Motor Controller. A block diagram for the motor with a feedback controller is shown below

Size: px
Start display at page:

Download "Motor Controller. A block diagram for the motor with a feedback controller is shown below"

Transcription

1 Motor Controller A block diagram for the motor with a feedback controller is shown below A few things to note 1. In this modeling problem, there is no established method or set of criteria for selecting your new poles. You always want to stabilize a system, as needed. For more refined criteria, we had one possible method in the previous homework. That is one example of a number of methods that you could apply. You will encounter such additional pole placement methods if you take additional courses in control theory. Barring having specific criteria, it is perfectly acceptable to use trial and error to select poles (eigenvalues) for this modeling problem. 2. We have only done minimal interpretation of the feedback gain matrix K. You should certainly be able to recognize that larger numerical values in the K matrix imply larger gains, which imply more physical effort/energy/power from the actual feedback part of the system, if you were to build it. You can also gain insight into what the elements of K might mean by performing a unit analysis of the physical meaning of the state variables and the element in K that multiples each state variable. 3. For this motor problem, the original motor system has an eigenvalue of 0. This implies a behavior, for that mode, of xi(0)e 0t = xi(0) = constant. This is how you get constant velocity for normal operation of a motor! If you remove this 0 eigenvalue in your new pole selection, then you make all modes have exponential decay

2 meaning there is no constant velocity, but rather a velocity of 0 which means the motor is now operating as a servo. This is fine, if this is what you want, but you do need to be aware of this fact. a. This is to say that if you remove the 0 (zero) eigenvalue from the closedloop system behavior, then you make the motor behave as a servo, with the motor rotor being moved to a new position and then stopping (so, the velocity goes to 0). 4. Note that you do need to confirm that a system is controllable before you go ahead and build and implement a feedback controller. The behavior of the motor with and without the feedback controller is shown in the graphs below. With new (somewhat arbitrary, with some trial and error) system poles selection (for the matrix (A BK)) and the calculation of the K matrix as shown below, we see the motor velocity reach its asymptotic value more quickly than without the controller. poles = [0-1 -2]; K = place(a, B, poles) Figure 1: Open-loop motor behavior Figure 2: Closed-loop motor behavior

3 Servo Behavior With poles defined, for example, as: poles = [ ]; % -> removing 0 eigenvalue the motor behaves as a servo, as shown below. The velocity increases in response to the input, to move the motor shaft to the new, desired position, and then the current and the velocity drop (decay as dictated by the new poles) to zero, and the motor remains in the position. Figure 3: Motor behavior with feedback control and no 0 eigenvalue

4 Motor Controller Design, with Observer (expanding upon work above) To add an observer (or state estimator) to the motor model, insert it into the closed-loop control feedback loop between the output of the motor (theta) and the input to the feedback gain matrix, K. o The observer takes the system input and output ( U and Y ) as inputs, reconstructs the original system matrices, and creates a dynamic estimate of the state vector. o The observer is a dynamic system all unto itself with the error (the difference between the actual output and the estimated output) as the dynamic variable. I have split the state vector into its three components in the model you do not need to do this. I have also added noise into the output signal you definitely do not need to do this. Finally (you also do not need to do this), to have some initial difference between the actual and estimated state vector I gave the actual state variable of theta a nonzero initial condition, and used the conventional x0 hat = 0 for the observer estimates of the state variables.

5 The behavior of the observer is shown in the plots below. The first two plots show the system behavior without any noise. The second two show the system behavior with noise added to the output observations and non-zero initial condition for the rotor position. With no noise and zero initial conditions, the observer is able to create a perfect estimate of the states. This is shown in the first two figures below. Next noise is added to the system output observations and the rotor is given a non-zero initial condition. The second two plots below show the system behavior under these conditions, and in particular show that the state estimates do track the actual states, but with the amount of noise I have added into the output observations, and the system continuing to evolve, my estimator is never quite able to perfectly estimate the state vector.

6 Figs 1 & 2: Perfect state vector estimates under perfect information

7 Figs. 3 & 4: Motor behavior with theta_init > 0, and with noise in the output observations

EL 625 Lecture 10. Pole Placement and Observer Design. ẋ = Ax (1)

EL 625 Lecture 10. Pole Placement and Observer Design. ẋ = Ax (1) EL 625 Lecture 0 EL 625 Lecture 0 Pole Placement and Observer Design Pole Placement Consider the system ẋ Ax () The solution to this system is x(t) e At x(0) (2) If the eigenvalues of A all lie in the

More information

Chap 8. State Feedback and State Estimators

Chap 8. State Feedback and State Estimators Chap 8. State Feedback and State Estimators Outlines Introduction State feedback Regulation and tracking State estimator Feedback from estimated states State feedback-multivariable case State estimators-multivariable

More information

10/8/2015. Control Design. Pole-placement by state-space methods. Process to be controlled. State controller

10/8/2015. Control Design. Pole-placement by state-space methods. Process to be controlled. State controller Pole-placement by state-space methods Control Design To be considered in controller design * Compensate the effect of load disturbances * Reduce the effect of measurement noise * Setpoint following (target

More information

Here represents the impulse (or delta) function. is an diagonal matrix of intensities, and is an diagonal matrix of intensities.

Here represents the impulse (or delta) function. is an diagonal matrix of intensities, and is an diagonal matrix of intensities. 19 KALMAN FILTER 19.1 Introduction In the previous section, we derived the linear quadratic regulator as an optimal solution for the fullstate feedback control problem. The inherent assumption was that

More information

6.302 Feedback Systems Recitation 17: Black s Formula Revisited, and Lead Compensation Prof. Joel L. Dawson

6.302 Feedback Systems Recitation 17: Black s Formula Revisited, and Lead Compensation Prof. Joel L. Dawson Recitation 7: Black s Formula Revisited, and Lead Compensation By now, applying Black s Formula to a feedback system is almost a reflex: x(s) G(s) Y(s) H(s) This formula actually lends itself rather naturally

More information

Digital Control: Part 2. ENGI 7825: Control Systems II Andrew Vardy

Digital Control: Part 2. ENGI 7825: Control Systems II Andrew Vardy Digital Control: Part 2 ENGI 7825: Control Systems II Andrew Vardy Mapping the s-plane onto the z-plane We re almost ready to design a controller for a DT system, however we will have to consider where

More information

Separation Principle & Full-Order Observer Design

Separation Principle & Full-Order Observer Design Separation Principle & Full-Order Observer Design Suppose you want to design a feedback controller. Using full-state feedback you can place the poles of the closed-loop system at will. U Plant Kx If the

More information

Linear State Feedback Controller Design

Linear State Feedback Controller Design Assignment For EE5101 - Linear Systems Sem I AY2010/2011 Linear State Feedback Controller Design Phang Swee King A0033585A Email: king@nus.edu.sg NGS/ECE Dept. Faculty of Engineering National University

More information

Control Systems. State Estimation.

Control Systems. State Estimation. State Estimation chibum@seoultech.ac.kr Outline Dominant pole design Symmetric root locus State estimation We are able to place the CLPs arbitrarily by feeding back all the states: u = Kx. But these may

More information

Digital Control Systems State Feedback Control

Digital Control Systems State Feedback Control Digital Control Systems State Feedback Control Illustrating the Effects of Closed-Loop Eigenvalue Location and Control Saturation for a Stable Open-Loop System Continuous-Time System Gs () Y() s 1 = =

More information

SRV02-Series Rotary Experiment # 1. Position Control. Student Handout

SRV02-Series Rotary Experiment # 1. Position Control. Student Handout SRV02-Series Rotary Experiment # 1 Position Control Student Handout SRV02-Series Rotary Experiment # 1 Position Control Student Handout 1. Objectives The objective in this experiment is to introduce the

More information

Mutual Inductance. The field lines flow from a + charge to a - change

Mutual Inductance. The field lines flow from a + charge to a - change Capacitors Mutual Inductance Since electrical charges do exist, electric field lines have a starting point and an ending point. For example, if you have a + and a - change, the field lines would look something

More information

Exponential Functions

Exponential Functions Exponential Functions MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: recognize and evaluate exponential functions with base a,

More information

Laboratory Exercise 1 DC servo

Laboratory Exercise 1 DC servo Laboratory Exercise DC servo Per-Olof Källén ø 0,8 POWER SAT. OVL.RESET POS.RESET Moment Reference ø 0,5 ø 0,5 ø 0,5 ø 0,65 ø 0,65 Int ø 0,8 ø 0,8 Σ k Js + d ø 0,8 s ø 0 8 Off Off ø 0,8 Ext. Int. + x0,

More information

Lecture 6 Positive Definite Matrices

Lecture 6 Positive Definite Matrices Linear Algebra Lecture 6 Positive Definite Matrices Prof. Chun-Hung Liu Dept. of Electrical and Computer Engineering National Chiao Tung University Spring 2017 2017/6/8 Lecture 6: Positive Definite Matrices

More information

MAE 143B - Homework 9

MAE 143B - Homework 9 MAE 43B - Homework 9 7.2 2 2 3.8.6.4.2.2 9 8 2 2 3 a) G(s) = (s+)(s+).4.6.8.2.2.4.6.8. Polar plot; red for negative ; no encirclements of, a.s. under unit feedback... 2 2 3. 4 9 2 2 3 h) G(s) = s+ s(s+)..2.4.6.8.2.4

More information

Computer Problems for Fourier Series and Transforms

Computer Problems for Fourier Series and Transforms Computer Problems for Fourier Series and Transforms 1. Square waves are frequently used in electronics and signal processing. An example is shown below. 1 π < x < 0 1 0 < x < π y(x) = 1 π < x < 2π... and

More information

Equal Pitch and Unequal Pitch:

Equal Pitch and Unequal Pitch: Equal Pitch and Unequal Pitch: Equal-Pitch Multiple-Stack Stepper: For each rotor stack, there is a toothed stator segment around it, whose pitch angle is identical to that of the rotor (θs = θr). A stator

More information

Physics 6303 Lecture 22 November 7, There are numerous methods of calculating these residues, and I list them below. lim

Physics 6303 Lecture 22 November 7, There are numerous methods of calculating these residues, and I list them below. lim Physics 6303 Lecture 22 November 7, 208 LAST TIME:, 2 2 2, There are numerous methods of calculating these residues, I list them below.. We may calculate the Laurent series pick out the coefficient. 2.

More information

State Feedback Controller for Position Control of a Flexible Link

State Feedback Controller for Position Control of a Flexible Link Laboratory 12 Control Systems Laboratory ECE3557 Laboratory 12 State Feedback Controller for Position Control of a Flexible Link 12.1 Objective The objective of this laboratory is to design a full state

More information

Laboratory 11 Control Systems Laboratory ECE3557. State Feedback Controller for Position Control of a Flexible Joint

Laboratory 11 Control Systems Laboratory ECE3557. State Feedback Controller for Position Control of a Flexible Joint Laboratory 11 State Feedback Controller for Position Control of a Flexible Joint 11.1 Objective The objective of this laboratory is to design a full state feedback controller for endpoint position control

More information

EEE582 Homework Problems

EEE582 Homework Problems EEE582 Homework Problems HW. Write a state-space realization of the linearized model for the cruise control system around speeds v = 4 (Section.3, http://tsakalis.faculty.asu.edu/notes/models.pdf). Use

More information

Linear Programming and its Extensions Prof. Prabha Shrama Department of Mathematics and Statistics Indian Institute of Technology, Kanpur

Linear Programming and its Extensions Prof. Prabha Shrama Department of Mathematics and Statistics Indian Institute of Technology, Kanpur Linear Programming and its Extensions Prof. Prabha Shrama Department of Mathematics and Statistics Indian Institute of Technology, Kanpur Lecture No. # 03 Moving from one basic feasible solution to another,

More information

Control Design. Lecture 9: State Feedback and Observers. Two Classes of Control Problems. State Feedback: Problem Formulation

Control Design. Lecture 9: State Feedback and Observers. Two Classes of Control Problems. State Feedback: Problem Formulation Lecture 9: State Feedback and s [IFAC PB Ch 9] State Feedback s Disturbance Estimation & Integral Action Control Design Many factors to consider, for example: Attenuation of load disturbances Reduction

More information

Chapter 18. Remarks on partial differential equations

Chapter 18. Remarks on partial differential equations Chapter 8. Remarks on partial differential equations If we try to analyze heat flow or vibration in a continuous system such as a building or an airplane, we arrive at a kind of infinite system of ordinary

More information

Intro. Computer Control Systems: F9

Intro. Computer Control Systems: F9 Intro. Computer Control Systems: F9 State-feedback control and observers Dave Zachariah Dept. Information Technology, Div. Systems and Control 1 / 21 dave.zachariah@it.uu.se F8: Quiz! 2 / 21 dave.zachariah@it.uu.se

More information

Digital Pendulum Control Experiments

Digital Pendulum Control Experiments EE-341L CONTROL SYSTEMS LAB 2013 Digital Pendulum Control Experiments Ahmed Zia Sheikh 2010030 M. Salman Khalid 2010235 Suleman Belal Kazi 2010341 TABLE OF CONTENTS ABSTRACT...2 PENDULUM OVERVIEW...3 EXERCISE

More information

Chapter 3. State Feedback - Pole Placement. Motivation

Chapter 3. State Feedback - Pole Placement. Motivation Chapter 3 State Feedback - Pole Placement Motivation Whereas classical control theory is based on output feedback, this course mainly deals with control system design by state feedback. This model-based

More information

Linear Control Systems

Linear Control Systems Linear Control Systems Project session 3: Design in state-space 6 th October 2017 Kathleen Coutisse kathleen.coutisse@student.ulg.ac.be 1 Content 1. Closed loop system 2. State feedback 3. Observer 4.

More information

2.010 Fall 2000 Solution of Homework Assignment 1

2.010 Fall 2000 Solution of Homework Assignment 1 2. Fall 2 Solution of Homework Assignment. Compact Disk Player. This is essentially a reprise of Problems and 2 from the Fall 999 2.3 Homework Assignment 7. t is included here to encourage you to review

More information

Answers for Homework #6 for CST P

Answers for Homework #6 for CST P Answers for Homework #6 for CST 407 02P Assigned 5/10/07, Due 5/17/07 Constructing Evans root locus diagrams in Scilab Root Locus It is easy to construct a root locus of a transfer function in Scilab.

More information

Feedback Control of Linear SISO systems. Process Dynamics and Control

Feedback Control of Linear SISO systems. Process Dynamics and Control Feedback Control of Linear SISO systems Process Dynamics and Control 1 Open-Loop Process The study of dynamics was limited to open-loop systems Observe process behavior as a result of specific input signals

More information

X 2 3. Derive state transition matrix and its properties [10M] 4. (a) Derive a state space representation of the following system [5M] 1

X 2 3. Derive state transition matrix and its properties [10M] 4. (a) Derive a state space representation of the following system [5M] 1 QUESTION BANK 6 SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 5758 QUESTION BANK (DESCRIPTIVE) Subject with Code :SYSTEM THEORY(6EE75) Year &Sem: I-M.Tech& I-Sem UNIT-I

More information

Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati

Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati Module - 2 Uniform Flow Lecture - 1 Introduction to Uniform Flow Good morning everyone,

More information

Quanser NI-ELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control. DC Motor Control Trainer (DCMCT) Student Manual

Quanser NI-ELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control. DC Motor Control Trainer (DCMCT) Student Manual Quanser NI-ELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control DC Motor Control Trainer (DCMCT) Student Manual Table of Contents 1 Laboratory Objectives1 2 References1 3 DCMCT Plant

More information

Reglerteknik, TNG028. Lecture 1. Anna Lombardi

Reglerteknik, TNG028. Lecture 1. Anna Lombardi Reglerteknik, TNG028 Lecture 1 Anna Lombardi Today lecture We will try to answer the following questions: What is automatic control? Where can we nd automatic control? Why do we need automatic control?

More information

Advanced Control Theory

Advanced Control Theory State Feedback Control Design chibum@seoultech.ac.kr Outline State feedback control design Benefits of CCF 2 Conceptual steps in controller design We begin by considering the regulation problem the task

More information

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Homework 8

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Homework 8 EECS 6B Designing Information Devices and Systems II Fall 28 Elad Alon and Miki Lustig Homework 8 his homework is due on Wednesday, October 24, 28, at :59PM. Self-grades are due on Monday, October 29,

More information

Control Systems Design

Control Systems Design ELEC4410 Control Systems Design Lecture 18: State Feedback Tracking and State Estimation Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 18:

More information

Minimum Fuel Optimal Control Example For A Scalar System

Minimum Fuel Optimal Control Example For A Scalar System Minimum Fuel Optimal Control Example For A Scalar System A. Problem Statement This example illustrates the minimum fuel optimal control problem for a particular first-order (scalar) system. The derivation

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.011: Introduction to Communication, Control and Signal Processing QUIZ 1, March 16, 2010 ANSWER BOOKLET

More information

Bangladesh University of Engineering and Technology. EEE 402: Control System I Laboratory

Bangladesh University of Engineering and Technology. EEE 402: Control System I Laboratory Bangladesh University of Engineering and Technology Electrical and Electronic Engineering Department EEE 402: Control System I Laboratory Experiment No. 4 a) Effect of input waveform, loop gain, and system

More information

Inverted Pendulum: State-Space Methods for Controller Design

Inverted Pendulum: State-Space Methods for Controller Design 1 de 12 18/10/2015 22:45 Tips Effects TIPS ABOUT BASICS HARDWARE INDEX NEXT INTRODUCTION CRUISE CONTROL MOTOR SPEED MOTOR POSITION SYSTEM MODELING ANALYSIS Inverted Pendulum: State-Space Methods for Controller

More information

(Refer Slide Time: 00:32)

(Refer Slide Time: 00:32) Nonlinear Dynamical Systems Prof. Madhu. N. Belur and Prof. Harish. K. Pillai Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 12 Scilab simulation of Lotka Volterra

More information

Page 52. Lecture 3: Inner Product Spaces Dual Spaces, Dirac Notation, and Adjoints Date Revised: 2008/10/03 Date Given: 2008/10/03

Page 52. Lecture 3: Inner Product Spaces Dual Spaces, Dirac Notation, and Adjoints Date Revised: 2008/10/03 Date Given: 2008/10/03 Page 5 Lecture : Inner Product Spaces Dual Spaces, Dirac Notation, and Adjoints Date Revised: 008/10/0 Date Given: 008/10/0 Inner Product Spaces: Definitions Section. Mathematical Preliminaries: Inner

More information

)_, [s -I J-' I [-,+a IJ [~ s(!+a)]

)_, [s -I J-' I [-,+a IJ [~ s(!+a)] 70 CONTROL SYSTEM DESIGN 11! is known in mathematical literature as the resolvent of A. In engineering literature this matrix has been called the characteristic frequency matrix[ I] or simply the characteristic

More information

sc Control Systems Design Q.1, Sem.1, Ac. Yr. 2010/11

sc Control Systems Design Q.1, Sem.1, Ac. Yr. 2010/11 sc46 - Control Systems Design Q Sem Ac Yr / Mock Exam originally given November 5 9 Notes: Please be reminded that only an A4 paper with formulas may be used during the exam no other material is to be

More information

The Control of an Inverted Pendulum

The Control of an Inverted Pendulum The Control of an Inverted Pendulum AAE 364L This experiment is devoted to the inverted pendulum. Clearly, the inverted pendulum will fall without any control. We will design a controller to balance the

More information

PID Control. Objectives

PID Control. Objectives PID Control Objectives The objective of this lab is to study basic design issues for proportional-integral-derivative control laws. Emphasis is placed on transient responses and steady-state errors. The

More information

CHAPTER 4 STATE FEEDBACK AND OUTPUT FEEDBACK CONTROLLERS

CHAPTER 4 STATE FEEDBACK AND OUTPUT FEEDBACK CONTROLLERS 54 CHAPTER 4 STATE FEEDBACK AND OUTPUT FEEDBACK CONTROLLERS 4.1 INTRODUCTION In control theory, a controller is a device which monitors and affects the operational conditions of a given dynamic system.

More information

4. Linear Systems. 4A. Review of Matrices A-1. Verify that =

4. Linear Systems. 4A. Review of Matrices A-1. Verify that = 4. Linear Systems 4A. Review of Matrices 0 2 0 0 0 4A-. Verify that 0 2 =. 2 3 2 6 0 2 2 0 4A-2. If A = and B =, show that AB BA. 3 2 4A-3. Calculate A 2 2 if A =, and check your answer by showing that

More information

EE 474 Lab Part 2: Open-Loop and Closed-Loop Control (Velocity Servo)

EE 474 Lab Part 2: Open-Loop and Closed-Loop Control (Velocity Servo) Contents EE 474 Lab Part 2: Open-Loop and Closed-Loop Control (Velocity Servo) 1 Introduction 1 1.1 Discovery learning in the Controls Teaching Laboratory.............. 1 1.2 A Laboratory Notebook...............................

More information

CSE 554 Lecture 7: Alignment

CSE 554 Lecture 7: Alignment CSE 554 Lecture 7: Alignment Fall 2012 CSE554 Alignment Slide 1 Review Fairing (smoothing) Relocating vertices to achieve a smoother appearance Method: centroid averaging Simplification Reducing vertex

More information

Design Methods for Control Systems

Design Methods for Control Systems Design Methods for Control Systems Maarten Steinbuch TU/e Gjerrit Meinsma UT Dutch Institute of Systems and Control Winter term 2002-2003 Schedule November 25 MSt December 2 MSt Homework # 1 December 9

More information

R a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Force-current and Force-Voltage analogies.

R a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Force-current and Force-Voltage analogies. SET - 1 II B. Tech II Semester Supplementary Examinations Dec 01 1. a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Force-current and Force-Voltage analogies..

More information

4.0 Update Algorithms For Linear Closed-Loop Systems

4.0 Update Algorithms For Linear Closed-Loop Systems 4. Update Algorithms For Linear Closed-Loop Systems A controller design methodology has been developed that combines an adaptive finite impulse response (FIR) filter with feedback. FIR filters are used

More information

" Closed Loop Control with Second Derivative Gain Saves the Day Peter Nachtwey, President, Delta Computer Systems

 Closed Loop Control with Second Derivative Gain Saves the Day Peter Nachtwey, President, Delta Computer Systems " Closed Loop Control with Second Derivative Gain Saves the Day Peter Nachtwey, President, Delta Computer Systems Room II Thursday Sept. 29, 2016 2:00 pm Closed Loop Control Position-Speed Pressure/Force

More information

Stepping Motors. Chapter 11 L E L F L D

Stepping Motors. Chapter 11 L E L F L D Chapter 11 Stepping Motors In the synchronous motor, the combination of sinusoidally distributed windings and sinusoidally time varying current produces a smoothly rotating magnetic field. We can eliminate

More information

Mth 65 Section 3.4 through 3.6

Mth 65 Section 3.4 through 3.6 Section 3.4 Square Root Functions The key to identifying the equation of a square root function is that the independent variable is under the radical. Which functions are square root functions? g( x) x

More information

Predictive Cascade Control of DC Motor

Predictive Cascade Control of DC Motor Volume 49, Number, 008 89 Predictive Cascade Control of DC Motor Alexandru MORAR Abstract: The paper deals with the predictive cascade control of an electrical drive intended for positioning applications.

More information

EE C128 / ME C134 Fall 2014 HW 9 Solutions. HW 9 Solutions. 10(s + 3) s(s + 2)(s + 5) G(s) =

EE C128 / ME C134 Fall 2014 HW 9 Solutions. HW 9 Solutions. 10(s + 3) s(s + 2)(s + 5) G(s) = 1. Pole Placement Given the following open-loop plant, HW 9 Solutions G(s) = 1(s + 3) s(s + 2)(s + 5) design the state-variable feedback controller u = Kx + r, where K = [k 1 k 2 k 3 ] is the feedback

More information

Full State Feedback for State Space Approach

Full State Feedback for State Space Approach Full State Feedback for State Space Approach State Space Equations Using Cramer s rule it can be shown that the characteristic equation of the system is : det[ si A] 0 Roots (for s) of the resulting polynomial

More information

a factors The exponential 0 is a special case. If b is any nonzero real number, then

a factors The exponential 0 is a special case. If b is any nonzero real number, then 0.1 Exponents The expression x a is an exponential expression with base x and exponent a. If the exponent a is a positive integer, then the expression is simply notation that counts how many times the

More information

State Feedback and State Estimators Linear System Theory and Design, Chapter 8.

State Feedback and State Estimators Linear System Theory and Design, Chapter 8. 1 Linear System Theory and Design, http://zitompul.wordpress.com 2 0 1 4 2 Homework 7: State Estimators (a) For the same system as discussed in previous slides, design another closed-loop state estimator,

More information

4. Linear Systems. 4A. Review of Matrices ) , show that AB BA (= A A A).

4. Linear Systems. 4A. Review of Matrices ) , show that AB BA (= A A A). 4A-. Verify that 4A-2. If A = 2 3 2 2 4A-3. Calculate A if A = and A A = I. 4. Linear Systems 4A. Review of Matrices 2 2 and B = = 3 2 6, show that AB BA. 2 2 2, and check your answer by showing that AA

More information

Two-Mass, Three-Spring Dynamic System Investigation Case Study

Two-Mass, Three-Spring Dynamic System Investigation Case Study Two-ass, Three-Spring Dynamic System Investigation Case Study easurements, Calculations, anufacturer's Specifications odel Parameter Identification Which Parameters to Identify? What Tests to Perform?

More information

Unit 7: Part 1: Sketching the Root Locus

Unit 7: Part 1: Sketching the Root Locus Root Locus Unit 7: Part 1: Sketching the Root Locus Engineering 5821: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland March 14, 2010 ENGI 5821 Unit 7: Root

More information

Numerical Methods. Root Finding

Numerical Methods. Root Finding Numerical Methods Solving Non Linear 1-Dimensional Equations Root Finding Given a real valued function f of one variable (say ), the idea is to find an such that: f() 0 1 Root Finding Eamples Find real

More information

CONTROL DESIGN FOR SET POINT TRACKING

CONTROL DESIGN FOR SET POINT TRACKING Chapter 5 CONTROL DESIGN FOR SET POINT TRACKING In this chapter, we extend the pole placement, observer-based output feedback design to solve tracking problems. By tracking we mean that the output is commanded

More information

EE Control Systems LECTURE 9

EE Control Systems LECTURE 9 Updated: Sunday, February, 999 EE - Control Systems LECTURE 9 Copyright FL Lewis 998 All rights reserved STABILITY OF LINEAR SYSTEMS We discuss the stability of input/output systems and of state-space

More information

Math 1320, Section 10 Quiz IV Solutions 20 Points

Math 1320, Section 10 Quiz IV Solutions 20 Points Math 1320, Section 10 Quiz IV Solutions 20 Points Please answer each question. To receive full credit you must show all work and give answers in simplest form. Cell phones and graphing calculators are

More information

Control Systems I. Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback. Readings: Emilio Frazzoli

Control Systems I. Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback. Readings: Emilio Frazzoli Control Systems I Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 13, 2017 E. Frazzoli (ETH)

More information

Chapter 9 Observers, Model-based Controllers 9. Introduction In here we deal with the general case where only a subset of the states, or linear combin

Chapter 9 Observers, Model-based Controllers 9. Introduction In here we deal with the general case where only a subset of the states, or linear combin Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A. Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter 9 Observers,

More information

Modeling and System Identification for a DC Servo

Modeling and System Identification for a DC Servo Modeling and System Identification for a DC Servo Kevin M. Passino and Nicanor Quijano Dept. Electrical Engineering, The Ohio State University 5 Neil Avenue, Columbus, OH 3-7 March 7, Abstract First, you

More information

Linear Experiment #11: LQR Control. Linear Flexible Joint Cart Plus Single Inverted Pendulum (LFJC+SIP) Student Handout

Linear Experiment #11: LQR Control. Linear Flexible Joint Cart Plus Single Inverted Pendulum (LFJC+SIP) Student Handout Linear Motion Servo Plants: IP01 or IP02 Linear Experiment #11: LQR Control Linear Flexible Joint Cart Plus Single Inverted Pendulum (LFJC+SIP) Student Handout Table of Contents 1. Objectives...1 2. Prerequisites...2

More information

MATH 320, WEEK 11: Eigenvalues and Eigenvectors

MATH 320, WEEK 11: Eigenvalues and Eigenvectors MATH 30, WEEK : Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors We have learned about several vector spaces which naturally arise from matrix operations In particular, we have learned about the

More information

3.4 Complex Zeros and the Fundamental Theorem of Algebra

3.4 Complex Zeros and the Fundamental Theorem of Algebra 86 Polynomial Functions 3.4 Complex Zeros and the Fundamental Theorem of Algebra In Section 3.3, we were focused on finding the real zeros of a polynomial function. In this section, we expand our horizons

More information

6 EIGENVALUES AND EIGENVECTORS

6 EIGENVALUES AND EIGENVECTORS 6 EIGENVALUES AND EIGENVECTORS INTRODUCTION TO EIGENVALUES 61 Linear equations Ax = b come from steady state problems Eigenvalues have their greatest importance in dynamic problems The solution of du/dt

More information

x n -2.5 Definition A list is a list of objects, where multiplicity is allowed, and order matters. For example, as lists

x n -2.5 Definition A list is a list of objects, where multiplicity is allowed, and order matters. For example, as lists Vectors, Linear Combinations, and Matrix-Vector Mulitiplication In this section, we introduce vectors, linear combinations, and matrix-vector multiplication The rest of the class will involve vectors,

More information

Systems and Control Theory Lecture Notes. Laura Giarré

Systems and Control Theory Lecture Notes. Laura Giarré Systems and Control Theory Lecture Notes Laura Giarré L. Giarré 2017-2018 Lesson 17: Model-based Controller Feedback Stabilization Observers Ackerman Formula Model-based Controller L. Giarré- Systems and

More information

EC Control Systems- Question bank

EC Control Systems- Question bank MODULE I Topic Question mark Automatic control & modeling, Transfer function Write the merits and demerits of open loop and closed loop Month &Year May 12 Regula tion Compare open loop system with closed

More information

CDS 101: Lecture 5-1 Reachability and State Space Feedback

CDS 101: Lecture 5-1 Reachability and State Space Feedback CDS 11: Lecture 5-1 Reachability and State Space Feedback Richard M. Murray 23 October 26 Goals: Define reachability of a control system Give tests for reachability of linear systems and apply to examples

More information

CONTROL OF DIGITAL SYSTEMS

CONTROL OF DIGITAL SYSTEMS AUTOMATIC CONTROL AND SYSTEM THEORY CONTROL OF DIGITAL SYSTEMS Gianluca Palli Dipartimento di Ingegneria dell Energia Elettrica e dell Informazione (DEI) Università di Bologna Email: gianluca.palli@unibo.it

More information

MAT1302F Mathematical Methods II Lecture 19

MAT1302F Mathematical Methods II Lecture 19 MAT302F Mathematical Methods II Lecture 9 Aaron Christie 2 April 205 Eigenvectors, Eigenvalues, and Diagonalization Now that the basic theory of eigenvalues and eigenvectors is in place most importantly

More information

Lab 3: Model based Position Control of a Cart

Lab 3: Model based Position Control of a Cart I. Objective Lab 3: Model based Position Control of a Cart The goal of this lab is to help understand the methodology to design a controller using the given plant dynamics. Specifically, we would do position

More information

Slope Fields: Graphing Solutions Without the Solutions

Slope Fields: Graphing Solutions Without the Solutions 8 Slope Fields: Graphing Solutions Without the Solutions Up to now, our efforts have been directed mainly towards finding formulas or equations describing solutions to given differential equations. Then,

More information

1 Steady State Error (30 pts)

1 Steady State Error (30 pts) Professor Fearing EECS C28/ME C34 Problem Set Fall 2 Steady State Error (3 pts) Given the following continuous time (CT) system ] ẋ = A x + B u = x + 2 7 ] u(t), y = ] x () a) Given error e(t) = r(t) y(t)

More information

MODERN CONTROL DESIGN

MODERN CONTROL DESIGN CHAPTER 8 MODERN CONTROL DESIGN The classical design techniques of Chapters 6 and 7 are based on the root-locus and frequency response that utilize only the plant output for feedback with a dynamic controller

More information

The Half-Life of a Bouncing Ball

The Half-Life of a Bouncing Ball The Half-Life of a Bouncing Ball INTRODUCTION This investigation asks the question of whether the height of a bouncing ball displays exponential decay and, if so, what is the half-life of the height? The

More information

State Feedback MAE 433 Spring 2012 Lab 7

State Feedback MAE 433 Spring 2012 Lab 7 State Feedback MAE 433 Spring 1 Lab 7 Prof. C. Rowley and M. Littman AIs: Brandt Belson, onathan Tu Princeton University April 4-7, 1 1 Overview This lab addresses the control of an inverted pendulum balanced

More information

EE 422G - Signals and Systems Laboratory

EE 422G - Signals and Systems Laboratory EE 4G - Signals and Systems Laboratory Lab 9 PID Control Kevin D. Donohue Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 April, 04 Objectives: Identify the

More information

Feedback Control part 2

Feedback Control part 2 Overview Feedback Control part EGR 36 April 19, 017 Concepts from EGR 0 Open- and closed-loop control Everything before chapter 7 are open-loop systems Transient response Design criteria Translate criteria

More information

Prentice Hall: Algebra 2 with Trigonometry 2006 Correlated to: California Mathematics Content Standards for Algebra II (Grades 9-12)

Prentice Hall: Algebra 2 with Trigonometry 2006 Correlated to: California Mathematics Content Standards for Algebra II (Grades 9-12) California Mathematics Content Standards for Algebra II (Grades 9-12) This discipline complements and expands the mathematical content and concepts of algebra I and geometry. Students who master algebra

More information

Exponential smoothing is, like the moving average forecast, a simple and often used forecasting technique

Exponential smoothing is, like the moving average forecast, a simple and often used forecasting technique EconS 450 Advanced Farm Management Forecasting Lecture 2 Simple Exponential Smoothing Exponential smoothing is, like the moving average forecast, a simple and often used forecasting technique Exponential

More information

1. The Transition Matrix (Hint: Recall that the solution to the linear equation ẋ = Ax + Bu is

1. The Transition Matrix (Hint: Recall that the solution to the linear equation ẋ = Ax + Bu is ECE 55, Fall 2007 Problem Set #4 Solution The Transition Matrix (Hint: Recall that the solution to the linear equation ẋ Ax + Bu is x(t) e A(t ) x( ) + e A(t τ) Bu(τ)dτ () This formula is extremely important

More information

Chapter 7 Control. Part Classical Control. Mobile Robotics - Prof Alonzo Kelly, CMU RI

Chapter 7 Control. Part Classical Control. Mobile Robotics - Prof Alonzo Kelly, CMU RI Chapter 7 Control 7.1 Classical Control Part 1 1 7.1 Classical Control Outline 7.1.1 Introduction 7.1.2 Virtual Spring Damper 7.1.3 Feedback Control 7.1.4 Model Referenced and Feedforward Control Summary

More information

DESIGN OF LINEAR STATE FEEDBACK CONTROL LAWS

DESIGN OF LINEAR STATE FEEDBACK CONTROL LAWS 7 DESIGN OF LINEAR STATE FEEDBACK CONTROL LAWS Previous chapters, by introducing fundamental state-space concepts and analysis tools, have now set the stage for our initial foray into statespace methods

More information

Physics 1502: Lecture 9 Today s Agenda

Physics 1502: Lecture 9 Today s Agenda Physics 1502: Lecture 9 Today s Agenda Announcements: Lectures posted on: www.phys.uconn.edu/~rcote/ HW assignments, solutions etc. Homework #3: On Masterphysics : due Friday at 8:00 AM Go to masteringphysics.com

More information

School of Mechanical Engineering Purdue University. DC Motor Position Control The block diagram for position control of the servo table is given by:

School of Mechanical Engineering Purdue University. DC Motor Position Control The block diagram for position control of the servo table is given by: Root Locus Motivation Sketching Root Locus Examples ME375 Root Locus - 1 Servo Table Example DC Motor Position Control The block diagram for position control of the servo table is given by: θ D 0.09 See

More information

Lifted approach to ILC/Repetitive Control

Lifted approach to ILC/Repetitive Control Lifted approach to ILC/Repetitive Control Okko H. Bosgra Maarten Steinbuch TUD Delft Centre for Systems and Control TU/e Control System Technology Dutch Institute of Systems and Control DISC winter semester

More information