sx] f X (x)e sx dx. Moments can be found from the Laplace transform as

EEL 5544 Noise in Linear Systems Lecture 30. X (s) = E [ e sx] f X (x)e sx dx. Moments can be found from the Laplace transform as L30-1 EEL 5544 Noise in Linear Systems Lecture 30 OTHER TRANSFORMS For a continuous, nonnegative RV X, the Laplace transform of X is X (s) = E [ e sx] = 0 f X (x)e sx dx. For a nonnegative RV, the Laplace

More information

Bivariate Paired Numerical Data

Bivariate Paired Numerical Data Bivariate Paired Numerical Data Pearson s correlation, Spearman s ρ and Kendall s τ, tests of independence University of California, San Diego Instructor: Ery Arias-Castro http://math.ucsd.edu/~eariasca/teaching.html

More information

Topic 2: Probability & Distributions. Road Map Probability & Distributions. ECO220Y5Y: Quantitative Methods in Economics. Dr.

Topic 2: Probability & Distributions. Road Map Probability & Distributions. ECO220Y5Y: Quantitative Methods in Economics. Dr. Topic 2: Probability & Distributions ECO220Y5Y: Quantitative Methods in Economics Dr. Nick Zammit University of Toronto Department of Economics Room KN3272 n.zammit utoronto.ca November 21, 2017 Dr. Nick

More information

Overview of Extreme Value Theory. Dr. Sawsan Hilal space

Overview of Extreme Value Theory. Dr. Sawsan Hilal space Overview of Extreme Value Theory Dr. Sawsan Hilal space Maths Department - University of Bahrain space November 2010 Outline Part-1: Univariate Extremes Motivation Threshold Exceedances Part-2: Bivariate

More information

Part IA Probability. Theorems. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Theorems. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Theorems Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

EXAMINATIONS OF THE HONG KONG STATISTICAL SOCIETY GRADUATE DIPLOMA, Statistical Theory and Methods I. Time Allowed: Three Hours

EXAMINATIONS OF THE HONG KONG STATISTICAL SOCIETY GRADUATE DIPLOMA, Statistical Theory and Methods I. Time Allowed: Three Hours EXAMINATIONS OF THE HONG KONG STATISTICAL SOCIETY GRADUATE DIPLOMA, 008 Statistical Theory and Methods I Time Allowed: Three Hours Candidates should answer FIVE questions. All questions carry equal marks.

More information

Bivariate distributions

Bivariate distributions Bivariate distributions 3 th October 017 lecture based on Hogg Tanis Zimmerman: Probability and Statistical Inference (9th ed.) Bivariate Distributions of the Discrete Type The Correlation Coefficient

More information

Individual loss reserving with the Multivariate Skew Normal framework

Individual loss reserving with the Multivariate Skew Normal framework May 22 2013, K. Antonio, KU Leuven and University of Amsterdam 1 / 31 Individual loss reserving with the Multivariate Skew Normal framework Mathieu Pigeon, Katrien Antonio, Michel Denuit ASTIN Colloquium

More information

A Distribution of the First Order Statistic When the Sample Size is Random

A Distribution of the First Order Statistic When the Sample Size is Random East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations 5-2017 A Distribution of the First Order Statistic When the Sample Size is Random Vincent

More information

A Modification of Linfoot s Informational Correlation Coefficient

A Modification of Linfoot s Informational Correlation Coefficient Austrian Journal of Statistics April 07, Volume 46, 99 05. AJS http://www.ajs.or.at/ doi:0.773/ajs.v46i3-4.675 A Modification of Linfoot s Informational Correlation Coefficient Georgy Shevlyakov Peter

More information

SPRING 2005 EXAM M SOLUTIONS. = When (as given in the problem), (x) dies in the second year from issue, the curtate future lifetime x + 1 is 0, so

SPRING 2005 EXAM M SOLUTIONS. = When (as given in the problem), (x) dies in the second year from issue, the curtate future lifetime x + 1 is 0, so SPRING 005 EXAM M SOLUTIONS Question # Key: B Let K be the curtate future lifetime of (x + k) K + k L 000v 000Px :3 ak + When (as given in the problem), (x) dies in the second year from issue, the curtate

More information

Lecture 5: Moment generating functions

Lecture 5: Moment generating functions Lecture 5: Moment generating functions Definition 2.3.6. The moment generating function (mgf) of a random variable X is { x e tx f M X (t) = E(e tx X (x) if X has a pmf ) = etx f X (x)dx if X has a pdf

More information

Chapter 12: Bivariate & Conditional Distributions

Chapter 12: Bivariate & Conditional Distributions Chapter 12: Bivariate & Conditional Distributions James B. Ramsey March 2007 James B. Ramsey () Chapter 12 26/07 1 / 26 Introduction Key relationships between joint, conditional, and marginal distributions.

More information

TAMS39 Lecture 2 Multivariate normal distribution

TAMS39 Lecture 2 Multivariate normal distribution TAMS39 Lecture 2 Multivariate normal distribution Martin Singull Department of Mathematics Mathematical Statistics Linköping University, Sweden Content Lecture Random vectors Multivariate normal distribution

More information

Probability and Statistics Notes

Probability and Statistics Notes Probability and Statistics Notes Chapter Five Jesse Crawford Department of Mathematics Tarleton State University Spring 2011 (Tarleton State University) Chapter Five Notes Spring 2011 1 / 37 Outline 1

More information