1.12 Multivariate Random Variables

Size: px
Start display at page:

Download "1.12 Multivariate Random Variables"

Transcription

1 112 MULTIVARIATE RANDOM VARIABLES Multivariate Random Variables We will be using matrix notation to denote multivariate rvs and their distributions Denote by X (X 1,,X n ) T an n-dimensional random vector whose components are random variables Then, all the definitions given for bivariate rvs extend to the multivariate case For example, ifx is continuous, then we may write and F X (x 1,,x n ) P(X A) xn x1 wherea X and X R n is the support off X f X (x 1,,x n )dx 1 dx n f X (x 1,,x n )dx 1 dx n, A Example 15 LetX (X 1,X 2,X,X 4 ) T be a four-dimensional random vector with the joint pdf given by f X (x 1,x 2,x,x 4 ) 4 (x2 1 +x 2 2 +x 2 +x 2 4)I X, wherex {(x 1,x 2,x,x 4 ) R 4 : < x i < 1,i 1,2,,4} Calculate: 1 the marginal pdf of(x 1,X 2 ); 2 the expectatione(x 1 X 2 ); the conditional pdff ( x,x 4 x 1 1,x 2 ) 2 ; 4 the probabilityp ( X 1 < 1,X 2 2 <,X 4 4 > 2) 1 Solution: 1 Here we have to calculate the double integral of the joint pdf with respect tox and x 4, that is, f(x 1,x 2 ) (x2 1 +x2 2 )+ 1 2 f X (x 1,x 2,x,x 4 )dx dx 4 4 (x2 1 +x2 2 +x2 +x2 4 )dx dx 4

2 6 CHAPTER 1 ELEMENTS OF PROBABILITY DISTRIBUTION THEORY 2 By definition of expectation we have E(X 1 X 2 ) 1 1 x 1 x 2 f(x 1,x 2 )dx 1 dx 2 x 1 x 2 ( 4 (x2 1 +x 2 2)+ 1 2 By definition of a conditional pdf we have, Hence, f ( ) f X (x 1,x 2,x,x 4 ) x,x 4 x 1,x 2 f(x 1,x 2 ) 4 (x2 1 +x2 2 +x2 +x2 4 ) 4 (x2 1 +x 2 2)+ 1 2 x2 1 +x2 2 +x2 +x2 4 x 2 1 +x ) dx 1 dx f ( x,x 4 x 1 1,x 2 ) 2 ( 1 2 ( ) + 2 ) 2 +x 2 +x 2 4 ( 1 ) 2 ( + 2 ) x x2 4 4 Here we use (indirectly) the marginal pdf for(x 1,X 2,X 4 ): P ( X 1 < 1 2,X 2 < 4,X 4 > ) 4 (x2 1 +x 2 2 +x 2 +x 2 4)dx 1 dx 2 dx dx The following results will be very useful in the second part of this course They are extensions of Definition 118, Theorem 11, and Theorem 114, respectively, tonrandom variablesx 1,X 2,,X n Definition 122 LetX (X 1,X 2,,X n ) T denote a continuousn-dimensional rv with joint pdf f X (x 1,x 2,,x n ) and marginal pdfs f Xi (x i ), i 1,2,,n The random variables are called mutually independent (or just independent) if f X (x 1,x 2,,x n ) f Xi (x i )

3 112 MULTIVARIATE RANDOM VARIABLES 61 It means that all pairs X i,x j, i j, are independent Example 16 Suppose that Y i Exp(λ) independently for i 1,2,,n Then the joint pdf ofy (Y 1,Y 2,,Y n ) T is f Y (y 1,,y n ) λe λy i λ n e λ n y i Theorem 121 For g j (X j ), a function of X j only, j 1,2,,m, m n, we have ( m ) m E g j (X j ) E ( g j (X j ) ) Theorem 122 LetX (X 1,X 2,,X n ) T be a vector of mutually independent rvs with mgfsm X1 (t),m X2 (t),,m Xn (t) and leta 1,a 2,,a n andb 1,b 2,,b n be fixed constants Then the mgf of the random variablez n (a ix i +b i ) is M Z (t) e t b i M Xi (a i t) Exercise 12 Proof Theorem 122 Example 17 Calculate the mean and the variance of the random variable Y n X i, wherex i Gamma(α i,λ) independently First, we will find the mgf of Y and then generate the first and second moments using this mgf (Theorem 17) X i are independent, hence, by Theorem 122 we have M Y (t) M Xi (t) The pdf of a single rvx Gamma(α,λ) is f X (x) λα Γ(α) xα 1 e λx I [, ) (x)

4 62 CHAPTER 1 ELEMENTS OF PROBABILITY DISTRIBUTION THEORY Thus, by the definition of the mgf we have Hence, M Y (t) M X (t) E ( e tx) λα Γ(α) λα Γ(α) e tx x α 1 e λx dx x α 1 e (λ t)x dx (λ t)α λ α x α 1 e (λ t)x dx (λ t) α Γ(α) λ α (λ t) α x α 1 e (λ t)x dx (λ t) α Γ(α) }{{} 1, (pdf of a Gamma rv) ( ) α ( λ 1 t α λ t λ) M Xi (t) ( 1 λ) t αi ( 1 t ) n α i λ This has the same form as the mgf of a Gamma random variable with parameters n α i and λ, that is, ( n ) Y Gamma α i,λ The mean and variance of a Gamma rv can be obtained calculating the derivatives of the mgf att, see Theorem 17 ForX Gamma(α,λ) we have ( M X (t) 1 t ) α λ EX α λ EX 2 α(α+1) λ 2 var(x) EX 2 [EX] 2 α λ 2 Hence, fory Gamma( n α i,λ) we get EY n α i λ and var(y) n α i λ 2

5 112 MULTIVARIATE RANDOM VARIABLES 6 The following definition is often used when we consider realizations of rvs (samples) coming from populations having the same distribution Definition 12 The random variablesx 1,X 2,,X n are identically distributed if their distribution functions are identical, that is, F X1 (x) F X2 (x) F Xn (x) for all x R If they are also independent then we denote this briefly as IID, which means Independently, Identically Distributed For example, notation {X i },2,,n IID means that the variablesx i are IID but the type of the distribution is not specified We will often use IID normal rvs denoted by X i iid N(µ,σ 2 ), i 1,2,,n Exercise 121 Find the pdf of the random variablex 1 n n X i, where X i iid N(µ,σ 2 ), i 1,2,,n 1121 Expectation and Variance of Random Vectors The expectation of a random vector X is a vector of expectations of its components, that is, X 1 E(X 1 ) µ 1 X 2 E(X 2 ) µ 2 E(X) E X n E(X n ) µ n µ The variance-covariance matrix ofx is V Var(X) E [ (X E(X))(X E(X)) T] var(x 1 ) cov(x 1,X 2 ) cov(x 1,X n ) cov(x 2,X 1 ) var(x 2 ) cov(x 2,X n ) cov(x n,x 1 ) cov(x n,x 2 ) var(x n ) (12)

6 64 CHAPTER 1 ELEMENTS OF PROBABILITY DISTRIBUTION THEORY The following theorem shows a basic property of the variance-covariance matrix Theorem 12 If X is a random vector then its variance-covariance matrix V is a non-negative definite matrix, that is for any constant vector b the quadratic formb T V b is non-negative Proof For any constant vector b R n we can construct a one-dimensional variabley b T X whose variance is var(y) E [ (Y E(Y)) 2] E [ (b T X E(b T X)) 2] E [ (b T X E(b T X))(b T X E(b T X)) T] E [ b T (X E(X))(X E(X)) T b ] b T E [ (X E(X))(X E(X)) T] b b T Var(X)b b T V b That is b T V b and sov is a non-negative definite matrix The proof of the above theorem shows that the variance of a combination Y n b ix i of random variables X i is a quadratic form of the variance-covariance matrix of X and the vector of the coefficients of the combination b More generally, if X is n-dimensional rv, B is an m n constant matrix and a is a real m 1vector, then the expectation and the variance of the random vector Y a+bx are, respectively and E(Y) a+be(x) a+bµ, Var(Y) BVarXB T The covariance of two random vectors, n-dimensionalx and m-dimensional Y, is defined as Cov(X,Y) E [ (X E(X))(Y E(Y)) T] It is an n m-dimensional matrix

7 112 MULTIVARIATE RANDOM VARIABLES Joint Moment Generating Function Definition 124 Let X (X 1,X 2,,X n ) T be a random vector We define the joint mgf as M X (t) E [ e tt X ], where t (t 1,t 2,,t n ) T is an n-dimensional argument of M Similarly as in the univariate case, there is a unique relationship between the joint pdf and the joint mgf The mgf related to a marginal distribution of a subset of variables X i1,,x is can be obtained by setting t j for all j not in the set {i 1,,i s } Note also that if the variablesx 1,X 2,,X n are mutually independent, then the joint mgf is a product of the marginal mgfs, that is M X (t) E [ e ] tt X E [ e n t jx j ] E e t jx j M Xj (t j ) Another useful property of the joint mgf is given in the following theorem Theorem 124 Let X (X 1,X 2,,X n ) T be a random vector If the joint mgf ofx can be written as a product of some functionsg j (t j ), j 1,2,,n, that is M X (t) g j (t j ), then the variablesx 1,X 2,,X n are independent Proof Let t i for all i j Then, the marginal mgfm Xj (t j ) is M Xj (t j ) g j (t j ) i j g i () Also, note that ift i for all i 1,2,,n, then M X (t) E [ e n t jx j ] E [ e ] 1 This gives 1 M X (t) j () g i j g i () 1 g j ()

8 66 CHAPTER 1 ELEMENTS OF PROBABILITY DISTRIBUTION THEORY Therefore, and hence M X (t) g j (t j ) M Xj (t j ) g j(t j ) g j () g j ()M Xj (t j ) 1 M Xj (t j ) This means that the joint pdf can also be written as a product of marginal pdfs, each with the marginal mgf equal to M Xj (t j ) g j(t j ) g j Hence, the random variablesx 1,X 2,,X n are independent () 112 Transformations of Random Vectors LetX (X 1,X 2,,X n ) T be a continuous random vector and letg : R n R n be a one-to-one and onto function denoted by g(x) (g 1 (x),g 2 (x),,g n (x)) T, where x (x 1,x 2,,x n ) T and g i : R n R Then, for a transformed random vectory g(x) we have the following result Theorem 125 The density of Y g(x) is given by f Y (y) f X ( h(y) ) Jh (y), whereh(y) g 1 (y) and J h (y) denotes the absolute value of the Jacobian J h (y) det h(y) det y y 1 h 1 (y) y 1 h 2 (y) y 1 h n (y) y 2 h 1 (y) y 2 h 2 (y) y 2 h n (y) y n h 1 (y) y n h 2 (y) y n h n (y) Another useful form of the Jacobian is J h (y) [ J g ( h(y) )] 1,

9 112 MULTIVARIATE RANDOM VARIABLES 67 where J g (x) det x g(x) Exercise 122 Let A be a non-singular n n real matrix and let X be an n- dimensional random vector Show that the linearly transformed random variable Y AX has the joint pdf given by 1 f Y (y) deta f ( X A 1 y ) 1124 Multivariate Normal Distribution A random variablex has a multivariate normal distribution if its joint pdf can be written as { 1 f X (x 1,,x n ) (2π) n/2 detv exp 1 } 2 (x µ)t V 1 (x µ), where the mean is µ (µ 1,,µ n ) T, and the variance-covariance matrix has the form (12) Exercise 12 Use the result from Exercise 122 to show that if X N n (µ,v) then Y AX has n-dimensional normal distribution with expectation Aµ and variance-covariance matrixava T Lemma 1 If X N n (µ,v), B is an m n matrix, and a is a real m 1 vector, then the random vector is also multivariate normal with and the variance-covariance matrix, Y a+bx E(Y ) a+be(x) a+bµ, V Y BV B T

10 68 CHAPTER 1 ELEMENTS OF PROBABILITY DISTRIBUTION THEORY Note that taking B b T, where b is an n 1 dimensional vector and a we obtain Y b T X b 1 X 1 ++b n X n, and Y N(b T µ,b T V b)

Bivariate Normal Distribution

Bivariate Normal Distribution .0. TWO-DIMENSIONAL RANDOM VARIABLES 47.0.7 Bivariate Normal Distribution Figure.: Bivariate Normal pdf Here we use matrix notation. A bivariate rv is treated as a random vector X X =. The expectation

More information

Random Variables and Their Distributions

Random Variables and Their Distributions Chapter 3 Random Variables and Their Distributions A random variable (r.v.) is a function that assigns one and only one numerical value to each simple event in an experiment. We will denote r.vs by capital

More information

Algorithms for Uncertainty Quantification

Algorithms for Uncertainty Quantification Algorithms for Uncertainty Quantification Tobias Neckel, Ionuț-Gabriel Farcaș Lehrstuhl Informatik V Summer Semester 2017 Lecture 2: Repetition of probability theory and statistics Example: coin flip Example

More information

Chapter 5 continued. Chapter 5 sections

Chapter 5 continued. Chapter 5 sections Chapter 5 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

Random Vectors and Multivariate Normal Distributions

Random Vectors and Multivariate Normal Distributions Chapter 3 Random Vectors and Multivariate Normal Distributions 3.1 Random vectors Definition 3.1.1. Random vector. Random vectors are vectors of random 75 variables. For instance, X = X 1 X 2., where each

More information

Probability and Distributions

Probability and Distributions Probability and Distributions What is a statistical model? A statistical model is a set of assumptions by which the hypothetical population distribution of data is inferred. It is typically postulated

More information

5. Random Vectors. probabilities. characteristic function. cross correlation, cross covariance. Gaussian random vectors. functions of random vectors

5. Random Vectors. probabilities. characteristic function. cross correlation, cross covariance. Gaussian random vectors. functions of random vectors EE401 (Semester 1) 5. Random Vectors Jitkomut Songsiri probabilities characteristic function cross correlation, cross covariance Gaussian random vectors functions of random vectors 5-1 Random vectors we

More information

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R In probabilistic models, a random variable is a variable whose possible values are numerical outcomes of a random phenomenon. As a function or a map, it maps from an element (or an outcome) of a sample

More information

Multivariate Random Variable

Multivariate Random Variable Multivariate Random Variable Author: Author: Andrés Hincapié and Linyi Cao This Version: August 7, 2016 Multivariate Random Variable 3 Now we consider models with more than one r.v. These are called multivariate

More information

n x u x v n x = (u+v) n. p x (1 p) n x x = ( e t p+(1 p) ) n., x = 0,1,2,... λe = e λ t ) x = e λ e λet = e λ(et 1).

n x u x v n x = (u+v) n. p x (1 p) n x x = ( e t p+(1 p) ) n., x = 0,1,2,... λe = e λ t ) x = e λ e λet = e λ(et 1). Eercise 8 We can write E(X b) 2 = E ( X EX +EX b ) 2 = E ( (X EX)+(EX b) ) 2 = E(X EX) 2 +(EX b) 2 +2E ( (X EX)(EX b) ) = E(X EX) 2 +(EX b) 2 +2(EX b)e(x EX) = E(X EX) 2 +(EX b) 2 as E(X EX) = This is

More information

Multiple Random Variables

Multiple Random Variables Multiple Random Variables This Version: July 30, 2015 Multiple Random Variables 2 Now we consider models with more than one r.v. These are called multivariate models For instance: height and weight An

More information

REVIEW OF MAIN CONCEPTS AND FORMULAS A B = Ā B. Pr(A B C) = Pr(A) Pr(A B C) =Pr(A) Pr(B A) Pr(C A B)

REVIEW OF MAIN CONCEPTS AND FORMULAS A B = Ā B. Pr(A B C) = Pr(A) Pr(A B C) =Pr(A) Pr(B A) Pr(C A B) REVIEW OF MAIN CONCEPTS AND FORMULAS Boolean algebra of events (subsets of a sample space) DeMorgan s formula: A B = Ā B A B = Ā B The notion of conditional probability, and of mutual independence of two

More information

BIOS 2083 Linear Models Abdus S. Wahed. Chapter 2 84

BIOS 2083 Linear Models Abdus S. Wahed. Chapter 2 84 Chapter 2 84 Chapter 3 Random Vectors and Multivariate Normal Distributions 3.1 Random vectors Definition 3.1.1. Random vector. Random vectors are vectors of random variables. For instance, X = X 1 X 2.

More information

Joint Distributions. (a) Scalar multiplication: k = c d. (b) Product of two matrices: c d. (c) The transpose of a matrix:

Joint Distributions. (a) Scalar multiplication: k = c d. (b) Product of two matrices: c d. (c) The transpose of a matrix: Joint Distributions Joint Distributions A bivariate normal distribution generalizes the concept of normal distribution to bivariate random variables It requires a matrix formulation of quadratic forms,

More information

Lecture 2: Repetition of probability theory and statistics

Lecture 2: Repetition of probability theory and statistics Algorithms for Uncertainty Quantification SS8, IN2345 Tobias Neckel Scientific Computing in Computer Science TUM Lecture 2: Repetition of probability theory and statistics Concept of Building Block: Prerequisites:

More information

2 Functions of random variables

2 Functions of random variables 2 Functions of random variables A basic statistical model for sample data is a collection of random variables X 1,..., X n. The data are summarised in terms of certain sample statistics, calculated as

More information

3. Probability and Statistics

3. Probability and Statistics FE661 - Statistical Methods for Financial Engineering 3. Probability and Statistics Jitkomut Songsiri definitions, probability measures conditional expectations correlation and covariance some important

More information

MATH2715: Statistical Methods

MATH2715: Statistical Methods MATH2715: Statistical Methods Exercises V (based on lectures 9-10, work week 6, hand in lecture Mon 7 Nov) ALL questions count towards the continuous assessment for this module. Q1. If X gamma(α,λ), write

More information

The Multivariate Normal Distribution 1

The Multivariate Normal Distribution 1 The Multivariate Normal Distribution 1 STA 302 Fall 2017 1 See last slide for copyright information. 1 / 40 Overview 1 Moment-generating Functions 2 Definition 3 Properties 4 χ 2 and t distributions 2

More information

Continuous Distributions

Continuous Distributions A normal distribution and other density functions involving exponential forms play the most important role in probability and statistics. They are related in a certain way, as summarized in a diagram later

More information

P (x). all other X j =x j. If X is a continuous random vector (see p.172), then the marginal distributions of X i are: f(x)dx 1 dx n

P (x). all other X j =x j. If X is a continuous random vector (see p.172), then the marginal distributions of X i are: f(x)dx 1 dx n JOINT DENSITIES - RANDOM VECTORS - REVIEW Joint densities describe probability distributions of a random vector X: an n-dimensional vector of random variables, ie, X = (X 1,, X n ), where all X is are

More information

Lecture 3. Probability - Part 2. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza. October 19, 2016

Lecture 3. Probability - Part 2. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza. October 19, 2016 Lecture 3 Probability - Part 2 Luigi Freda ALCOR Lab DIAG University of Rome La Sapienza October 19, 2016 Luigi Freda ( La Sapienza University) Lecture 3 October 19, 2016 1 / 46 Outline 1 Common Continuous

More information

Lecture 14: Multivariate mgf s and chf s

Lecture 14: Multivariate mgf s and chf s Lecture 14: Multivariate mgf s and chf s Multivariate mgf and chf For an n-dimensional random vector X, its mgf is defined as M X (t) = E(e t X ), t R n and its chf is defined as φ X (t) = E(e ıt X ),

More information

BMIR Lecture Series on Probability and Statistics Fall 2015 Discrete RVs

BMIR Lecture Series on Probability and Statistics Fall 2015 Discrete RVs Lecture #7 BMIR Lecture Series on Probability and Statistics Fall 2015 Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University 7.1 Function of Single Variable Theorem

More information

Formulas for probability theory and linear models SF2941

Formulas for probability theory and linear models SF2941 Formulas for probability theory and linear models SF2941 These pages + Appendix 2 of Gut) are permitted as assistance at the exam. 11 maj 2008 Selected formulae of probability Bivariate probability Transforms

More information

EEL 5544 Noise in Linear Systems Lecture 30. X (s) = E [ e sx] f X (x)e sx dx. Moments can be found from the Laplace transform as

EEL 5544 Noise in Linear Systems Lecture 30. X (s) = E [ e sx] f X (x)e sx dx. Moments can be found from the Laplace transform as L30-1 EEL 5544 Noise in Linear Systems Lecture 30 OTHER TRANSFORMS For a continuous, nonnegative RV X, the Laplace transform of X is X (s) = E [ e sx] = 0 f X (x)e sx dx. For a nonnegative RV, the Laplace

More information

MAS223 Statistical Inference and Modelling Exercises

MAS223 Statistical Inference and Modelling Exercises MAS223 Statistical Inference and Modelling Exercises The exercises are grouped into sections, corresponding to chapters of the lecture notes Within each section exercises are divided into warm-up questions,

More information

1.1 Review of Probability Theory

1.1 Review of Probability Theory 1.1 Review of Probability Theory Angela Peace Biomathemtics II MATH 5355 Spring 2017 Lecture notes follow: Allen, Linda JS. An introduction to stochastic processes with applications to biology. CRC Press,

More information

STA 4322 Exam I Name: Introduction to Statistics Theory

STA 4322 Exam I Name: Introduction to Statistics Theory STA 4322 Exam I Name: Introduction to Statistics Theory Fall 2013 UF-ID: Instructions: There are 100 total points. You must show your work to receive credit. Read each part of each question carefully.

More information

Continuous Random Variables and Continuous Distributions

Continuous Random Variables and Continuous Distributions Continuous Random Variables and Continuous Distributions Continuous Random Variables and Continuous Distributions Expectation & Variance of Continuous Random Variables ( 5.2) The Uniform Random Variable

More information

The Multivariate Normal Distribution. In this case according to our theorem

The Multivariate Normal Distribution. In this case according to our theorem The Multivariate Normal Distribution Defn: Z R 1 N(0, 1) iff f Z (z) = 1 2π e z2 /2. Defn: Z R p MV N p (0, I) if and only if Z = (Z 1,..., Z p ) T with the Z i independent and each Z i N(0, 1). In this

More information

Moment Generating Function. STAT/MTHE 353: 5 Moment Generating Functions and Multivariate Normal Distribution

Moment Generating Function. STAT/MTHE 353: 5 Moment Generating Functions and Multivariate Normal Distribution Moment Generating Function STAT/MTHE 353: 5 Moment Generating Functions and Multivariate Normal Distribution T. Linder Queen s University Winter 07 Definition Let X (X,...,X n ) T be a random vector and

More information

Chapter 5. Chapter 5 sections

Chapter 5. Chapter 5 sections 1 / 43 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

Lecture 1: August 28

Lecture 1: August 28 36-705: Intermediate Statistics Fall 2017 Lecturer: Siva Balakrishnan Lecture 1: August 28 Our broad goal for the first few lectures is to try to understand the behaviour of sums of independent random

More information

Sampling Distributions

Sampling Distributions In statistics, a random sample is a collection of independent and identically distributed (iid) random variables, and a sampling distribution is the distribution of a function of random sample. For example,

More information

ACM 116: Lectures 3 4

ACM 116: Lectures 3 4 1 ACM 116: Lectures 3 4 Joint distributions The multivariate normal distribution Conditional distributions Independent random variables Conditional distributions and Monte Carlo: Rejection sampling Variance

More information

1.6 Families of Distributions

1.6 Families of Distributions Your text 1.6. FAMILIES OF DISTRIBUTIONS 15 F(x) 0.20 1.0 0.15 0.8 0.6 Density 0.10 cdf 0.4 0.05 0.2 0.00 a b c 0.0 x Figure 1.1: N(4.5, 2) Distribution Function and Cumulative Distribution Function for

More information

Lecture 11. Multivariate Normal theory

Lecture 11. Multivariate Normal theory 10. Lecture 11. Multivariate Normal theory Lecture 11. Multivariate Normal theory 1 (1 1) 11. Multivariate Normal theory 11.1. Properties of means and covariances of vectors Properties of means and covariances

More information

Statistics STAT:5100 (22S:193), Fall Sample Final Exam B

Statistics STAT:5100 (22S:193), Fall Sample Final Exam B Statistics STAT:5 (22S:93), Fall 25 Sample Final Exam B Please write your answers in the exam books provided.. Let X, Y, and Y 2 be independent random variables with X N(µ X, σ 2 X ) and Y i N(µ Y, σ 2

More information

STAT/MATH 395 A - PROBABILITY II UW Winter Quarter Moment functions. x r p X (x) (1) E[X r ] = x r f X (x) dx (2) (x E[X]) r p X (x) (3)

STAT/MATH 395 A - PROBABILITY II UW Winter Quarter Moment functions. x r p X (x) (1) E[X r ] = x r f X (x) dx (2) (x E[X]) r p X (x) (3) STAT/MATH 395 A - PROBABILITY II UW Winter Quarter 07 Néhémy Lim Moment functions Moments of a random variable Definition.. Let X be a rrv on probability space (Ω, A, P). For a given r N, E[X r ], if it

More information

Delta Method. Example : Method of Moments for Exponential Distribution. f(x; λ) = λe λx I(x > 0)

Delta Method. Example : Method of Moments for Exponential Distribution. f(x; λ) = λe λx I(x > 0) Delta Method Often estimators are functions of other random variables, for example in the method of moments. These functions of random variables can sometimes inherit a normal approximation from the underlying

More information

APPM/MATH 4/5520 Solutions to Exam I Review Problems. f X 1,X 2. 2e x 1 x 2. = x 2

APPM/MATH 4/5520 Solutions to Exam I Review Problems. f X 1,X 2. 2e x 1 x 2. = x 2 APPM/MATH 4/5520 Solutions to Exam I Review Problems. (a) f X (x ) f X,X 2 (x,x 2 )dx 2 x 2e x x 2 dx 2 2e 2x x was below x 2, but when marginalizing out x 2, we ran it over all values from 0 to and so

More information

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued Chapter 3 sections Chapter 3 - continued 3.1 Random Variables and Discrete Distributions 3.2 Continuous Distributions 3.3 The Cumulative Distribution Function 3.4 Bivariate Distributions 3.5 Marginal Distributions

More information

4. Distributions of Functions of Random Variables

4. Distributions of Functions of Random Variables 4. Distributions of Functions of Random Variables Setup: Consider as given the joint distribution of X 1,..., X n (i.e. consider as given f X1,...,X n and F X1,...,X n ) Consider k functions g 1 : R n

More information

1 Review of Probability and Distributions

1 Review of Probability and Distributions Random variables. A numerically valued function X of an outcome ω from a sample space Ω X : Ω R : ω X(ω) is called a random variable (r.v.), and usually determined by an experiment. We conventionally denote

More information

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued Chapter 3 sections 3.1 Random Variables and Discrete Distributions 3.2 Continuous Distributions 3.3 The Cumulative Distribution Function 3.4 Bivariate Distributions 3.5 Marginal Distributions 3.6 Conditional

More information

LIST OF FORMULAS FOR STK1100 AND STK1110

LIST OF FORMULAS FOR STK1100 AND STK1110 LIST OF FORMULAS FOR STK1100 AND STK1110 (Version of 11. November 2015) 1. Probability Let A, B, A 1, A 2,..., B 1, B 2,... be events, that is, subsets of a sample space Ω. a) Axioms: A probability function

More information

4. CONTINUOUS RANDOM VARIABLES

4. CONTINUOUS RANDOM VARIABLES IA Probability Lent Term 4 CONTINUOUS RANDOM VARIABLES 4 Introduction Up to now we have restricted consideration to sample spaces Ω which are finite, or countable; we will now relax that assumption We

More information

Partial Solutions for h4/2014s: Sampling Distributions

Partial Solutions for h4/2014s: Sampling Distributions 27 Partial Solutions for h4/24s: Sampling Distributions ( Let X and X 2 be two independent random variables, each with the same probability distribution given as follows. f(x 2 e x/2, x (a Compute the

More information

STAT Chapter 5 Continuous Distributions

STAT Chapter 5 Continuous Distributions STAT 270 - Chapter 5 Continuous Distributions June 27, 2012 Shirin Golchi () STAT270 June 27, 2012 1 / 59 Continuous rv s Definition: X is a continuous rv if it takes values in an interval, i.e., range

More information

BASICS OF PROBABILITY

BASICS OF PROBABILITY October 10, 2018 BASICS OF PROBABILITY Randomness, sample space and probability Probability is concerned with random experiments. That is, an experiment, the outcome of which cannot be predicted with certainty,

More information

x. Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ 2 ).

x. Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ 2 ). .8.6 µ =, σ = 1 µ = 1, σ = 1 / µ =, σ =.. 3 1 1 3 x Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ ). The Gaussian distribution Probably the most-important distribution in all of statistics

More information

Stat 5101 Notes: Brand Name Distributions

Stat 5101 Notes: Brand Name Distributions Stat 5101 Notes: Brand Name Distributions Charles J. Geyer September 5, 2012 Contents 1 Discrete Uniform Distribution 2 2 General Discrete Uniform Distribution 2 3 Uniform Distribution 3 4 General Uniform

More information

Probability Background

Probability Background Probability Background Namrata Vaswani, Iowa State University August 24, 2015 Probability recap 1: EE 322 notes Quick test of concepts: Given random variables X 1, X 2,... X n. Compute the PDF of the second

More information

Sampling Distributions

Sampling Distributions Sampling Distributions In statistics, a random sample is a collection of independent and identically distributed (iid) random variables, and a sampling distribution is the distribution of a function of

More information

EE4601 Communication Systems

EE4601 Communication Systems EE4601 Communication Systems Week 2 Review of Probability, Important Distributions 0 c 2011, Georgia Institute of Technology (lect2 1) Conditional Probability Consider a sample space that consists of two

More information

f X, Y (x, y)dx (x), where f(x,y) is the joint pdf of X and Y. (x) dx

f X, Y (x, y)dx (x), where f(x,y) is the joint pdf of X and Y. (x) dx INDEPENDENCE, COVARIANCE AND CORRELATION Independence: Intuitive idea of "Y is independent of X": The distribution of Y doesn't depend on the value of X. In terms of the conditional pdf's: "f(y x doesn't

More information

THE HILBERT SPACE L2

THE HILBERT SPACE L2 THE HILBERT SPACE L Definition: Let (Ω,A,P be a probability space. The set of all random variables X:Ω satisfying is denoted as L. EX < Remark: EX < implies that E X < (or equivalently that EX, because

More information

Recall that if X 1,...,X n are random variables with finite expectations, then. The X i can be continuous or discrete or of any other type.

Recall that if X 1,...,X n are random variables with finite expectations, then. The X i can be continuous or discrete or of any other type. Expectations of Sums of Random Variables STAT/MTHE 353: 4 - More on Expectations and Variances T. Linder Queen s University Winter 017 Recall that if X 1,...,X n are random variables with finite expectations,

More information

The Multivariate Normal Distribution 1

The Multivariate Normal Distribution 1 The Multivariate Normal Distribution 1 STA 302 Fall 2014 1 See last slide for copyright information. 1 / 37 Overview 1 Moment-generating Functions 2 Definition 3 Properties 4 χ 2 and t distributions 2

More information

Stat 5101 Notes: Algorithms

Stat 5101 Notes: Algorithms Stat 5101 Notes: Algorithms Charles J. Geyer January 22, 2016 Contents 1 Calculating an Expectation or a Probability 3 1.1 From a PMF........................... 3 1.2 From a PDF...........................

More information

8 - Continuous random vectors

8 - Continuous random vectors 8-1 Continuous random vectors S. Lall, Stanford 2011.01.25.01 8 - Continuous random vectors Mean-square deviation Mean-variance decomposition Gaussian random vectors The Gamma function The χ 2 distribution

More information

EXPECTED VALUE of a RV. corresponds to the average value one would get for the RV when repeating the experiment, =0.

EXPECTED VALUE of a RV. corresponds to the average value one would get for the RV when repeating the experiment, =0. EXPECTED VALUE of a RV corresponds to the average value one would get for the RV when repeating the experiment, independently, infinitely many times. Sample (RIS) of n values of X (e.g. More accurately,

More information

Part IA Probability. Theorems. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Theorems. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Theorems Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

MATH c UNIVERSITY OF LEEDS Examination for the Module MATH2715 (January 2015) STATISTICAL METHODS. Time allowed: 2 hours

MATH c UNIVERSITY OF LEEDS Examination for the Module MATH2715 (January 2015) STATISTICAL METHODS. Time allowed: 2 hours MATH2750 This question paper consists of 8 printed pages, each of which is identified by the reference MATH275. All calculators must carry an approval sticker issued by the School of Mathematics. c UNIVERSITY

More information

III - MULTIVARIATE RANDOM VARIABLES

III - MULTIVARIATE RANDOM VARIABLES Computational Methods and advanced Statistics Tools III - MULTIVARIATE RANDOM VARIABLES A random vector, or multivariate random variable, is a vector of n scalar random variables. The random vector is

More information

Bivariate distributions

Bivariate distributions Bivariate distributions 3 th October 017 lecture based on Hogg Tanis Zimmerman: Probability and Statistical Inference (9th ed.) Bivariate Distributions of the Discrete Type The Correlation Coefficient

More information

2 (Statistics) Random variables

2 (Statistics) Random variables 2 (Statistics) Random variables References: DeGroot and Schervish, chapters 3, 4 and 5; Stirzaker, chapters 4, 5 and 6 We will now study the main tools use for modeling experiments with unknown outcomes

More information

Stat 5101 Notes: Algorithms (thru 2nd midterm)

Stat 5101 Notes: Algorithms (thru 2nd midterm) Stat 5101 Notes: Algorithms (thru 2nd midterm) Charles J. Geyer October 18, 2012 Contents 1 Calculating an Expectation or a Probability 2 1.1 From a PMF........................... 2 1.2 From a PDF...........................

More information

The Multivariate Gaussian Distribution

The Multivariate Gaussian Distribution The Multivariate Gaussian Distribution Chuong B. Do October, 8 A vector-valued random variable X = T X X n is said to have a multivariate normal or Gaussian) distribution with mean µ R n and covariance

More information

Chapter 4. Chapter 4 sections

Chapter 4. Chapter 4 sections Chapter 4 sections 4.1 Expectation 4.2 Properties of Expectations 4.3 Variance 4.4 Moments 4.5 The Mean and the Median 4.6 Covariance and Correlation 4.7 Conditional Expectation SKIP: 4.8 Utility Expectation

More information

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Definitions Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

Introduction to Probability and Stocastic Processes - Part I

Introduction to Probability and Stocastic Processes - Part I Introduction to Probability and Stocastic Processes - Part I Lecture 2 Henrik Vie Christensen vie@control.auc.dk Department of Control Engineering Institute of Electronic Systems Aalborg University Denmark

More information

Exam 2. Jeremy Morris. March 23, 2006

Exam 2. Jeremy Morris. March 23, 2006 Exam Jeremy Morris March 3, 006 4. Consider a bivariate normal population with µ 0, µ, σ, σ and ρ.5. a Write out the bivariate normal density. The multivariate normal density is defined by the following

More information

16.584: Random Vectors

16.584: Random Vectors 1 16.584: Random Vectors Define X : (X 1, X 2,..X n ) T : n-dimensional Random Vector X 1 : X(t 1 ): May correspond to samples/measurements Generalize definition of PDF: F X (x) = P[X 1 x 1, X 2 x 2,...X

More information

Stat410 Probability and Statistics II (F16)

Stat410 Probability and Statistics II (F16) Stat4 Probability and Statistics II (F6 Exponential, Poisson and Gamma Suppose on average every /λ hours, a Stochastic train arrives at the Random station. Further we assume the waiting time between two

More information

Statistics for Economists Lectures 6 & 7. Asrat Temesgen Stockholm University

Statistics for Economists Lectures 6 & 7. Asrat Temesgen Stockholm University Statistics for Economists Lectures 6 & 7 Asrat Temesgen Stockholm University 1 Chapter 4- Bivariate Distributions 41 Distributions of two random variables Definition 41-1: Let X and Y be two random variables

More information

18 Bivariate normal distribution I

18 Bivariate normal distribution I 8 Bivariate normal distribution I 8 Example Imagine firing arrows at a target Hopefully they will fall close to the target centre As we fire more arrows we find a high density near the centre and fewer

More information

Notes on Random Vectors and Multivariate Normal

Notes on Random Vectors and Multivariate Normal MATH 590 Spring 06 Notes on Random Vectors and Multivariate Normal Properties of Random Vectors If X,, X n are random variables, then X = X,, X n ) is a random vector, with the cumulative distribution

More information

Class 8 Review Problems solutions, 18.05, Spring 2014

Class 8 Review Problems solutions, 18.05, Spring 2014 Class 8 Review Problems solutions, 8.5, Spring 4 Counting and Probability. (a) Create an arrangement in stages and count the number of possibilities at each stage: ( ) Stage : Choose three of the slots

More information

Covariance. Lecture 20: Covariance / Correlation & General Bivariate Normal. Covariance, cont. Properties of Covariance

Covariance. Lecture 20: Covariance / Correlation & General Bivariate Normal. Covariance, cont. Properties of Covariance Covariance Lecture 0: Covariance / Correlation & General Bivariate Normal Sta30 / Mth 30 We have previously discussed Covariance in relation to the variance of the sum of two random variables Review Lecture

More information

THE QUEEN S UNIVERSITY OF BELFAST

THE QUEEN S UNIVERSITY OF BELFAST THE QUEEN S UNIVERSITY OF BELFAST 0SOR20 Level 2 Examination Statistics and Operational Research 20 Probability and Distribution Theory Wednesday 4 August 2002 2.30 pm 5.30 pm Examiners { Professor R M

More information

MAS223 Statistical Modelling and Inference Examples

MAS223 Statistical Modelling and Inference Examples Chapter MAS3 Statistical Modelling and Inference Examples Example : Sample spaces and random variables. Let S be the sample space for the experiment of tossing two coins; i.e. Define the random variables

More information

1 Solution to Problem 2.1

1 Solution to Problem 2.1 Solution to Problem 2. I incorrectly worked this exercise instead of 2.2, so I decided to include the solution anyway. a) We have X Y /3, which is a - function. It maps the interval, ) where X lives) onto

More information

Week 10 Worksheet. Math 4653, Section 001 Elementary Probability Fall Ice Breaker Question: Do you prefer waffles or pancakes?

Week 10 Worksheet. Math 4653, Section 001 Elementary Probability Fall Ice Breaker Question: Do you prefer waffles or pancakes? Week 10 Worksheet Ice Breaker Question: Do you prefer waffles or pancakes? 1. Suppose X, Y have joint density f(x, y) = 12 7 (xy + y2 ) on 0 < x < 1, 0 < y < 1. (a) What are the marginal densities of X

More information

Miscellaneous Errors in the Chapter 6 Solutions

Miscellaneous Errors in the Chapter 6 Solutions Miscellaneous Errors in the Chapter 6 Solutions 3.30(b In this problem, early printings of the second edition use the beta(a, b distribution, but later versions use the Poisson(λ distribution. If your

More information

Stat 5101 Notes: Brand Name Distributions

Stat 5101 Notes: Brand Name Distributions Stat 5101 Notes: Brand Name Distributions Charles J. Geyer February 14, 2003 1 Discrete Uniform Distribution DiscreteUniform(n). Discrete. Rationale Equally likely outcomes. The interval 1, 2,..., n of

More information

Expectation and Variance

Expectation and Variance Expectation and Variance August 22, 2017 STAT 151 Class 3 Slide 1 Outline of Topics 1 Motivation 2 Expectation - discrete 3 Transformations 4 Variance - discrete 5 Continuous variables 6 Covariance STAT

More information

Probability- the good parts version. I. Random variables and their distributions; continuous random variables.

Probability- the good parts version. I. Random variables and their distributions; continuous random variables. Probability- the good arts version I. Random variables and their distributions; continuous random variables. A random variable (r.v) X is continuous if its distribution is given by a robability density

More information

Elements of Probability Theory

Elements of Probability Theory Short Guides to Microeconometrics Fall 2016 Kurt Schmidheiny Unversität Basel Elements of Probability Theory Contents 1 Random Variables and Distributions 2 1.1 Univariate Random Variables and Distributions......

More information

MATH2715: Statistical Methods

MATH2715: Statistical Methods MATH2715: Statistical Methods Exercises IV (based on lectures 7-8, work week 5, hand in lecture Mon 30 Oct) ALL questions count towards the continuous assessment for this module. Q1. If a random variable

More information

Random Vectors 1. STA442/2101 Fall See last slide for copyright information. 1 / 30

Random Vectors 1. STA442/2101 Fall See last slide for copyright information. 1 / 30 Random Vectors 1 STA442/2101 Fall 2017 1 See last slide for copyright information. 1 / 30 Background Reading: Renscher and Schaalje s Linear models in statistics Chapter 3 on Random Vectors and Matrices

More information

Continuous Random Variables

Continuous Random Variables Continuous Random Variables Recall: For discrete random variables, only a finite or countably infinite number of possible values with positive probability. Often, there is interest in random variables

More information

Chapter 4. Multivariate Distributions. Obviously, the marginal distributions may be obtained easily from the joint distribution:

Chapter 4. Multivariate Distributions. Obviously, the marginal distributions may be obtained easily from the joint distribution: 4.1 Bivariate Distributions. Chapter 4. Multivariate Distributions For a pair r.v.s (X,Y ), the Joint CDF is defined as F X,Y (x, y ) = P (X x,y y ). Obviously, the marginal distributions may be obtained

More information

Statistics 3657 : Moment Generating Functions

Statistics 3657 : Moment Generating Functions Statistics 3657 : Moment Generating Functions A useful tool for studying sums of independent random variables is generating functions. course we consider moment generating functions. In this Definition

More information

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems Review of Basic Probability The fundamentals, random variables, probability distributions Probability mass/density functions

More information

Continuous Random Variables

Continuous Random Variables 1 / 24 Continuous Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay February 27, 2013 2 / 24 Continuous Random Variables

More information

Moments. Raw moment: February 25, 2014 Normalized / Standardized moment:

Moments. Raw moment: February 25, 2014 Normalized / Standardized moment: Moments Lecture 10: Central Limit Theorem and CDFs Sta230 / Mth 230 Colin Rundel Raw moment: Central moment: µ n = EX n ) µ n = E[X µ) 2 ] February 25, 2014 Normalized / Standardized moment: µ n σ n Sta230

More information

1. Point Estimators, Review

1. Point Estimators, Review AMS571 Prof. Wei Zhu 1. Point Estimators, Review Example 1. Let be a random sample from. Please find a good point estimator for Solutions. There are the typical estimators for and. Both are unbiased estimators.

More information

Probability Lecture III (August, 2006)

Probability Lecture III (August, 2006) robability Lecture III (August, 2006) 1 Some roperties of Random Vectors and Matrices We generalize univariate notions in this section. Definition 1 Let U = U ij k l, a matrix of random variables. Suppose

More information