General Relativity Homework 5

Size: px
Start display at page:

Download "General Relativity Homework 5"

Transcription

1 Geneal Relativity Homewok 5. In the pesence of a cosmological constant, Einstein s Equation is (a) Calculate the gavitational potential point souce with = M 3 (). R µ Rg µ + g µ =GT µ. in the Newtonian limit outsie a spheically symmetic (b) A goo esciption of the gavitational foces in ou sola system is given by Newton s potential, = GM /, wheem is the mass of the sun. Use this fact to etemine an uppe limit fo the vacuum enegy ensity = /G, given that the aius of Pluto s obit is Pluto 6 0 m. Expess you answe in GeV 4. Solution: a) Fom Caoll 4., we have Poisson s equation, =4 G. Howeve, in the pesence of a cosmological constant, the Ricci scala an tenso now become R µ = R = GT + 4, G T µ Tg µ + g µ. If you followe the eivation of Poisson s Equation fom Einstein s Equation, you ll ecognize that R 00 =4 G( ) an that the only i eence hee is that = M 3 (). The spheical symmety of the istibution equies that the potential shoul only epen on, the istance fom the point souce, so we shoul look fo a solution of the fom (). Poisson s equation now eas =4 G(M 3 () ()). Integating both sies ove the volume of a sphee of aius 0, V =4 G (M 3 () ())V. Applying Stokes theoem to the left han sie, V = ( )V = ( ) S, whee the integal is now ove the suface of the sphee. Due to spheical symmety must point in the ˆ iection an be constant on the suface of the sphee, so the integal becomes V =4 0. Now, to aess the ight han sie, 4 G (M 3 () ())V =4 GM 3 G 03 3 Putting the two togethe we have: GM ( 0 )= 0 3 G 0 ˆ.

2 To solve fo, one must integate fom the ege of the univese (let s call it ) to. () = ()+ ˆ = ()+ GM 0 3 G 0 0 = GM 4 3 G Note that we ve cancelle the potential at infinity with the evaluation of the anti-eivative at the ege of the univese. b) To fin an uppe boun on the vacuum enegy ensity, we ll look at the value necessay to keep Pluto boun to the Sola System. We can wite this as the equiement that the negative gaient of the potential (i.e. the acceleation) be negative (so that the acceleation is towas the cente of the sola system). ( Pluto )= GM Pluto + 3 G Pluto < 0 Isolating the vacuum enegy ensity, < 3 M 3 Pluto = kg GeV (6 0 m) kg < GeV GeV m GeV ) 3. Caoll poblem 5.3. Consie a paticle (not necessaily on a geoesic) that has fallen insie the event hoizon, <. Use the oinay Schwazschil cooinates (t,,, ). Show that the aial cooinate must ecease at a minimum ate given by Calculate the maximum lifetime fo a paticle along a tajectoy fom = to = 0. Expess this in secons fo a black hole with mass measue in sola masses. Show that this maximum pope time is achieve by falling feely with E! 0. Solution: Fo the Schwazschil metic, So s = = = t + + +, t. The best a paticle can o to escape once insie the Schwazschil aius is to tavel on a aial path ( / = 0) at the spee of light. Anothe way to think about it is that < 0 fo <, so / is minimal when = 0. = t. Now let s consie the maximum lifetime of a paticle moving along a tajectoy fom = to = 0, 0 0 p max = = q = p. max 0

3 Defining x =, max = 0 x / ( x) / x = B(3/, /), whee B(x, y) is the Beta function. Using the elationship between the Beta function an the Gamma function, max = ( ) ( 3 ) =( p p )( )= GM. () Reinstating the pope factos of c, fo M = n M, max = Gn M c 3 = n ( Nm )( kg) kg ( m = n s. s )3 x Since E = K µ µ E! 0 by assumption. =( ) t, an since we ve taken t/! 0 to obtain the minimum /, 3. Caoll poblem 5.4. Consie Einstein s equations in vacuum, but with a cosmological constant, G µ + g µ = 0. a) Solve fo the most geneal spheically symmetic metic, in cooinates (t, ) that euce to the oinay Schwazschil cooinates when = 0. b) Wite own the equation of motion fo aial geoesics in tems of an e ective potential, as in (5.66). Sketch the e ective potential fo massive paticles. Solution: a) We still have full spheical symmety an a static metic, so the geneal fom of the metic will be the same as in the Schwazschil souce case, s = e () t + e () +. The calculation of the Chisto el symbols an the Riemann an Ricci tensos follows ientically to that fo the Schwazschil metic. What oes change is the fom of the tace-evese Einstein equation in a vacuum, which is now Taking the tace of both sies, R µ Rg µ + g µ =0. R R + 4 = 0 ) R = 4, so the tace-evese equation is just Fist consie the tt an components, R µ = g µ. We can combine them to get so In tems of the metic (so in tems of an R tt = e, R = e. e R tt + e R =0, e ( + ) R tt + R =0. ), we =0. 3

4 So afte escaling t, =, just as we foun fo the Schwazschil metic. Now look at the component, R = 4 R. Using the elationship we foun fo the Ricci scala an the cosmological constant, this becomes, e ) ] + =. Using the elation between an we fin e ] = +, (e )=. The solution is e = 3, whee, by the equiement that when the cosmological constant vanishes we ecove the Schwazschil solution, must be the usual Schwazschil aius. The metic is theefoe s = b) The invaiants of geoesic motion ae 3 t + = g µ x µ x, E = g tt t, an L = g. We can wite own the analog of (5.63) as t g tt + g + =. 3 + Fixing = /, we have E + + L 3 + =0. So with Ẽ = E /, we have Ẽ = + V (), V () = L GM L GML 3. See the attache Mathematica notebook fo a plot. fo 4

5 V[_, GM_, L_, Lamba_] := - 6 Lamba Lamba L - GM + L GM L - ; 3 Plot[{V[,,, -], V[,,, 0], V[,,, ]}, {, 0, 5}, Ticks None]

GRAVITATION. Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., New Delhi -18 PG 1

GRAVITATION. Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., New Delhi -18 PG 1 Einstein Classes, Unit No. 0, 0, Vahman Ring Roa Plaza, Vikas Pui Extn., New Delhi -8 Ph. : 96905, 857, E-mail einsteinclasses00@gmail.com, PG GRAVITATION Einstein Classes, Unit No. 0, 0, Vahman Ring Roa

More information

Physics Courseware Physics II Electric Field and Force

Physics Courseware Physics II Electric Field and Force Physics Cousewae Physics II lectic iel an oce Coulomb s law, whee k Nm /C test Definition of electic fiel. This is a vecto. test Q lectic fiel fo a point chage. This is a vecto. Poblem.- chage of µc is

More information

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c Chapte 6 Geneal Relativity 6.1 Towads the Einstein equations Thee ae seveal ways of motivating the Einstein equations. The most natual is pehaps though consideations involving the Equivalence Pinciple.

More information

Solutions to Problems : Chapter 19 Problems appeared on the end of chapter 19 of the Textbook

Solutions to Problems : Chapter 19 Problems appeared on the end of chapter 19 of the Textbook Solutions to Poblems Chapte 9 Poblems appeae on the en of chapte 9 of the Textbook 8. Pictue the Poblem Two point chages exet an electostatic foce on each othe. Stategy Solve Coulomb s law (equation 9-5)

More information

That is, the acceleration of the electron is larger than the acceleration of the proton by the same factor the electron is lighter than the proton.

That is, the acceleration of the electron is larger than the acceleration of the proton by the same factor the electron is lighter than the proton. PHY 8 Test Pactice Solutions Sping Q: [] A poton an an electon attact each othe electically so, when elease fom est, they will acceleate towa each othe. Which paticle will have a lage acceleation? (Neglect

More information

PH126 Exam I Solutions

PH126 Exam I Solutions PH6 Exam I Solutions q Q Q q. Fou positively chage boies, two with chage Q an two with chage q, ae connecte by fou unstetchable stings of equal length. In the absence of extenal foces they assume the equilibium

More information

Homework 7 Solutions

Homework 7 Solutions Homewok 7 olutions Phys 4 Octobe 3, 208. Let s talk about a space monkey. As the space monkey is oiginally obiting in a cicula obit and is massive, its tajectoy satisfies m mon 2 G m mon + L 2 2m mon 2

More information

Section 5: Magnetostatics

Section 5: Magnetostatics ection 5: Magnetostatics In electostatics, electic fiels constant in time ae pouce by stationay chages. In magnetostatics magnetic fiels constant in time ae pouces by steay cuents. Electic cuents The electic

More information

That is, the acceleration of the electron is larger than the acceleration of the proton by the same factor the electron is lighter than the proton.

That is, the acceleration of the electron is larger than the acceleration of the proton by the same factor the electron is lighter than the proton. PHYS 55 Pactice Test Solutions Fall 8 Q: [] poton an an electon attact each othe electicall so, when elease fom est, the will acceleate towa each othe Which paticle will have a lage acceleation? (Neglect

More information

Electric Potential and Gauss s Law, Configuration Energy Challenge Problem Solutions

Electric Potential and Gauss s Law, Configuration Energy Challenge Problem Solutions Poblem 1: Electic Potential an Gauss s Law, Configuation Enegy Challenge Poblem Solutions Consie a vey long o, aius an chage to a unifom linea chage ensity λ a) Calculate the electic fiel eveywhee outsie

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

4. Compare the electric force holding the electron in orbit ( r = 0.53

4. Compare the electric force holding the electron in orbit ( r = 0.53 Electostatics WS Electic Foce an Fiel. Calculate the magnitue of the foce between two 3.60-µ C point chages 9.3 cm apat.. How many electons make up a chage of 30.0 µ C? 3. Two chage ust paticles exet a

More information

Equilibria of a cylindrical plasma

Equilibria of a cylindrical plasma // Miscellaneous Execises Cylinical equilibia Equilibia of a cylinical plasma Consie a infinitely long cyline of plasma with a stong axial magnetic fiel (a geat fusion evice) Plasma pessue will cause the

More information

MAE 210B. Homework Solution #6 Winter Quarter, U 2 =r U=r 2 << 1; ) r << U : (1) The boundary conditions written in polar coordinates,

MAE 210B. Homework Solution #6 Winter Quarter, U 2 =r U=r 2 << 1; ) r << U : (1) The boundary conditions written in polar coordinates, MAE B Homewok Solution #6 Winte Quate, 7 Poblem a Expecting a elocity change of oe oe a aial istance, the conition necessay fo the ow to be ominate by iscous foces oe inetial foces is O( y ) O( ) = =

More information

Physics 122, Fall December 2012

Physics 122, Fall December 2012 Physics 1, Fall 01 6 Decembe 01 Toay in Physics 1: Examples in eview By class vote: Poblem -40: offcente chage cylines Poblem 8-39: B along axis of spinning, chage isk Poblem 30-74: selfinuctance of a

More information

A New Approach to General Relativity

A New Approach to General Relativity Apeion, Vol. 14, No. 3, July 7 7 A New Appoach to Geneal Relativity Ali Rıza Şahin Gaziosmanpaşa, Istanbul Tukey E-mail: aizasahin@gmail.com Hee we pesent a new point of view fo geneal elativity and/o

More information

Ch 13 Universal Gravitation

Ch 13 Universal Gravitation Ch 13 Univesal Gavitation Ch 13 Univesal Gavitation Why do celestial objects move the way they do? Keple (1561-1630) Tycho Bahe s assistant, analyzed celestial motion mathematically Galileo (1564-1642)

More information

Homework Set 3 Physics 319 Classical Mechanics

Homework Set 3 Physics 319 Classical Mechanics Homewok Set 3 Phsics 319 lassical Mechanics Poblem 5.13 a) To fin the equilibium position (whee thee is no foce) set the eivative of the potential to zeo U 1 R U0 R U 0 at R R b) If R is much smalle than

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Depatment Physics 8.033 Decembe 5, 003 Poblem Set 10 Solutions Poblem 1 M s y x test paticle The figue above depicts the geomety of the poblem. The position

More information

15. SIMPLE MHD EQUILIBRIA

15. SIMPLE MHD EQUILIBRIA 15. SIMPLE MHD EQUILIBRIA In this Section we will examine some simple examples of MHD equilibium configuations. These will all be in cylinical geomety. They fom the basis fo moe the complicate equilibium

More information

( )( )( ) ( ) + ( ) ( ) ( )

( )( )( ) ( ) + ( ) ( ) ( ) 3.7. Moel: The magnetic fiel is that of a moving chage paticle. Please efe to Figue Ex3.7. Solve: Using the iot-savat law, 7 19 7 ( ) + ( ) qvsinθ 1 T m/a 1.6 1 C. 1 m/s sin135 1. 1 m 1. 1 m 15 = = = 1.13

More information

= 4 3 π( m) 3 (5480 kg m 3 ) = kg.

= 4 3 π( m) 3 (5480 kg m 3 ) = kg. CHAPTER 11 THE GRAVITATIONAL FIELD Newton s Law of Gavitation m 1 m A foce of attaction occus between two masses given by Newton s Law of Gavitation Inetial mass and gavitational mass Gavitational potential

More information

of Technology: MIT OpenCourseWare). (accessed MM DD, YYYY). License: Creative Commons Attribution- Noncommercial-Share Alike.

of Technology: MIT OpenCourseWare).   (accessed MM DD, YYYY). License: Creative Commons Attribution- Noncommercial-Share Alike. MIT OpenCouseWae http://ocw.mit.eu 6.013/ESD.013J Electomagnetics an Applications, Fall 005 Please use the following citation fomat: Makus Zahn, Eich Ippen, an Davi Staelin, 6.013/ESD.013J Electomagnetics

More information

Physics 107 HOMEWORK ASSIGNMENT #15

Physics 107 HOMEWORK ASSIGNMENT #15 Physics 7 HOMEWORK SSIGNMENT #5 Cutnell & Johnson, 7 th eition Chapte 8: Poblem 4 Chapte 9: Poblems,, 5, 54 **4 small plastic with a mass of 6.5 x - kg an with a chage of.5 µc is suspene fom an insulating

More information

OSCILLATIONS AND GRAVITATION

OSCILLATIONS AND GRAVITATION 1. SIMPLE HARMONIC MOTION Simple hamonic motion is any motion that is equivalent to a single component of unifom cicula motion. In this situation the velocity is always geatest in the middle of the motion,

More information

Basic oces an Keple s Laws 1. Two ientical sphees of gol ae in contact with each othe. The gavitational foce of attaction between them is Diectly popotional to the squae of thei aius ) Diectly popotional

More information

2. Radiation Field Basics I. Specific Intensity

2. Radiation Field Basics I. Specific Intensity . Raiation Fiel Basics Rutten:. Basic efinitions of intensity, flux Enegy ensity, aiation pessue E Specific ntensity t Pencil beam of aiation at position, iection n, caying enegy E, pasg though aea, between

More information

Universal Gravitation

Universal Gravitation Chapte 1 Univesal Gavitation Pactice Poblem Solutions Student Textbook page 580 1. Conceptualize the Poblem - The law of univesal gavitation applies to this poblem. The gavitational foce, F g, between

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS LSN 10-: MOTION IN A GRAVITATIONAL FIELD Questions Fom Reading Activity? Gavity Waves? Essential Idea: Simila appoaches can be taken in analyzing electical

More information

The Schwartzchild Geometry

The Schwartzchild Geometry UNIVERSITY OF ROCHESTER The Schwatzchild Geomety Byon Osteweil Decembe 21, 2018 1 INTRODUCTION In ou study of geneal elativity, we ae inteested in the geomety of cuved spacetime in cetain special cases

More information

Physics 111. Ch 12: Gravity. Newton s Universal Gravity. R - hat. the equation. = Gm 1 m 2. F g 2 1. ˆr 2 1. Gravity G =

Physics 111. Ch 12: Gravity. Newton s Universal Gravity. R - hat. the equation. = Gm 1 m 2. F g 2 1. ˆr 2 1. Gravity G = ics Announcements day, embe 9, 004 Ch 1: Gavity Univesal Law Potential Enegy Keple s Laws Ch 15: Fluids density hydostatic equilibium Pascal s Pinciple This week s lab will be anothe physics wokshop -

More information

Galilean Transformation vs E&M y. Historical Perspective. Chapter 2 Lecture 2 PHYS Special Relativity. Sep. 1, y K K O.

Galilean Transformation vs E&M y. Historical Perspective. Chapter 2 Lecture 2 PHYS Special Relativity. Sep. 1, y K K O. PHYS-2402 Chapte 2 Lectue 2 Special Relativity 1. Basic Ideas Sep. 1, 2016 Galilean Tansfomation vs E&M y K O z z y K In 1873, Maxwell fomulated Equations of Electomagnetism. v Maxwell s equations descibe

More information

AP-C WEP. h. Students should be able to recognize and solve problems that call for application both of conservation of energy and Newton s Laws.

AP-C WEP. h. Students should be able to recognize and solve problems that call for application both of conservation of energy and Newton s Laws. AP-C WEP 1. Wok a. Calculate the wok done by a specified constant foce on an object that undegoes a specified displacement. b. Relate the wok done by a foce to the aea unde a gaph of foce as a function

More information

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50 woking pages fo Paul Richads class notes; do not copy o ciculate without pemission fom PGR 2004/11/3 10:50 CHAPTER7 Solid angle, 3D integals, Gauss s Theoem, and a Delta Function We define the solid angle,

More information

Notes for the standard central, single mass metric in Kruskal coordinates

Notes for the standard central, single mass metric in Kruskal coordinates Notes fo the stana cental, single mass metic in Kuskal cooinates I. Relation to Schwazschil cooinates One oiginally elates the Kuskal cooinates to the Schwazschil cooinates in the following way: u = /2m

More information

Phys 201A. Homework 6 Solutions. F A and F r. B. According to Newton s second law, ( ) ( )2. j = ( 6.0 m / s 2 )ˆ i ( 10.4m / s 2 )ˆ j.

Phys 201A. Homework 6 Solutions. F A and F r. B. According to Newton s second law, ( ) ( )2. j = ( 6.0 m / s 2 )ˆ i ( 10.4m / s 2 )ˆ j. 7. We denote the two foces F A + F B = ma,sof B = ma F A. (a) In unit vecto notation F A = ( 20.0 N)ˆ i and Theefoe, Phys 201A Homewok 6 Solutions F A and F B. Accoding to Newton s second law, a = [ (

More information

Quantum Mechanics I - Session 5

Quantum Mechanics I - Session 5 Quantum Mechanics I - Session 5 Apil 7, 015 1 Commuting opeatos - an example Remine: You saw in class that Â, ˆB ae commuting opeatos iff they have a complete set of commuting obsevables. In aition you

More information

Extra notes for circular motion: Circular motion : v keeps changing, maybe both speed and

Extra notes for circular motion: Circular motion : v keeps changing, maybe both speed and Exta notes fo cicula motion: Cicula motion : v keeps changing, maybe both speed and diection ae changing. At least v diection is changing. Hence a 0. Acceleation NEEDED to stay on cicula obit: a cp v /,

More information

Classical Mechanics Homework set 7, due Nov 8th: Solutions

Classical Mechanics Homework set 7, due Nov 8th: Solutions Classical Mechanics Homewok set 7, due Nov 8th: Solutions 1. Do deivation 8.. It has been asked what effect does a total deivative as a function of q i, t have on the Hamiltonian. Thus, lets us begin with

More information

HW Solutions # MIT - Prof. Please study example 12.5 "from the earth to the moon". 2GmA v esc

HW Solutions # MIT - Prof. Please study example 12.5 from the earth to the moon. 2GmA v esc HW Solutions # 11-8.01 MIT - Pof. Kowalski Univesal Gavity. 1) 12.23 Escaping Fom Asteoid Please study example 12.5 "fom the eath to the moon". a) The escape velocity deived in the example (fom enegy consevation)

More information

m1 m2 M 2 = M -1 L 3 T -2

m1 m2 M 2 = M -1 L 3 T -2 GAVITATION Newton s Univesal law of gavitation. Evey paticle of matte in this univese attacts evey othe paticle with a foce which vaies diectly as the poduct of thei masses and invesely as the squae of

More information

Gravitation. AP/Honors Physics 1 Mr. Velazquez

Gravitation. AP/Honors Physics 1 Mr. Velazquez Gavitation AP/Honos Physics 1 M. Velazquez Newton s Law of Gavitation Newton was the fist to make the connection between objects falling on Eath and the motion of the planets To illustate this connection

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 10-1 DESCRIBING FIELDS Essential Idea: Electic chages and masses each influence the space aound them and that influence can be epesented

More information

Pressure in the Average-Atom Model

Pressure in the Average-Atom Model Pessue in the Aveage-Atom Moe W.. Johnson Depatment of Physics, 225 Nieuwan Science Ha Note Dame Univesity, Note Dame, IN 46556 Febuay 28, 2002 Abstact The (we-known) quantum mechanica expession fo the

More information

SPH4UI 28/02/2011. Total energy = K + U is constant! Electric Potential Mr. Burns. GMm

SPH4UI 28/02/2011. Total energy = K + U is constant! Electric Potential Mr. Burns. GMm 8//11 Electicity has Enegy SPH4I Electic Potential M. Buns To sepaate negative an positive chages fom each othe, wok must be one against the foce of attaction. Theefoe sepeate chages ae in a higheenegy

More information

The Precession of Mercury s Perihelion

The Precession of Mercury s Perihelion The Pecession of Mecuy s Peihelion Owen Biesel Januay 25, 2008 Contents 1 Intoduction 2 2 The Classical olution 2 3 Classical Calculation of the Peiod 4 4 The Relativistic olution 5 5 Remaks 9 1 1 Intoduction

More information

Quiz 6--Work, Gravitation, Circular Motion, Torque. (60 pts available, 50 points possible)

Quiz 6--Work, Gravitation, Circular Motion, Torque. (60 pts available, 50 points possible) Name: Class: Date: ID: A Quiz 6--Wok, Gavitation, Cicula Motion, Toque. (60 pts available, 50 points possible) Multiple Choice, 2 point each Identify the choice that best completes the statement o answes

More information

Chapter 2: Basic Physics and Math Supplements

Chapter 2: Basic Physics and Math Supplements Chapte 2: Basic Physics and Math Supplements Decembe 1, 215 1 Supplement 2.1: Centipetal Acceleation This supplement expands on a topic addessed on page 19 of the textbook. Ou task hee is to calculate

More information

Problems with Mannheim s conformal gravity program

Problems with Mannheim s conformal gravity program Poblems with Mannheim s confomal gavity pogam June 4, 18 Youngsub Yoon axiv:135.163v6 [g-qc] 7 Jul 13 Depatment of Physics and Astonomy Seoul National Univesity, Seoul 151-747, Koea Abstact We show that

More information

This gives rise to the separable equation dr/r = 2 cot θ dθ which may be integrated to yield r(θ) = R sin 2 θ (3)

This gives rise to the separable equation dr/r = 2 cot θ dθ which may be integrated to yield r(θ) = R sin 2 θ (3) Physics 506 Winte 2008 Homewok Assignment #10 Solutions Textbook poblems: Ch. 12: 12.10, 12.13, 12.16, 12.19 12.10 A chaged paticle finds itself instantaneously in the equatoial plane of the eath s magnetic

More information

Chapter 13: Gravitation

Chapter 13: Gravitation v m m F G Chapte 13: Gavitation The foce that makes an apple fall is the same foce that holds moon in obit. Newton s law of gavitation: Evey paticle attacts any othe paticle with a gavitation foce given

More information

Lau Chi Hin The Chinese University of Hong Kong

Lau Chi Hin The Chinese University of Hong Kong Lau Chi Hin The Chinese Univesit of Hong Kong Can Antson each the othe end? 1cms 1 Can I each the othe end? Rubbe band 1m 1ms 1 Can Antson each the othe end? Gottfied Wilhelm Leibniz (1646-1716) Isaac

More information

Example

Example Chapte.4 iffusion with Chemical eaction Example.4- ------------------------------------------------------------------------------ fluiize coal eacto opeates at 45 K an atm. The pocess will be limite by

More information

Physics 181. Assignment 4

Physics 181. Assignment 4 Physics 181 Assignment 4 Solutions 1. A sphee has within it a gavitational field given by g = g, whee g is constant and is the position vecto of the field point elative to the cente of the sphee. This

More information

Diffusion and Transport. 10. Friction and the Langevin Equation. Langevin Equation. f d. f ext. f () t f () t. Then Newton s second law is ma f f f t.

Diffusion and Transport. 10. Friction and the Langevin Equation. Langevin Equation. f d. f ext. f () t f () t. Then Newton s second law is ma f f f t. Diffusion and Tanspot 10. Fiction and the Langevin Equation Now let s elate the phenomena of ownian motion and diffusion to the concept of fiction, i.e., the esistance to movement that the paticle in the

More information

Problems with Mannheim s conformal gravity program

Problems with Mannheim s conformal gravity program Poblems with Mannheim s confomal gavity pogam Abstact We show that Mannheim s confomal gavity pogam, whose potential has a tem popotional to 1/ and anothe tem popotional to, does not educe to Newtonian

More information

A Crash Course in (2 2) Matrices

A Crash Course in (2 2) Matrices A Cash Couse in ( ) Matices Seveal weeks woth of matix algeba in an hou (Relax, we will only stuy the simplest case, that of matices) Review topics: What is a matix (pl matices)? A matix is a ectangula

More information

Gravitation. Chapter 12. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

Gravitation. Chapter 12. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun Chapte 12 Gavitation PowePoint Lectues fo Univesity Physics, Twelfth Edition Hugh D. Young and Roge A. Feedman Lectues by James Pazun Modified by P. Lam 5_31_2012 Goals fo Chapte 12 To study Newton s Law

More information

Between any two masses, there exists a mutual attractive force.

Between any two masses, there exists a mutual attractive force. YEAR 12 PHYSICS: GRAVITATION PAST EXAM QUESTIONS Name: QUESTION 1 (1995 EXAM) (a) State Newton s Univesal Law of Gavitation in wods Between any two masses, thee exists a mutual attactive foce. This foce

More information

B da = 0. Q E da = ε. E da = E dv

B da = 0. Q E da = ε. E da = E dv lectomagnetic Theo Pof Ruiz, UNC Asheville, doctophs on YouTube Chapte Notes The Maxwell quations in Diffeential Fom 1 The Maxwell quations in Diffeential Fom We will now tansfom the integal fom of the

More information

Conformal transformations + Schwarzschild

Conformal transformations + Schwarzschild Intoduction to Geneal Relativity Solutions of homewok assignments 5 Confomal tansfomations + Schwazschild 1. To pove the identity, let s conside the fom of the Chistoffel symbols in tems of the metic tenso

More information

Curvature singularity

Curvature singularity Cuvatue singulaity We wish to show that thee is a cuvatue singulaity at 0 of the Schwazschild solution. We cannot use eithe of the invaiantsr o R ab R ab since both the Ricci tenso and the Ricci scala

More information

Physics 107 TUTORIAL ASSIGNMENT #8

Physics 107 TUTORIAL ASSIGNMENT #8 Physics 07 TUTORIAL ASSIGNMENT #8 Cutnell & Johnson, 7 th edition Chapte 8: Poblems 5,, 3, 39, 76 Chapte 9: Poblems 9, 0, 4, 5, 6 Chapte 8 5 Inteactive Solution 8.5 povides a model fo solving this type

More information

A 1. EN2210: Continuum Mechanics. Homework 7: Fluid Mechanics Solutions

A 1. EN2210: Continuum Mechanics. Homework 7: Fluid Mechanics Solutions EN10: Continuum Mechanics Homewok 7: Fluid Mechanics Solutions School of Engineeing Bown Univesity 1. An ideal fluid with mass density ρ flows with velocity v 0 though a cylindical tube with cosssectional

More information

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1 Please ead this fist... AST S: The oigin and evolution of the Univese Intoduction to Mathematical Handout This is an unusually long hand-out and one which uses in places mathematics that you may not be

More information

Physics 161 Fall 2011 Extra Credit 2 Investigating Black Holes - Solutions The Following is Worth 50 Points!!!

Physics 161 Fall 2011 Extra Credit 2 Investigating Black Holes - Solutions The Following is Worth 50 Points!!! Physics 161 Fall 011 Exta Cedit Investigating Black Holes - olutions The Following is Woth 50 Points!!! This exta cedit assignment will investigate vaious popeties of black holes that we didn t have time

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 9

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 9 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Depatment Physics 8.033 Novembe 17, 2006 Poblem Set 9 Due: Decembe 8, at 4:00PM. Please deposit the poblem set in the appopiate 8.033 bin, labeled with name

More information

Physics 4A Chapter 8: Dynamics II Motion in a Plane

Physics 4A Chapter 8: Dynamics II Motion in a Plane Physics 4A Chapte 8: Dynamics II Motion in a Plane Conceptual Questions and Example Poblems fom Chapte 8 Conceptual Question 8.5 The figue below shows two balls of equal mass moving in vetical cicles.

More information

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below.

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below. Fall 2007 Qualifie Pat II 12 minute questions 11) A thin, unifom od of mass M is suppoted by two vetical stings, as shown below. Find the tension in the emaining sting immediately afte one of the stings

More information

Physics: Work & Energy Beyond Earth Guided Inquiry

Physics: Work & Energy Beyond Earth Guided Inquiry Physics: Wok & Enegy Beyond Eath Guided Inquiy Elliptical Obits Keple s Fist Law states that all planets move in an elliptical path aound the Sun. This concept can be extended to celestial bodies beyond

More information

Practice. Understanding Concepts. Answers J 2. (a) J (b) 2% m/s. Gravitation and Celestial Mechanics 287

Practice. Understanding Concepts. Answers J 2. (a) J (b) 2% m/s. Gravitation and Celestial Mechanics 287 Pactice Undestanding Concepts 1. Detemine the gavitational potential enegy of the Eath Moon system, given that the aveage distance between thei centes is 3.84 10 5 km, and the mass of the Moon is 0.0123

More information

POISSON S EQUATION 2 V 0

POISSON S EQUATION 2 V 0 POISSON S EQUATION We have seen how to solve the equation but geneally we have V V4k We now look at a vey geneal way of attacking this poblem though Geen s Functions. It tuns out that this poblem has applications

More information

GENERAL RELATIVITY: THE GEODESICS OF THE SCHWARZSCHILD METRIC

GENERAL RELATIVITY: THE GEODESICS OF THE SCHWARZSCHILD METRIC GENERAL RELATIVITY: THE GEODESICS OF THE SCHWARZSCHILD METRIC GILBERT WEINSTEIN 1. Intoduction Recall that the exteio Schwazschild metic g defined on the 4-manifold M = R R 3 \B 2m ) = {t,, θ, φ): > 2m}

More information

PHY 213. General Physics II Test 2.

PHY 213. General Physics II Test 2. Univesity of Kentucky Depatment of Physics an Astonomy PHY 3. Geneal Physics Test. Date: July, 6 Time: 9:-: Answe all questions. Name: Signatue: Section: Do not flip this page until you ae tol to o so.

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

Escape Velocity. GMm ] B

Escape Velocity. GMm ] B 1 PHY2048 Mach 31, 2006 Escape Velocity Newton s law of gavity: F G = Gm 1m 2 2, whee G = 667 10 11 N m 2 /kg 2 2 3 10 10 N m 2 /kg 2 is Newton s Gavitational Constant Useful facts: R E = 6 10 6 m M E

More information

Physics 1114: Unit 5 Hand-out Homework (Answers)

Physics 1114: Unit 5 Hand-out Homework (Answers) Physics 1114: Unit 5 Hand-out Homewok (Answes) Poblem set 1 1. The flywheel on an expeimental bus is otating at 420 RPM (evolutions pe minute). To find (a) the angula velocity in ad/s (adians/second),

More information

Physics 161: Black Holes: Lecture 5: 22 Jan 2013

Physics 161: Black Holes: Lecture 5: 22 Jan 2013 Physics 161: Black Holes: Lectue 5: 22 Jan 2013 Pofesso: Kim Giest 5 Equivalence Pinciple, Gavitational Redshift and Geodesics of the Schwazschild Metic 5.1 Gavitational Redshift fom the Schwazschild metic

More information

From Gravitational Collapse to Black Holes

From Gravitational Collapse to Black Holes Fom Gavitational Collapse to Black Holes T. Nguyen PHY 391 Independent Study Tem Pape Pof. S.G. Rajeev Univesity of Rocheste Decembe 0, 018 1 Intoduction The pupose of this independent study is to familiaize

More information

b) The array factor of a N-element uniform array can be written

b) The array factor of a N-element uniform array can be written to Eam in Antenna Theo Time: 18 Mach 010, at 8.00 13.00. Location: Polacksbacken, Skivsal You ma bing: Laboato epots, pocket calculato, English ictiona, Råe- Westegen: Beta, Noling-Östeman: Phsics Hanbook,

More information

Supplementary Information for On characterizing protein spatial clusters with correlation approaches

Supplementary Information for On characterizing protein spatial clusters with correlation approaches Supplementay Infomation fo On chaacteizing potein spatial clustes with coelation appoaches A. Shivananan, J. Unnikishnan, A. Raenovic Supplementay Notes Contents Deivation of expessions fo p = a t................................

More information

Determining solar characteristics using planetary data

Determining solar characteristics using planetary data Detemining sola chaacteistics using planetay data Intoduction The Sun is a G-type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this investigation

More information

KEPLER S LAWS OF PLANETARY MOTION

KEPLER S LAWS OF PLANETARY MOTION EPER S AWS OF PANETARY MOTION 1. Intoduction We ae now in a position to apply what we have leaned about the coss poduct and vecto valued functions to deive eple s aws of planetay motion. These laws wee

More information

Geometry of the homogeneous and isotropic spaces

Geometry of the homogeneous and isotropic spaces Geomety of the homogeneous and isotopic spaces H. Sonoda Septembe 2000; last evised Octobe 2009 Abstact We summaize the aspects of the geomety of the homogeneous and isotopic spaces which ae most elevant

More information

AY 7A - Fall 2010 Section Worksheet 2 - Solutions Energy and Kepler s Law

AY 7A - Fall 2010 Section Worksheet 2 - Solutions Energy and Kepler s Law AY 7A - Fall 00 Section Woksheet - Solutions Enegy and Keple s Law. Escape Velocity (a) A planet is obiting aound a sta. What is the total obital enegy of the planet? (i.e. Total Enegy = Potential Enegy

More information

Unit 6 Test Review Gravitation & Oscillation Chapters 13 & 15

Unit 6 Test Review Gravitation & Oscillation Chapters 13 & 15 A.P. Physics C Unit 6 Test Review Gavitation & Oscillation Chaptes 13 & 15 * In studying fo you test, make sue to study this eview sheet along with you quizzes and homewok assignments. Multiple Choice

More information

10. Universal Gravitation

10. Universal Gravitation 10. Univesal Gavitation Hee it is folks, the end of the echanics section of the couse! This is an appopiate place to complete the study of mechanics, because with his Law of Univesal Gavitation, Newton

More information

Circular-Rotational Motion Mock Exam. Instructions: (92 points) Answer the following questions. SHOW ALL OF YOUR WORK.

Circular-Rotational Motion Mock Exam. Instructions: (92 points) Answer the following questions. SHOW ALL OF YOUR WORK. AP Physics C Sping, 2017 Cicula-Rotational Motion Mock Exam Name: Answe Key M. Leonad Instuctions: (92 points) Answe the following questions. SHOW ALL OF YOUR WORK. ( ) 1. A stuntman dives a motocycle

More information

Much that has already been said about changes of variable relates to transformations between different coordinate systems.

Much that has already been said about changes of variable relates to transformations between different coordinate systems. MULTIPLE INTEGRLS I P Calculus Cooinate Sstems Much that has alea been sai about changes of vaiable elates to tansfomations between iffeent cooinate sstems. The main cooinate sstems use in the solution

More information

EM Boundary Value Problems

EM Boundary Value Problems EM Bounday Value Poblems 10/ 9 11/ By Ilekta chistidi & Lee, Seung-Hyun A. Geneal Desciption : Maxwell Equations & Loentz Foce We want to find the equations of motion of chaged paticles. The way to do

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

1 Fundamental Solutions to the Wave Equation

1 Fundamental Solutions to the Wave Equation 1 Fundamental Solutions to the Wave Equation Physical insight in the sound geneation mechanism can be gained by consideing simple analytical solutions to the wave equation. One example is to conside acoustic

More information

HW6 Physics 311 Mechanics

HW6 Physics 311 Mechanics HW6 Physics 311 Mechanics Fall 015 Physics depatment Univesity of Wisconsin, Madison Instucto: Pofesso Stefan Westehoff By Nasse M. Abbasi June 1, 016 Contents 0.1 Poblem 1.........................................

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

Newton s Laws, Kepler s Laws, and Planetary Orbits

Newton s Laws, Kepler s Laws, and Planetary Orbits Newton s Laws, Keple s Laws, and Planetay Obits PROBLEM SET 4 DUE TUESDAY AT START OF LECTURE 28 Septembe 2017 ASTRONOMY 111 FALL 2017 1 Newton s & Keple s laws and planetay obits Unifom cicula motion

More information

Review: Electrostatics and Magnetostatics

Review: Electrostatics and Magnetostatics Review: Electostatics and Magnetostatics In the static egime, electomagnetic quantities do not vay as a function of time. We have two main cases: ELECTROSTATICS The electic chages do not change postion

More information

Lab #0. Tutorial Exercises on Work and Fields

Lab #0. Tutorial Exercises on Work and Fields Lab #0 Tutoial Execises on Wok and Fields This is not a typical lab, and no pe-lab o lab epot is equied. The following execises will emind you about the concept of wok (fom 1130 o anothe intoductoy mechanics

More information

4.[1pt] Two small spheres with charges -4 C and -9 C are held 9.5 m apart. Find the magnitude of the force between them.

4.[1pt] Two small spheres with charges -4 C and -9 C are held 9.5 m apart. Find the magnitude of the force between them. . [pt] A peson scuffing he feet on a wool ug on a y ay accumulates a net chage of - 4.uC. How many ecess electons oes this peson get? Coect, compute gets:.63e+4. [pt] By how much oes he mass incease? Coect,

More information

Relativity and Astrophysics Lecture 38 Terry Herter. Rain fall source to distance observer Distance source to rain fall frame

Relativity and Astrophysics Lecture 38 Terry Herter. Rain fall source to distance observer Distance source to rain fall frame Light and Tides Relativity and Astophysics Lectue 38 Tey Hete Outline etic in the Rain Fame Inside the hoizon One-way motion Rain Fall Light Cones Photon Exchange Rain all souce to distance obseve Distance

More information

Class #16 Monday, March 20, 2017

Class #16 Monday, March 20, 2017 D. Pogo Class #16 Monday, Mach 0, 017 D Non-Catesian Coodinate Systems A point in space can be specified by thee numbes:, y, and z. O, it can be specified by 3 diffeent numbes:,, and z, whee = cos, y =

More information