Pressure in the Average-Atom Model

Size: px
Start display at page:

Download "Pressure in the Average-Atom Model"

Transcription

1 Pessue in the Aveage-Atom Moe W.. Johnson Depatment of Physics, 225 Nieuwan Science Ha Note Dame Univesity, Note Dame, IN Febuay 28, 2002 Abstact The (we-known) quantum mechanica expession fo the stess tenso is eive an appie to obtain a fomua fo the pessue in the aveage-atom moe. This aveage-atom pessue fomua euces to the (we-known) expession fo the pessue in a cassica fee-eecton gas when the aveage-atom continuum wave functions ae epace by fee-eecton wave functions. 1 Deivation We stat with the time-epenent Schöinge equation fo an eecton in a potentia V (), h i t = h2 2m 2 ψ Vψ (1) The expectation vaue of i-th component of the eecton s momentum insie a egion is p i = τ ψ p i ψ. (2) The ate of incease of momentum in is [ t p i = τ t p iψ ψ p i t = i h [ τ 2 ψ p i ψ ψ p i 2 ψ 2m ī τ ψ [p i V Vp i ψ. (3) h 1

2 This expession can be ewitten as t p i = i h [ τ ψ p i ψ ψ p i ψ 2m ī τ ψ [p i,v ψ. (4) h With the ai of Gauss theoem, Eq. (4) euces to: t p i = i h 2m S = h2 2m S [ n p i ψ ψ p i ī τ ψ [p i,v ψ x x h n [ x ψ 2 ψ x τ ψ V ψ (5) The fist intega is the i-th component of the suface foce on the egion an the secon gives the i-th component of the voume foce. We intouce the stess-tenso [ T i = h2 ψ 2 ψ (6) 2m x x an the voume foce V F i =. We fin that the time ae of change of momentum is t p i = S T i n F i. (7) Fom this expession it foows that T in is the i-th component of the foce pe unit aea exete by the suounings on the egion though the suface. Theefoe T i is the i-th component of the foce/aea, on a suface with noma in iection n exete by the eectons in the egion on the suounings. The pessue is eate to the tace of the stess tenso by P = 1 T ii. (8) 3 In the stationay state, we must have S T i n = F i, (9) i 2

3 which euces to T i x = ψ ψ V (10) in iffeentia fom. It is not ifficut to veify the iffeentia fom of the momentum consevation aw above iecty fom the singe-patice Schöinge equation. We stat with the equation fo / We eft mutipy this by ψ to obtain h2 2 =(E V ) V ψ. (11) 2m h2 2m ψ 2 =(E V ) ψ ψ V ψ. (12) We next consie the equation fo ψ ight mutipie by /. h2 2m 2 ψ =(E V ) ψ. (13) Subtacting (13) fom (12), one obtains h 2 [ 2 ψ ψ 2 = ψ V ψ. (14) 2m This equatiom may be simpife to h 2 [ 2m ψ ψ = ψ V ψ. (15) Setting [ T i = h2 2m x we see that Eq. (15) becomes T i x ψ = ψ ψ V, 2 ψ x which is pecisey the iffeentia fom of the momentum consevation aw given eaie in Eq. (10)., 3

4 2 Evauation of Pessue We fist evauate the fomua fo pessue given in Eq. (8) fo an eecton in state (nm) with wave function ψ nm () = 1 P n() Y m (ˆ). Utimatey, we sum the eecton patia pessues ove cose subshes. Fo one eecton, we have We note that Thus ψ nm () = P = h2 6m ( ) Pn () [ ψ ψ nm ψ nm = [ ( Pn () ( ) ( 1) P n () Pn () ( ( 1) Pn () 2 Futhemoe, we have ψ nm 2 ψ nm = P n () [ Usefu Ientities ( Pn () ψ ψ 2 ψ Y ( 1) m (ˆ)P n() ( 1) ) 2 ( 1) m Y ( 1) m ( 1) m [ Y ( 1) m ) ( 1) (ˆ) Y m (ˆ) (16) Y (1) m (ˆ). (17) (1) (1) ( 1) (ˆ) Y m (ˆ)Y m (ˆ) Y m (ˆ) ) 2 ( 1) m Y (1) m ( 1) 2 (1) (ˆ) Y (ˆ). (18) m P n () ( 1) m Y m (ˆ)Y m (ˆ) (19) One may easiy estabish the foowing theoem: ( 1) m Y m (ˆ)Y m (ˆ) = [ 4π. (20) m 4

5 We expan the vecto hamonics as Y (1) JM (ˆ) = J 1 Y JJ 1M (ˆ) [J Y (0) JM (ˆ) = Y ( 1) JM (ˆ) = J 1 [J J [J Y JJ1M(ˆ) (21) Y JJM (ˆ) (22) J [J Y JJ 1M(ˆ) J 1 [J We can pove by iagammatic methos that ( 1) M Y JK M (ˆ) Y JLM (ˆ) = (1) M M Y JJ1M (ˆ). (23) JL1 [J 4π δ KL. (24) With the ai of this esut, it foows that ( 1) M Y (λ) (µ) [J J M (ˆ) Y JM (ˆ) =( 1)λ1 4π δ λµ. (25) 2.2 Summay Combining Eqs. (18) an (19), we fin [ ψ nm ψ nm ψ nm 2 ψ nm = m [ 4π { [ ( ) Pn () 2 P n() 2 2 P n () 2( 1) 2 2 ( ) } Pn () 2. (26) The patia pessue fom a cose subshe n point may, theefoe, be witten { [ ( ) } P = h2 2[ 6m 4π 2 2 Pn () 2 ( 1) 2 Pn 2 ()2m h 2 (E n V ()) Pn 2 (). (27) If we choose to be the aius of the aveage atom V () = 0 then { [ ( ) P = h2 2[ Pn () 2 ( ) ( 1) Pn () 2 6m 4π 2 2m ( ) } h 2 E Pn () 2 n. (28) 5

6 Thee ae two contibutions to the pessue at the suface of the aveage atom sphee: P boun = 1 2(2 1) 24πm 1e (ɛ n µ)/kt n { [ ( ) Pn () 2 ( ) ( 1) Pn () 2 2 2m ( ) } h 2 E Pn () 2 n (29) P contin = 1 ɛ 24πm 0 1e (ɛ µ)/kt 2(2 1) { [ ( ) Pn () 2 ( ) ( 1) Pn () 2 ( ) } 2 p 2 Pn () 2 (30) 2.3 Fee Eecton Gas Fo a fee eecton gas, P ɛ () = 2m πp p (p). The coesponing pessue at the suface of the aveage atom sphee is P fee = h2 ɛ 2m 24πm 0 1e (ɛ µ)/kt πp p4 { ( ) (z) 2 2(2 1) ( 1) z 2 2 (z)2 (z) } z=p (31) Now, we state a few usefu theoems: 1. Fist we use Eq. ( ) in [1 (2 1) 2 (z) =1. 2. Diffeentiating with espect to z gives (2 1) (z) (z) =0. 6

7 3. Diffeentiating once again, one fins ( ) (z) 2 (2 1) = (2 1) (z) 2 (z) Substituting fom the iffeentia equation fo spheica Besse functions, ( ) (z) 2 (2 1) = [ 2 (2 1) z (z) ( ) (z) ( 1) 1 z 2 2 (z) = ( ) ( 1) (2 1) 1 z 2 2 (z) 5. Fom this, it foows that { ( ) } (z) 2 ( 1) 2(2 1) z 2 2 (z)2 (z) = 4 (2 1) 2 (z) =4. (32) With the ai of Eq. (32), we we may ewite the expession fo the pessue as P fee = (2m)3/2 ɛ 3/2 ɛ 3π 2 (2mkT )5/2 = 6mπ 2 0 1e (ɛ µ)/kt 0 y 3/2 y 1e (y x) (2mkT )5/2 = 6mπ 2 I 3/2 (x) (33) whee x = kt. This expession agees with the cassica expession fo the pessue of a fee eecton gas given, fo exampe, in Feynman et a. [2 efeences [1 M. Abamowitz an I. A. Stegun, es., Hanbook of Mathematica Functions, Appie Mathematics Seies 55 (U. S. Govenment Pinting Office, Washington D. C., 1964). [2. P. Feynman, N. Metopois, an E. Tee, Phys. ev. 75, 1561 (1949). 7

Vector Spherical Harmonics and Spherical Waves

Vector Spherical Harmonics and Spherical Waves DEPARTMENT OF PHYSICS INDIAN INSTITUTE OF TECHNOLOGY, MADRAS PH5020 Eectomagnetic Theoy Mach 2017 by Suesh Govinaajan, Depatment of Physics, IIT Maas Vecto Spheica Hamonics an Spheica Waves Let us sove

More information

FI 2201 Electromagnetism

FI 2201 Electromagnetism F Eectomagnetism exane. skana, Ph.D. Physics of Magnetism an Photonics Reseach Goup Magnetostatics MGNET VETOR POTENTL, MULTPOLE EXPNSON Vecto Potentia Just as E pemitte us to intouce a scaa potentia V

More information

Objectives. We will also get to know about the wavefunction and its use in developing the concept of the structure of atoms.

Objectives. We will also get to know about the wavefunction and its use in developing the concept of the structure of atoms. Modue "Atomic physics and atomic stuctue" Lectue 7 Quantum Mechanica teatment of One-eecton atoms Page 1 Objectives In this ectue, we wi appy the Schodinge Equation to the simpe system Hydogen and compae

More information

General Relativity Homework 5

General Relativity Homework 5 Geneal Relativity Homewok 5. In the pesence of a cosmological constant, Einstein s Equation is (a) Calculate the gavitational potential point souce with = M 3 (). R µ Rg µ + g µ =GT µ. in the Newtonian

More information

Lecture 1. time, say t=0, to find the wavefunction at any subsequent time t. This can be carried out by

Lecture 1. time, say t=0, to find the wavefunction at any subsequent time t. This can be carried out by Lectue The Schödinge equation In quantum mechanics, the fundamenta quantity that descibes both the patice-ike and waveike chaacteistics of patices is wavefunction, Ψ(. The pobabiity of finding a patice

More information

PHYS 705: Classical Mechanics. Central Force Problems I

PHYS 705: Classical Mechanics. Central Force Problems I 1 PHYS 705: Cassica Mechanics Centa Foce Pobems I Two-Body Centa Foce Pobem Histoica Backgound: Kepe s Laws on ceestia bodies (~1605) - Based his 3 aws on obsevationa data fom Tycho Bahe - Fomuate his

More information

Section 5: Magnetostatics

Section 5: Magnetostatics ection 5: Magnetostatics In electostatics, electic fiels constant in time ae pouce by stationay chages. In magnetostatics magnetic fiels constant in time ae pouces by steay cuents. Electic cuents The electic

More information

Solutions to Problems : Chapter 19 Problems appeared on the end of chapter 19 of the Textbook

Solutions to Problems : Chapter 19 Problems appeared on the end of chapter 19 of the Textbook Solutions to Poblems Chapte 9 Poblems appeae on the en of chapte 9 of the Textbook 8. Pictue the Poblem Two point chages exet an electostatic foce on each othe. Stategy Solve Coulomb s law (equation 9-5)

More information

Three-dimensional systems with spherical symmetry

Three-dimensional systems with spherical symmetry Thee-dimensiona systems with spheica symmety Thee-dimensiona systems with spheica symmety 006 Quantum Mechanics Pof. Y. F. Chen Thee-dimensiona systems with spheica symmety We conside a patice moving in

More information

= ρ. Since this equation is applied to an arbitrary point in space, we can use it to determine the charge density once we know the field.

= ρ. Since this equation is applied to an arbitrary point in space, we can use it to determine the charge density once we know the field. Gauss s Law In diffeentia fom D = ρ. ince this equation is appied to an abita point in space, we can use it to detemine the chage densit once we know the fied. (We can use this equation to ve fo the fied

More information

Physics 122, Fall December 2012

Physics 122, Fall December 2012 Physics 1, Fall 01 6 Decembe 01 Toay in Physics 1: Examples in eview By class vote: Poblem -40: offcente chage cylines Poblem 8-39: B along axis of spinning, chage isk Poblem 30-74: selfinuctance of a

More information

Theorem on the differentiation of a composite function with a vector argument

Theorem on the differentiation of a composite function with a vector argument Poceedings of the Estonian Academy of Sciences 59 3 95 doi:.376/poc..3. Avaiae onine at www.eap.ee/poceedings Theoem on the diffeentiation of a composite function with a vecto agument Vadim Kapain and

More information

Equilibria of a cylindrical plasma

Equilibria of a cylindrical plasma // Miscellaneous Execises Cylinical equilibia Equilibia of a cylinical plasma Consie a infinitely long cyline of plasma with a stong axial magnetic fiel (a geat fusion evice) Plasma pessue will cause the

More information

Conservation of Linear Momentum using RTT

Conservation of Linear Momentum using RTT 07/03/2017 Lectue 21 Consevation of Linea Momentum using RTT Befoe mi-semeste exam, we have seen the 1. Deivation of Reynols Tanspot Theoem (RTT), 2. Application of RTT in the Consevation of Mass pinciple

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

That is, the acceleration of the electron is larger than the acceleration of the proton by the same factor the electron is lighter than the proton.

That is, the acceleration of the electron is larger than the acceleration of the proton by the same factor the electron is lighter than the proton. PHY 8 Test Pactice Solutions Sping Q: [] A poton an an electon attact each othe electically so, when elease fom est, they will acceleate towa each othe. Which paticle will have a lage acceleation? (Neglect

More information

1 Fundamental Solutions to the Wave Equation

1 Fundamental Solutions to the Wave Equation 1 Fundamental Solutions to the Wave Equation Physical insight in the sound geneation mechanism can be gained by consideing simple analytical solutions to the wave equation. One example is to conside acoustic

More information

= 4 3 π( m) 3 (5480 kg m 3 ) = kg.

= 4 3 π( m) 3 (5480 kg m 3 ) = kg. CHAPTER 11 THE GRAVITATIONAL FIELD Newton s Law of Gavitation m 1 m A foce of attaction occus between two masses given by Newton s Law of Gavitation Inetial mass and gavitational mass Gavitational potential

More information

The Solutions of the Classical Relativistic Two-Body Equation

The Solutions of the Classical Relativistic Two-Body Equation T. J. of Physics (998), 07 4. c TÜBİTAK The Soutions of the Cassica Reativistic Two-Body Equation Coşkun ÖNEM Eciyes Univesity, Physics Depatment, 38039, Kaysei - TURKEY Received 3.08.996 Abstact With

More information

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c Chapte 6 Geneal Relativity 6.1 Towads the Einstein equations Thee ae seveal ways of motivating the Einstein equations. The most natual is pehaps though consideations involving the Equivalence Pinciple.

More information

PH126 Exam I Solutions

PH126 Exam I Solutions PH6 Exam I Solutions q Q Q q. Fou positively chage boies, two with chage Q an two with chage q, ae connecte by fou unstetchable stings of equal length. In the absence of extenal foces they assume the equilibium

More information

CHAPTER 25 ELECTRIC POTENTIAL

CHAPTER 25 ELECTRIC POTENTIAL CHPTE 5 ELECTIC POTENTIL Potential Diffeence and Electic Potential Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic foce on the paticle given by F=E. When

More information

Green s Identities and Green s Functions

Green s Identities and Green s Functions LECTURE 7 Geen s Identities and Geen s Functions Let us ecall The ivegence Theoem in n-dimensions Theoem 7 Let F : R n R n be a vecto field ove R n that is of class C on some closed, connected, simply

More information

MAE 210B. Homework Solution #6 Winter Quarter, U 2 =r U=r 2 << 1; ) r << U : (1) The boundary conditions written in polar coordinates,

MAE 210B. Homework Solution #6 Winter Quarter, U 2 =r U=r 2 << 1; ) r << U : (1) The boundary conditions written in polar coordinates, MAE B Homewok Solution #6 Winte Quate, 7 Poblem a Expecting a elocity change of oe oe a aial istance, the conition necessay fo the ow to be ominate by iscous foces oe inetial foces is O( y ) O( ) = =

More information

15. SIMPLE MHD EQUILIBRIA

15. SIMPLE MHD EQUILIBRIA 15. SIMPLE MHD EQUILIBRIA In this Section we will examine some simple examples of MHD equilibium configuations. These will all be in cylinical geomety. They fom the basis fo moe the complicate equilibium

More information

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson ECE Dept. Notes 13

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson ECE Dept. Notes 13 ECE 338 Applied Electicity and Magnetism ping 07 Pof. David R. Jackson ECE Dept. Notes 3 Divegence The Physical Concept Find the flux going outwad though a sphee of adius. x ρ v0 z a y ψ = D nˆ d = D ˆ

More information

Physics 107 TUTORIAL ASSIGNMENT #8

Physics 107 TUTORIAL ASSIGNMENT #8 Physics 07 TUTORIAL ASSIGNMENT #8 Cutnell & Johnson, 7 th edition Chapte 8: Poblems 5,, 3, 39, 76 Chapte 9: Poblems 9, 0, 4, 5, 6 Chapte 8 5 Inteactive Solution 8.5 povides a model fo solving this type

More information

Jackson 4.7 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 4.7 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jackson 4.7 Homewok obem Soution D. Chistophe S. Baid Univesity of Massachusetts Lowe ROBLEM: A ocaized distibution of chage has a chage density ρ()= 6 e sin θ (a) Make a mutipoe expansion of the potentia

More information

THE NAVIER-STOKES EQUATION: The Queen of Fluid Dynamics. A proof simple, but complete.

THE NAVIER-STOKES EQUATION: The Queen of Fluid Dynamics. A proof simple, but complete. THE NAIER-TOKE EQUATION: The Queen of Fluid Dnamics. A poof simple, but complete. Leonado Rubino leonubino@ahoo.it eptembe 010 Rev. 00 Fo www.via.og Abstact: in this pape ou will find a simple demonstation

More information

AE301 Aerodynamics I UNIT B: Theory of Aerodynamics

AE301 Aerodynamics I UNIT B: Theory of Aerodynamics AE301 Aeodynamics I UNIT B: Theoy of Aeodynamics ROAD MAP... B-1: Mathematics fo Aeodynamics B-2: Flow Field Repesentations B-3: Potential Flow Analysis B-4: Applications of Potential Flow Analysis AE301

More information

Stress, Cauchy s equation and the Navier-Stokes equations

Stress, Cauchy s equation and the Navier-Stokes equations Chapte 3 Stess, Cauchy s equation and the Navie-Stokes equations 3. The concept of taction/stess Conside the volume of fluid shown in the left half of Fig. 3.. The volume of fluid is subjected to distibuted

More information

Quantum Mechanics I - Session 5

Quantum Mechanics I - Session 5 Quantum Mechanics I - Session 5 Apil 7, 015 1 Commuting opeatos - an example Remine: You saw in class that Â, ˆB ae commuting opeatos iff they have a complete set of commuting obsevables. In aition you

More information

PHYS 705: Classical Mechanics. Central Force Problems II

PHYS 705: Classical Mechanics. Central Force Problems II PHYS 75: Cassica Mechanics Centa Foce Pobems II Obits in Centa Foce Pobem Sppose we e inteested moe in the shape of the obit, (not necessay the time evotion) Then, a sotion fo = () o = () wod be moe sef!

More information

Do not turn over until you are told to do so by the Invigilator.

Do not turn over until you are told to do so by the Invigilator. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Seies UG Examination 2015 16 FLUID DYNAMICS WITH ADVANCED TOPICS MTH-MD59 Time allowed: 3 Hous Attempt QUESTIONS 1 and 2, and THREE othe questions.

More information

AP-C WEP. h. Students should be able to recognize and solve problems that call for application both of conservation of energy and Newton s Laws.

AP-C WEP. h. Students should be able to recognize and solve problems that call for application both of conservation of energy and Newton s Laws. AP-C WEP 1. Wok a. Calculate the wok done by a specified constant foce on an object that undegoes a specified displacement. b. Relate the wok done by a foce to the aea unde a gaph of foce as a function

More information

Jackson 3.3 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 3.3 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jackson 3.3 Homewok Pobem Soution D. Chistophe S. Baid Univesity of Massachusetts Lowe POBLEM: A thin, fat, conducting, cicua disc of adius is ocated in the x-y pane with its cente at the oigin, and is

More information

Dymore User s Manual Two- and three dimensional dynamic inflow models

Dymore User s Manual Two- and three dimensional dynamic inflow models Dymoe Use s Manual Two- and thee dimensional dynamic inflow models Contents 1 Two-dimensional finite-state genealized dynamic wake theoy 1 Thee-dimensional finite-state genealized dynamic wake theoy 1

More information

PHYS 2135 Exam I February 13, 2018

PHYS 2135 Exam I February 13, 2018 Exam Total /200 PHYS 2135 Exam I Febuay 13, 2018 Name: Recitation Section: Five multiple choice questions, 8 points each Choose the best o most nealy coect answe Fo questions 6-9, solutions must begin

More information

and Slater Sum Rule Method * M L = 0, M S = 0 block: L L+ L 2

and Slater Sum Rule Method * M L = 0, M S = 0 block: L L+ L 2 5.7 Lectue #4 e / ij and Sate Sum Rue Method 4 - LAST TIME:. L,S method fo setting up NLM L SM S many-eecton basis states in tems of inea combination of Sate deteminants * M L = 0, M S = 0 boc: L L+ L

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechanics Rajdeep Sensama sensama@theoy.tif.es.in Scatteing Theoy Ref : Sakuai, Moden Quantum Mechanics Tayo, Quantum Theoy of Non-Reativistic Coisions Landau and Lifshitz, Quantum Mechanics

More information

EELE 3331 Electromagnetic I Chapter 4. Electrostatic fields. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3331 Electromagnetic I Chapter 4. Electrostatic fields. Islamic University of Gaza Electrical Engineering Department Dr. EELE 3331 Electomagnetic I Chapte 4 Electostatic fields Islamic Univesity of Gaza Electical Engineeing Depatment D. Talal Skaik 212 1 Electic Potential The Gavitational Analogy Moving an object upwad against

More information

Phys 201A. Homework 6 Solutions. F A and F r. B. According to Newton s second law, ( ) ( )2. j = ( 6.0 m / s 2 )ˆ i ( 10.4m / s 2 )ˆ j.

Phys 201A. Homework 6 Solutions. F A and F r. B. According to Newton s second law, ( ) ( )2. j = ( 6.0 m / s 2 )ˆ i ( 10.4m / s 2 )ˆ j. 7. We denote the two foces F A + F B = ma,sof B = ma F A. (a) In unit vecto notation F A = ( 20.0 N)ˆ i and Theefoe, Phys 201A Homewok 6 Solutions F A and F B. Accoding to Newton s second law, a = [ (

More information

dq 1 (5) q 1 where the previously mentioned limit has been taken.

dq 1 (5) q 1 where the previously mentioned limit has been taken. 1 Vecto Calculus And Continuum Consevation Equations In Cuvilinea Othogonal Coodinates Robet Maska: Novembe 25, 2008 In ode to ewite the consevation equations(continuit, momentum, eneg) to some cuvilinea

More information

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3.

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3. Appendix A Vecto Algeba As is natual, ou Aeospace Stuctues will be descibed in a Euclidean thee-dimensional space R 3. A.1 Vectos A vecto is used to epesent quantities that have both magnitude and diection.

More information

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50 woking pages fo Paul Richads class notes; do not copy o ciculate without pemission fom PGR 2004/11/3 10:50 CHAPTER7 Solid angle, 3D integals, Gauss s Theoem, and a Delta Function We define the solid angle,

More information

S7: Classical mechanics problem set 2

S7: Classical mechanics problem set 2 J. Magoian MT 9, boowing fom J. J. Binney s 6 couse S7: Classical mechanics poblem set. Show that if the Hamiltonian is indepdent of a genealized co-odinate q, then the conjugate momentum p is a constant

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

arxiv: v1 [physics.flu-dyn] 21 Dec 2018

arxiv: v1 [physics.flu-dyn] 21 Dec 2018 1 axiv:1812.921v1 [physics.flu-dyn] 21 Dec 218 The cicula capillay jump Rajesh K. Bhagat 1, and P. F. Linden 2, 1 Depatment of Chemical Engineeing and Biotechnology, Univesity of Cambidge, Philippa Fawcett

More information

1.2 Differential cross section

1.2 Differential cross section .2. DIFFERENTIAL CROSS SECTION Febuay 9, 205 Lectue VIII.2 Diffeential coss section We found that the solution to the Schodinge equation has the fom e ik x ψ 2π 3/2 fk, k + e ik x and that fk, k = 2 m

More information

( )( )( ) ( ) + ( ) ( ) ( )

( )( )( ) ( ) + ( ) ( ) ( ) 3.7. Moel: The magnetic fiel is that of a moving chage paticle. Please efe to Figue Ex3.7. Solve: Using the iot-savat law, 7 19 7 ( ) + ( ) qvsinθ 1 T m/a 1.6 1 C. 1 m/s sin135 1. 1 m 1. 1 m 15 = = = 1.13

More information

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2 THE LAPLACE EQUATION The Laplace (o potential) equation is the equation whee is the Laplace opeato = 2 x 2 u = 0. in R = 2 x 2 + 2 y 2 in R 2 = 2 x 2 + 2 y 2 + 2 z 2 in R 3 The solutions u of the Laplace

More information

Physics Courseware Physics II Electric Field and Force

Physics Courseware Physics II Electric Field and Force Physics Cousewae Physics II lectic iel an oce Coulomb s law, whee k Nm /C test Definition of electic fiel. This is a vecto. test Q lectic fiel fo a point chage. This is a vecto. Poblem.- chage of µc is

More information

arxiv: v1 [physics.pop-ph] 3 Jun 2013

arxiv: v1 [physics.pop-ph] 3 Jun 2013 A note on the electostatic enegy of two point chages axiv:1306.0401v1 [physics.pop-ph] 3 Jun 013 A C Tot Instituto de Física Univesidade Fedeal do io de Janeio Caixa Postal 68.58; CEP 1941-97 io de Janeio,

More information

GRAVITATION. Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., New Delhi -18 PG 1

GRAVITATION. Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., New Delhi -18 PG 1 Einstein Classes, Unit No. 0, 0, Vahman Ring Roa Plaza, Vikas Pui Extn., New Delhi -8 Ph. : 96905, 857, E-mail einsteinclasses00@gmail.com, PG GRAVITATION Einstein Classes, Unit No. 0, 0, Vahman Ring Roa

More information

MMAT5520. Lau Chi Hin The Chinese University of Hong Kong

MMAT5520. Lau Chi Hin The Chinese University of Hong Kong MMAT550 Lau Chi Hin The Chinese Univesit of Hong Kong Isaac Newton (1643-177) Keple s Laws of planeta motion 1. The obit is an ellipse with the sun at one of the foci.. A line joining a planet and the

More information

Pressure Calculation of a Constant Density Star in the Dynamic Theory of Gravity

Pressure Calculation of a Constant Density Star in the Dynamic Theory of Gravity Pessue Calculation of a Constant Density Sta in the Dynamic Theoy of Gavity Ioannis Iaklis Haanas Depatment of Physics and Astonomy Yok Univesity A Petie Science Building Yok Univesity Toonto Ontaio CANADA

More information

F Q E v B MAGNETOSTATICS. Creation of magnetic field B. Effect of B on a moving charge. On moving charges only. Stationary and moving charges

F Q E v B MAGNETOSTATICS. Creation of magnetic field B. Effect of B on a moving charge. On moving charges only. Stationary and moving charges MAGNETOSTATICS Ceation of magnetic field. Effect of on a moving chage. Take the second case: F Q v mag On moving chages only F QE v Stationay and moving chages dw F dl Analysis on F mag : mag mag Qv. vdt

More information

is the instantaneous position vector of any grid point or fluid

is the instantaneous position vector of any grid point or fluid Absolute inetial, elative inetial and non-inetial coodinates fo a moving but non-defoming contol volume Tao Xing, Pablo Caica, and Fed Sten bjective Deive and coelate the govening equations of motion in

More information

PROBLEM SET #1 SOLUTIONS by Robert A. DiStasio Jr.

PROBLEM SET #1 SOLUTIONS by Robert A. DiStasio Jr. POBLM S # SOLUIONS by obet A. DiStasio J. Q. he Bon-Oppenheime appoximation is the standad way of appoximating the gound state of a molecula system. Wite down the conditions that detemine the tonic and

More information

Math Notes on Kepler s first law 1. r(t) kp(t)

Math Notes on Kepler s first law 1. r(t) kp(t) Math 7 - Notes on Keple s fist law Planetay motion and Keple s Laws We conside the motion of a single planet about the sun; fo simplicity, we assign coodinates in R 3 so that the position of the sun is

More information

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other Electic Potential Enegy, PE Units: Joules Electic Potential, Units: olts 17.1 Electic Potential Enegy Electic foce is a consevative foce and so we can assign an electic potential enegy (PE) to the system

More information

of Technology: MIT OpenCourseWare). (accessed MM DD, YYYY). License: Creative Commons Attribution- Noncommercial-Share Alike.

of Technology: MIT OpenCourseWare).   (accessed MM DD, YYYY). License: Creative Commons Attribution- Noncommercial-Share Alike. MIT OpenCouseWae http://ocw.mit.eu 6.013/ESD.013J Electomagnetics an Applications, Fall 005 Please use the following citation fomat: Makus Zahn, Eich Ippen, an Davi Staelin, 6.013/ESD.013J Electomagnetics

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

PES 3950/PHYS 6950: Homework Assignment 6

PES 3950/PHYS 6950: Homework Assignment 6 PES 3950/PHYS 6950: Homewok Assignment 6 Handed out: Monday Apil 7 Due in: Wednesday May 6, at the stat of class at 3:05 pm shap Show all woking and easoning to eceive full points. Question 1 [5 points]

More information

Is there a magnification paradox in gravitational lensing?

Is there a magnification paradox in gravitational lensing? Is thee a magnification paadox in gavitational ing? Olaf Wucknitz wucknitz@asto.uni-bonn.de Astophysics semina/colloquium, Potsdam, 6 Novembe 7 Is thee a magnification paadox in gavitational ing? gavitational

More information

4. Electrodynamic fields

4. Electrodynamic fields 4. Electodynamic fields D. Rakhesh Singh Kshetimayum 1 4.1 Intoduction Electodynamics Faaday s law Maxwell s equations Wave equations Lenz s law Integal fom Diffeential fom Phaso fom Bounday conditions

More information

J. N. R E DDY ENERGY PRINCIPLES AND VARIATIONAL METHODS APPLIED MECHANICS

J. N. R E DDY ENERGY PRINCIPLES AND VARIATIONAL METHODS APPLIED MECHANICS J. N. E DDY ENEGY PINCIPLES AND VAIATIONAL METHODS IN APPLIED MECHANICS T H I D E DI T IO N JN eddy - 1 MEEN 618: ENEGY AND VAIATIONAL METHODS A EVIEW OF VECTOS AND TENSOS ead: Chapte 2 CONTENTS Physical

More information

2 E. on each of these two surfaces. r r r r. Q E E ε. 2 2 Qencl encl right left 0

2 E. on each of these two surfaces. r r r r. Q E E ε. 2 2 Qencl encl right left 0 Ch : 4, 9,, 9,,, 4, 9,, 4, 8 4 (a) Fom the diagam in the textbook, we see that the flux outwad though the hemispheical suface is the same as the flux inwad though the cicula suface base of the hemisphee

More information

Electric Potential and Gauss s Law, Configuration Energy Challenge Problem Solutions

Electric Potential and Gauss s Law, Configuration Energy Challenge Problem Solutions Poblem 1: Electic Potential an Gauss s Law, Configuation Enegy Challenge Poblem Solutions Consie a vey long o, aius an chage to a unifom linea chage ensity λ a) Calculate the electic fiel eveywhee outsie

More information

(read nabla or del) is defined by, k. (9.7.1*)

(read nabla or del) is defined by, k. (9.7.1*) 9.7 Gadient of a scala field. Diectional deivative Some of the vecto fields in applications can be obtained fom scala fields. This is vey advantageous because scala fields can be handled moe easily. The

More information

That is, the acceleration of the electron is larger than the acceleration of the proton by the same factor the electron is lighter than the proton.

That is, the acceleration of the electron is larger than the acceleration of the proton by the same factor the electron is lighter than the proton. PHYS 55 Pactice Test Solutions Fall 8 Q: [] poton an an electon attact each othe electicall so, when elease fom est, the will acceleate towa each othe Which paticle will have a lage acceleation? (Neglect

More information

Question Bank. Section A. is skew-hermitian matrix. is diagonalizable. (, ) , Evaluate (, ) 12 about = 1 and = Find, if

Question Bank. Section A. is skew-hermitian matrix. is diagonalizable. (, ) , Evaluate (, ) 12 about = 1 and = Find, if Subject: Mathematics-I Question Bank Section A T T. Find the value of fo which the matix A = T T has ank one. T T i. Is the matix A = i is skew-hemitian matix. i. alculate the invese of the matix = 5 7

More information

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1)

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1) EM- Coulomb s law, electic field, potential field, supeposition q ' Electic field of a point chage ( ') E( ) kq, whee k / 4 () ' Foce of q on a test chage e at position is ee( ) Electic potential O kq

More information

MATH 417 Homework 3 Instructor: D. Cabrera Due June 30. sin θ v x = v r cos θ v θ r. (b) Then use the Cauchy-Riemann equations in polar coordinates

MATH 417 Homework 3 Instructor: D. Cabrera Due June 30. sin θ v x = v r cos θ v θ r. (b) Then use the Cauchy-Riemann equations in polar coordinates MATH 417 Homewok 3 Instucto: D. Cabea Due June 30 1. Let a function f(z) = u + iv be diffeentiable at z 0. (a) Use the Chain Rule and the fomulas x = cosθ and y = to show that u x = u cosθ u θ, v x = v

More information

Properties of the natural logarithm and exponential functions

Properties of the natural logarithm and exponential functions Poeties of the natual logaithm an eonential functions Define fo ositive the function A() as the aea fom to une the hyeolay Since thee is no with, A() 0 By efinition the eivative of A() is given y the limit

More information

3-7 FLUIDS IN RIGID-BODY MOTION

3-7 FLUIDS IN RIGID-BODY MOTION 3-7 FLUIDS IN IGID-BODY MOTION S-1 3-7 FLUIDS IN IGID-BODY MOTION We ae almost eady to bein studyin fluids in motion (statin in Chapte 4), but fist thee is one cateoy of fluid motion that can be studied

More information

EN40: Dynamics and Vibrations. Midterm Examination Thursday March

EN40: Dynamics and Vibrations. Midterm Examination Thursday March EN40: Dynamics and Vibations Midtem Examination Thusday Mach 9 2017 School of Engineeing Bown Univesity NAME: Geneal Instuctions No collaboation of any kind is pemitted on this examination. You may bing

More information

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations Phys-7 Lectue 17 Motional Electomotive Foce (emf) Induced Electic Fields Displacement Cuents Maxwell s Equations Fom Faaday's Law to Displacement Cuent AC geneato Magnetic Levitation Tain Review of Souces

More information

Department of Physics, Korea University Page 1 of 5

Department of Physics, Korea University Page 1 of 5 Name: Depatment: Student ID #: Notice ˆ + ( 1) points pe coect (incoect) answe. ˆ No penalty fo an unansweed question. ˆ Fill the blank ( ) with ( ) if the statement is coect (incoect). ˆ : coections to

More information

Review: Electrostatics and Magnetostatics

Review: Electrostatics and Magnetostatics Review: Electostatics and Magnetostatics In the static egime, electomagnetic quantities do not vay as a function of time. We have two main cases: ELECTROSTATICS The electic chages do not change postion

More information

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2!

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2! Ch 30 - Souces of Magnetic Field 1.) Example 1 Detemine the magnitude and diection of the magnetic field at the point O in the diagam. (Cuent flows fom top to bottom, adius of cuvatue.) Fo staight segments,

More information

Fluid flow in curved geometries: Mathematical Modeling and Applications

Fluid flow in curved geometries: Mathematical Modeling and Applications Fluid flow in cuved geometies: Mathematical Modeling and Applications D. Muhammad Sajid Theoetical Plasma Physics Division PINSTECH, P.O. Niloe, PAEC, Islamabad Mach 01-06, 010 Islamabad, Paistan Pesentation

More information

Appendix A. Appendices. A.1 ɛ ijk and cross products. Vector Operations: δ ij and ɛ ijk

Appendix A. Appendices. A.1 ɛ ijk and cross products. Vector Operations: δ ij and ɛ ijk Appendix A Appendices A1 ɛ and coss poducts A11 Vecto Opeations: δ ij and ɛ These ae some notes on the use of the antisymmetic symbol ɛ fo expessing coss poducts This is an extemely poweful tool fo manipulating

More information

π(x, y) = u x + v y = V (x cos + y sin ) κ(x, y) = u y v x = V (y cos x sin ) v u x y

π(x, y) = u x + v y = V (x cos + y sin ) κ(x, y) = u y v x = V (y cos x sin ) v u x y F17 Lectue Notes 1. Unifom flow, Souces, Sinks, Doublets Reading: Andeson 3.9 3.12 Unifom Flow Definition A unifom flow consists of a velocit field whee V φ = uî + vθˆ is a constant. In 2-D, this velocit

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 5 Lectue 5 Centa Foce Pobem (Chapte 3) What We Did Last Time Intoduced Hamiton s Pincipe Action intega is stationay fo the actua path Deived Lagange s Equations Used cacuus of vaiation

More information

University Physics (PHY 2326)

University Physics (PHY 2326) Chapte Univesity Physics (PHY 6) Lectue lectostatics lectic field (cont.) Conductos in electostatic euilibium The oscilloscope lectic flux and Gauss s law /6/5 Discuss a techniue intoduced by Kal F. Gauss

More information

4. Compare the electric force holding the electron in orbit ( r = 0.53

4. Compare the electric force holding the electron in orbit ( r = 0.53 Electostatics WS Electic Foce an Fiel. Calculate the magnitue of the foce between two 3.60-µ C point chages 9.3 cm apat.. How many electons make up a chage of 30.0 µ C? 3. Two chage ust paticles exet a

More information

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS DOING PHYIC WITH MTLB COMPUTTIONL OPTIC FOUNDTION OF CLR DIFFRCTION THEORY Ian Coope chool of Physics, Univesity of ydney ian.coope@sydney.edu.au DOWNLOD DIRECTORY FOR MTLB CRIPT View document: Numeical

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 5 Lectue 5 Centa Foce Pobem (Chapte 3) What We Did Last Time Intoduced Hamiton s Pincipe Action intega is stationay fo the actua path Deived Lagange s Equations Used cacuus of vaiation

More information

Jerk and Hyperjerk in a Rotating Frame of Reference

Jerk and Hyperjerk in a Rotating Frame of Reference Jek an Hypejek in a Rotating Fame of Refeence Amelia Caolina Spaavigna Depatment of Applie Science an Technology, Politecnico i Toino, Italy. Abstact: Jek is the eivative of acceleation with espect to

More information

1 Spherical multipole moments

1 Spherical multipole moments Jackson notes 9 Spheical multipole moments Suppose we have a chage distibution ρ (x) wheeallofthechageiscontained within a spheical egion of adius R, as shown in the diagam. Then thee is no chage in the

More information

Phases of Matter. Since liquids and gases are able to flow, they are called fluids. Compressible? Able to Flow? shape?

Phases of Matter. Since liquids and gases are able to flow, they are called fluids. Compressible? Able to Flow? shape? Fluids Chapte 3 Lectue Sequence. Pessue (Sections -3). Mechanical Popeties (Sections 5, and 7) 3. Gauge Pessue (Sections 4, and 6) 4. Moving Fluids (Sections 8-0) Pessue Phases of Matte Phase Retains its

More information

Math 209 Assignment 9 Solutions

Math 209 Assignment 9 Solutions Math 9 Assignment 9 olutions 1. Evaluate 4y + 1 d whee is the fist octant pat of y x cut out by x + y + z 1. olution We need a paametic epesentation of the suface. (x, z). Now detemine the nomal vecto:

More information

Lab #0. Tutorial Exercises on Work and Fields

Lab #0. Tutorial Exercises on Work and Fields Lab #0 Tutoial Execises on Wok and Fields This is not a typical lab, and no pe-lab o lab epot is equied. The following execises will emind you about the concept of wok (fom 1130 o anothe intoductoy mechanics

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Jounal of Inequalities in Pue and Applied Mathematics COEFFICIENT INEQUALITY FOR A FUNCTION WHOSE DERIVATIVE HAS A POSITIVE REAL PART S. ABRAMOVICH, M. KLARIČIĆ BAKULA AND S. BANIĆ Depatment of Mathematics

More information

( ) ( ) Review of Force. Review of Force. r = =... Example 1. What is the dot product for F r. Solution: Example 2 ( )

( ) ( ) Review of Force. Review of Force. r = =... Example 1. What is the dot product for F r. Solution: Example 2 ( ) : PHYS 55 (Pat, Topic ) Eample Solutions p. Review of Foce Eample ( ) ( ) What is the dot poduct fo F =,,3 and G = 4,5,6? F G = F G + F G + F G = 4 +... = 3 z z Phs55 -: Foce Fields Review of Foce Eample

More information

3D-Central Force Problems I

3D-Central Force Problems I 5.73 Lectue #1 1-1 Roadmap 1. define adial momentum 3D-Cental Foce Poblems I Read: C-TDL, pages 643-660 fo next lectue. All -Body, 3-D poblems can be educed to * a -D angula pat that is exactly and univesally

More information

PHYS 172: Modern Mechanics. Summer Lecture 4 The Momentum Principle & Predicting Motion Read

PHYS 172: Modern Mechanics. Summer Lecture 4 The Momentum Principle & Predicting Motion Read PHYS 172: Moden Mechanics Summe 2010 Δp sys = F net Δt ΔE = W + Q sys su su ΔL sys = τ net Δt Lectue 4 The Momentum Pinciple & Pedicting Motion Read 2.6-2.9 READING QUESTION #1 Reading Question Which of

More information

Euclidean Figures and Solids without Incircles or Inspheres

Euclidean Figures and Solids without Incircles or Inspheres Foum Geometicoum Volume 16 (2016) 291 298. FOUM GEOM ISSN 1534-1178 Euclidean Figues and Solids without Incicles o Insphees Dimitis M. Chistodoulou bstact. ll classical convex plana Euclidean figues that

More information