(A) 2log( tan cot ) [ ], 2 MATHEMATICS. 1. Which of the following is correct?

Size: px
Start display at page:

Download "(A) 2log( tan cot ) [ ], 2 MATHEMATICS. 1. Which of the following is correct?"

Transcription

1 MATHEMATICS. Which of the following is coect? A L.P.P always has unique solution Evey L.P.P has an optimal solution A L.P.P admits two optimal solutions If a L.P.P admits two optimal solutions then it has infinitely many optimal solutions. Mean maks scoed by the students of a class is 5. The mean maks of the gils is 55 and the mean maks of the boys is 50. What is the pecentage of gils in the school? Let Q be the set of all ational numbes. Define an opeation X on Q { } by a * b = a + b + ab. Then identity element of * on X on Q { } is (C ) 0. Let Then [ ], x x x< f( x) = x, x lim f( x ) is equal to x, whee [ x] denotes the geatest intege function. 0 none of these 5. If I = cosx sinx dx, then I equals cosxsinx log( tan cot ) x x + C log sinx+ cosx+ sinx + C log sinx cosx+ sinxcosx + C ( ) log sin x+ + sinxcosx + C Mathematics (SET A) [ ] P.T.O.

2 6. The solution set of the equation 5 7 x 9 6 = 0 is {0} {6} { 6} {0, 9} 7. If A = and B is a squae matix of ode such that AB=I, then B is equal to Mathematics (SET A) [ ] Contd. 8. Satement : If the pependicula bisecto of the line segment joining P(, ) and Q(K, ) has y-intecept, then K 6 = 0 Statement : Locus of a point equidistant fom two given points is the pependicula bisecto of the line joining the given points Statement is tue, Statement is tue; Statement is a coect explanation fo Statement Statement is tue, Statement is tue; Statement is not a coect explanation fo Statement Statement is tue, Statement is false Statement is false, Statement is tue 9. cot (9) + cosec is equal to 6

3 0. Fist tem of a G.P of n tems is a and the last tem is l. Then the poduct of all tems is. n (a + l) ( ) n a+ l ( al ) ( ) n 8 lim x x 0 x x is equal to log x log log 8 a+ b. a b. If a and b ae two unit vectos, then the value of ( ) ( ) 0 none of these. If A and B ae two independent events, then P (A/B)is equal to P P ( C) P (A/B) P (A /B). x-axis is the intesection of the two planes xy and yz yz and zx xy and zx none of these al n is equal to a bc a 5. b ac b c ab c is equal to 0 abc Mathematics (SET A) [ ] P.T.O.

4 6. a x dx is equal to x a + x a x + sin + C a x a x a x sin + C a x a x a + log x+ a x + C x a x a x + sin + C a 7. The minimum value of P = 6x + 6y subject to the constaints x 0, y x, y 0 is If the vaiance of α, β, γ is 9, then the vaiance of 5α, 5 β and 5γ is Mathematics (SET A) [ ] Contd sin sin 5 is equal to The point of discontinuity of the function f defined by x+, if x< f (x) = 0, if x= is x, if x > 0 R {}. The equation of a cicle which touches the x-axis and whose cente is (,) is x + y + x + y = 6 x + y 6x 8y + 9 = 0 x + y + 8x + 0y + 5 = 0 x + y 9x 6y + 5 = 0 5 0,

5 . If A = {,,,, 5} and B = {,, 6, 7}, then numbe of elements of (A B) (B A) is equal to x 0 0. A = x x and A =, then x is equal to. The anti deivative F of f defined by f (x) = x 6, whee F (0) = is x 6x + x x 6x x 6x 5. The line though the points (, 6) and (, 8) is pependicula to the line though the points ( 8, ) and ( x, ), then the value of x is If A is a singula matix, then A.(adjA) is equal to a null matix a unit matix (C ) a scala matix none of these 7. Two cads ae dawn fom a pack of 5 cads. The pobability of being queens is 8. 6 Mathematics (SET A) [ 5 ] P.T.O. none of these d dx log tan x + is equal to sec x cosec x tan x cot x 9. dy The geneal solution of the diffeential equation dx = ex y is y = xc e y = e x + C e x y = C none of these 0. The aithmetic mean of values 0,, n is n n + n (n +)

6 . If A and B ae squae matices of ode such that A = and B =, then AB is equal to 8 8 x+, x< 0. Let f (x) =, x= 0. Then on [,] this function has x, 0< x a minimum a maximum a maximum and a minimum neithe maximum no minimum. The value of x fo which the angle between the vectos a =xiˆ ˆj kand ˆ b = xiˆ+ xj ˆ kˆis acute, and the angle between the vecto b and the axis of odinate is obtuse, ae fo all x > 0 fo all x < 0,, sin y + cosy sin y. The value of the expession + is + cosy sin y cosy 0 siny cosy 5. If f (x) = x, g(x) = tan x and h(x) = log x, then ho (gof) 0 Mathematics (SET A) [ 6 ] Contd. log is equal to 6. The value of θ and p, if the equation x cos θ + y sinθ = p is the nomal fom of the line x + y + = 0 ae θ =, 6 p = θ =, 6 p = θ = 7, 6 p = θ = 7, p= 6

7 7. Statement : f (x) = Statement : f (x) = x e x e is diffeentiable fo all x is continuous fo all x Statement is tue, Statement is tue; Statement is a coect explanation fo Statement Statement is tue, Statement is tue; Statement is not a coect explanation fo Statement Statement is tue, Statement is false Statement is false, Statement is tue 8. If n N then.5 n+ + n+ is divisible by If A and B ae two squae matices such that AB=A and BA=B, then A is equal to B A I 0 0. lim x 0 f(x), whee f (x) = x, x 0 x 0, x = 0 is 0 is is does not exist ( ) cos logx. If k = e 007, then value of I = dx is x 0 e k Mathematics (SET A) [ 7 ] P.T.O If one of the oots of the equation x = px + q is the ecipocal of the othe, then the coect elationship is pq = q = q = pq =

8 . Q + is set of all positive ational numbes and g is a binay opeation on Q + ab + defined by a gb = a, b Q. Then the invese of a Q + is equal to a a a. If A =, then (A I) (A I) is equal to A I O 5I Paagaph fo question numbes 5, 6, 7, 8, 9 and 50 Conside the point P(,, ) and the vecto b = iˆ ˆj + kˆ 5. Vecto equation of a line L passing though the point P and paallel to b is = iˆ+ ˆj kˆ + λ iˆ ˆj+ kˆ ( ) ( ) = ( iˆ ˆj+ kˆ) + λ( iˆ+ ˆj kˆ) = ( iˆ+ ˆj kˆ) + λ( iˆ ˆj+ kˆ) none of these 6. Catesian equation of the plane passing though the point P and pependicula to the vecto b is x y + z = 7 x + y z = 7 x y + z = 7 x + y z = 7 7. Catesian equation of a plane passing though the point with position vecto b and pependicula to the vecto OP, O being oigin is x y + z + 7 = 0 x y + z 7 = 0 x + y z + 7 = 0 x + y z 7 = 0 8. Sum of the lengths of the intecepts made by the plane on the coodinate axes is 9/ 9/7 5/7 Mathematics (SET A) [ 8 ] Contd.

9 9. The equation of a plane passing though point P, pependicula to the plane and paallel to the line L is x y + 6z = 0 x 6y z = 0 x y + z = x y + 5z = The angle between the plane and the line L is sin cos sin cos 7 9 Mathematics (SET A) [ 9 ] P.T.O Let S be the set of eal numbes and R be a elation on S defined by arb a + b =. Then R is equivalence elation eflexive but neithe symmetic no tansitive (C ) tansitive but neithe eflexive no symmetic symmetic but neithe eflexive no tansitive 5. If A is a -owed squae matix and A =, then adj (adj A) is equal to A 6 A (C ) 6 A A 5. If a line makes angle 90, 60 and 0 with the positive X,Y and Z-axes espectively, its diection cosines ae,, 0,, undefined,, none of these 5. Thee dice ae thown togethe. The pobability of getting a total of atleast 6 is

10 55. The locus of the points which ae equidistant fom ( a, 0) and the line x = a is y = ax y = ax x + y = a (x a) + (y + a) = sin x cos x dx is equal to 5 sin x sin x cos x sin x + C + C 5 5 cos x cos x + C none of these If the mean and vaiance of a binomial distibution ae and, then the value of P(X=0) is The numbe of pope subsets of the set {,, } is The line x y z = = is paallel to the plane 5 x + y z = 0 x + y + 5z = 7 x + y + z = x + y + z = If f () = and f () =, then xf lim () f ( x ) x x is equal to Mathematics (SET A) [ 0 ] Contd.

11 6. The value of sin 0 sin 0 sin 60 sin 80 is equal to (C ) 6 8 is equal to 6. sin ( ) - cos sin x + cos sin( cos x) 0 6. The eal value of α fo which the expession i siná +i siná is puely eal is (n + ), n Z (n + ), n Z n, n Z none of these 6. If y = cos x, then d y dx is equal to cos y sin y cosecy cot y cosec y cot y none of these 65. The value of a b b c c a is If the points (, ), B(k, ) and C(8, 8) ae collinea, then k is equal to 5 Mathematics (SET A) [ ] P.T.O.

12 67. The value of tan 5 + cot 5 is not defined 68. A die is olled twice and the sum of the numbes appeaing is obseved to be 7. The conditional pobability that the numbe has appeaed atleast once is The statement if x is divisible by 8, then it is divisible by 6 is false if x equals Mathematics (SET A) [ ] Contd A vecto a can be witten as ( ˆ) ˆ. (. ˆ) ˆ + + (. ) ai i a j j akˆ kˆ ( ˆ) ˆ ( ˆ) ˆ (. ˆ) ak i ai j a j kˆ 6 ( ˆ) ˆ ( ˆ) ˆ (. ˆ) a j i ak j ai kˆ ( aa. ) ( iˆ+ ˆj+ kˆ) 7. If A and B ae two sets of the univesal set U, then (A B) equals A B C A C B (C ) A B U A 7. The pobability of the safe aival of one ship out of 5 is. What is the pobability 5 of the safe aival of atleast ships out of 5? The foci of the ellipse 9x + y = 6 ae ( 5, 0) ( ± 5,0) ( 0, ± 5) (0, 5)

13 7. Aea between the cuve y = x (x ) and the x-axis fom x = 0 to x = 5 is 5 0 sq units sq units sq units none of these 75. Range of the function f (x) = x, when x 0 x 0, when x= 0 R {,0,} [,] R { 0} x+ 76. The numbe of integal solutions of > is x + 0 (C ) If (!)! = k(n!) then (n + k) equals Ode of the diffeential equation whose solution y = ae x + be x + ce x (whee a, b, c ae abitay constants) is α + β tan 79. If sin α= 5 sin β, then is equal to α β tan 80. If f (x) = x e loge (x ), then dom f is equal to (, ] [, ) (, ) (, ] (, ) Mathematics (SET A) [ ] P.T.O. is

14 8. The slope of nomal to the cuve y = x + sin x at x = 0 is 8. The locus of a point such that the diffeence of its distances fom (, 0) and (, 0) is always equal to is the cuve 5x y = 5 y 5x = 5 5x + y = 5 6y = x + i 8. If ω + =, then ( + ω+ ω ) is equal to ω 6 ω 8. Two cads ae dawn fom a well shuffled deck of 5 cads one afte the othe without eplacement. The pobability of fist cad being a spade and the second a black king is 0 0 Mathematics (SET A) [ ] Contd x+ y + x y afte 85. The total numbe of tems in the expansion of ( ) ( ) simplification is Let f (x) = sin x, g(x) = x and h(x) = log x. If u(x) = h (f (g(x))) then 87. If d u cos x cot x x cosec x x cot x cosec x ( + x) f() tdt = x, then f () is equal to x 0 / / /5 dx is

15 88. The numbe of ways in which a student can choose 5 couses out of 9 couses in which couses ae compulsoy is The maximum numbe of points of intesection of 8 staight lines is Thee ae two boxes. One box contains white and black balls. The othe box contains 7 yellow balls and black balls. If a box is selected at andom and fom it a ball is dawn, the pobability that the ball dawn is black is (C ) 0 9. The function f (x) = a x is inceasing on R if Mathematics (SET A) [ 5 ] P.T.O < a < a > a < a > 0 9. The integating facto of dy + y cot x = cos x is dx cos x tan x cot x sin x 9. The geatest coefficient in the expansion of ( + x) n +, n N is ( n)! n! ( n+! ) ( n! ) + 9. If fo the matix A = I, then A is equal to A A ( n+ ) n ( n+ )!!! ( n+ ) nn ( + )! A none of these!

16 95. The diffeential equation of all non-hoizontal lines in a plane is dy 0 dx = d y 0 d y dx = dx = 5 dx = 96. An unbiased die is tossed twice. The pobability of getting a, 5 o 6 on the fist toss and a,, o on the second toss is 97. The equation e x + x = 0 has one eal oot two eal oots thee eal oots fou eal oots 98. One of the two events must occu. If the chance of one is of the othe, then the odds in favou of the othe is : : : : 99. The aea in the fist quadant and bounded by the cuve x + y = and the lines x = 0 and x = is 00. Thee ae fou lette boxes in a post office. The numbe of ways in which a man can post 8 distinct lettes is 8 8 dy P Mathematics (SET A) [ 6 ] Contd.

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) ,

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) , R Pena Towe, Road No, Contactos Aea, Bistupu, Jamshedpu 8, Tel (657)89, www.penaclasses.com IIT JEE Mathematics Pape II PART III MATHEMATICS SECTION I Single Coect Answe Type This section contains 8 multiple

More information

Question Bank. Section A. is skew-hermitian matrix. is diagonalizable. (, ) , Evaluate (, ) 12 about = 1 and = Find, if

Question Bank. Section A. is skew-hermitian matrix. is diagonalizable. (, ) , Evaluate (, ) 12 about = 1 and = Find, if Subject: Mathematics-I Question Bank Section A T T. Find the value of fo which the matix A = T T has ank one. T T i. Is the matix A = i is skew-hemitian matix. i. alculate the invese of the matix = 5 7

More information

BASIC ALGEBRA OF VECTORS

BASIC ALGEBRA OF VECTORS Fomulae Fo u Vecto Algeba By Mi Mohammed Abbas II PCMB 'A' Impotant Tems, Definitions & Fomulae 01 Vecto - Basic Intoduction: A quantity having magnitude as well as the diection is called vecto It is denoted

More information

JEE(MAIN) 2018 TEST PAPER WITH SOLUTIONS (HELD ON SUNDAY 08 th APRIL, 2018) PART B MATHEMATICS ALLEN

JEE(MAIN) 2018 TEST PAPER WITH SOLUTIONS (HELD ON SUNDAY 08 th APRIL, 2018) PART B MATHEMATICS ALLEN . The integal sin cos 5 5 (sin cos sin sin cos cos ) is equal to () ( tan ) C () cot C () cot C () ( tan ) C (whee C is a constant of integation) Ans. () Let I sin cos d [(sin cos )(sin cos )] sin cos

More information

K.S.E.E.B., Malleshwaram, Bangalore SSLC Model Question Paper-1 (2015) Mathematics

K.S.E.E.B., Malleshwaram, Bangalore SSLC Model Question Paper-1 (2015) Mathematics K.S.E.E.B., Malleshwaam, Bangaloe SSLC Model Question Pape-1 (015) Mathematics Max Maks: 80 No. of Questions: 40 Time: Hous 45 minutes Code No. : 81E Fou altenatives ae given fo the each question. Choose

More information

KCET 2015 TEST PAPER WITH ANSWER KEY (HELD ON TUESDAY 12 th MAY, 2015) MATHEMATICS ALLEN Y (0, 14) (4) 14x + 5y ³ 70 y ³ 14and x - y ³ 5 (2) (3) (4)

KCET 2015 TEST PAPER WITH ANSWER KEY (HELD ON TUESDAY 12 th MAY, 2015) MATHEMATICS ALLEN Y (0, 14) (4) 14x + 5y ³ 70 y ³ 14and x - y ³ 5 (2) (3) (4) KET 0 TEST PAPER WITH ANSWER KEY (HELD ON TUESDAY th MAY, 0). If a and b ae the oots of a + b = 0, then a +b is equal to a b () a b a b () a + b Ans:. If the nd and th tems of G.P. ae and esectively, then

More information

ALL INDIA TEST SERIES

ALL INDIA TEST SERIES Fom Classoom/Integated School Pogams 7 in Top 0, in Top 00, 54 in Top 00, 06 in Top 500 All India Ranks & 4 Students fom Classoom /Integated School Pogams & 7 Students fom All Pogams have been Awaded a

More information

Cartesian Coordinate System and Vectors

Cartesian Coordinate System and Vectors Catesian Coodinate System and Vectos Coodinate System Coodinate system: used to descibe the position of a point in space and consists of 1. An oigin as the efeence point 2. A set of coodinate axes with

More information

e.g: If A = i 2 j + k then find A. A = Ax 2 + Ay 2 + Az 2 = ( 2) = 6

e.g: If A = i 2 j + k then find A. A = Ax 2 + Ay 2 + Az 2 = ( 2) = 6 MOTION IN A PLANE 1. Scala Quantities Physical quantities that have only magnitude and no diection ae called scala quantities o scalas. e.g. Mass, time, speed etc. 2. Vecto Quantities Physical quantities

More information

Random Variables and Probability Distribution Random Variable

Random Variables and Probability Distribution Random Variable Random Vaiables and Pobability Distibution Random Vaiable Random vaiable: If S is the sample space P(S) is the powe set of the sample space, P is the pobability of the function then (S, P(S), P) is called

More information

MODULE 5a and 5b (Stewart, Sections 12.2, 12.3) INTRO: In MATH 1114 vectors were written either as rows (a1, a2,..., an) or as columns a 1 a. ...

MODULE 5a and 5b (Stewart, Sections 12.2, 12.3) INTRO: In MATH 1114 vectors were written either as rows (a1, a2,..., an) or as columns a 1 a. ... MODULE 5a and 5b (Stewat, Sections 2.2, 2.3) INTRO: In MATH 4 vectos wee witten eithe as ows (a, a2,..., an) o as columns a a 2... a n and the set of all such vectos of fixed length n was called the vecto

More information

Physics Tutorial V1 2D Vectors

Physics Tutorial V1 2D Vectors Physics Tutoial V1 2D Vectos 1 Resolving Vectos & Addition of Vectos A vecto quantity has both magnitude and diection. Thee ae two ways commonly used to mathematically descibe a vecto. y (a) The pola fom:,

More information

LESSON THREE DIMENSIONAL GEOMETRY

LESSON THREE DIMENSIONAL GEOMETRY Intoduction LESSON THREE DIMENSIONAL GEOMETRY The coodinates of any point P in the 3 D Catesian system ae the pependicula distance fom P on the thee mutually ectangula coodinate planes XOZ, XOY and YOZ

More information

Homework # 3 Solution Key

Homework # 3 Solution Key PHYSICS 631: Geneal Relativity Homewok # 3 Solution Key 1. You e on you hono not to do this one by hand. I ealize you can use a compute o simply look it up. Please don t. In a flat space, the metic in

More information

MCV4U Final Exam Review. 1. Consider the function f (x) Find: f) lim. a) lim. c) lim. d) lim. 3. Consider the function: 4. Evaluate. lim. 5. Evaluate.

MCV4U Final Exam Review. 1. Consider the function f (x) Find: f) lim. a) lim. c) lim. d) lim. 3. Consider the function: 4. Evaluate. lim. 5. Evaluate. MCVU Final Eam Review Answe (o Solution) Pactice Questions Conside the function f () defined b the following gaph Find a) f ( ) c) f ( ) f ( ) d) f ( ) Evaluate the following its a) ( ) c) sin d) π / π

More information

FREE Download Study Package from website: &

FREE Download Study Package from website:  & .. Linea Combinations: (a) (b) (c) (d) Given a finite set of vectos a b c,,,... then the vecto xa + yb + zc +... is called a linea combination of a, b, c,... fo any x, y, z... R. We have the following

More information

Math 1105: Calculus I (Math/Sci majors) MWF 11am / 12pm, Campion 235 Written homework 3

Math 1105: Calculus I (Math/Sci majors) MWF 11am / 12pm, Campion 235 Written homework 3 Math : alculus I Math/Sci majos MWF am / pm, ampion Witten homewok Review: p 94, p 977,8,9,6, 6: p 46, 6: p 4964b,c,69, 6: p 47,6 p 94, Evaluate the following it by identifying the integal that it epesents:

More information

transformation Earth V-curve (meridian) λ Conical projection. u,v curves on the datum surface projected as U,V curves on the projection surface

transformation Earth V-curve (meridian) λ Conical projection. u,v curves on the datum surface projected as U,V curves on the projection surface . CONICAL PROJECTIONS In elementay texts on map pojections, the pojection sufaces ae often descibed as developable sufaces, such as the cylinde (cylindical pojections) and the cone (conical pojections),

More information

Appendix A. Appendices. A.1 ɛ ijk and cross products. Vector Operations: δ ij and ɛ ijk

Appendix A. Appendices. A.1 ɛ ijk and cross products. Vector Operations: δ ij and ɛ ijk Appendix A Appendices A1 ɛ and coss poducts A11 Vecto Opeations: δ ij and ɛ These ae some notes on the use of the antisymmetic symbol ɛ fo expessing coss poducts This is an extemely poweful tool fo manipulating

More information

(n 1)n(n + 1)(n + 2) + 1 = (n 1)(n + 2)n(n + 1) + 1 = ( (n 2 + n 1) 1 )( (n 2 + n 1) + 1 ) + 1 = (n 2 + n 1) 2.

(n 1)n(n + 1)(n + 2) + 1 = (n 1)(n + 2)n(n + 1) + 1 = ( (n 2 + n 1) 1 )( (n 2 + n 1) + 1 ) + 1 = (n 2 + n 1) 2. Paabola Volume 5, Issue (017) Solutions 151 1540 Q151 Take any fou consecutive whole numbes, multiply them togethe and add 1. Make a conjectue and pove it! The esulting numbe can, fo instance, be expessed

More information

KEPLER S LAWS AND PLANETARY ORBITS

KEPLER S LAWS AND PLANETARY ORBITS KEPE S AWS AND PANETAY OBITS 1. Selected popeties of pola coodinates and ellipses Pola coodinates: I take a some what extended view of pola coodinates in that I allow fo a z diection (cylindical coodinates

More information

(c) n (d) n 2. (a) (b) (c) (d) (a) Null set (b) {P} (c) {P, Q, R} (d) {Q, R} (a) 2k (b) 7 (c) 2 (d) K (a) 1 (b) 3 (c) 3xyz (d) 27xyz

(c) n (d) n 2. (a) (b) (c) (d) (a) Null set (b) {P} (c) {P, Q, R} (d) {Q, R} (a) 2k (b) 7 (c) 2 (d) K (a) 1 (b) 3 (c) 3xyz (d) 27xyz 318 NDA Mathematics Practice Set 1. (1001)2 (101)2 (110)2 (100)2 2. z 1/z 2z z/2 3. The multiplication of the number (10101)2 by (1101)2 yields which one of the following? (100011001)2 (100010001)2 (110010011)2

More information

Now we just need to shuffle indices around a bit. The second term is already of the form

Now we just need to shuffle indices around a bit. The second term is already of the form Depatment of Physics, UCSD Physics 5B, Geneal Relativity Winte 05 Homewok, solutions. (a) Fom the Killing equation, ρ K σ ` σ K ρ 0 taking one deivative, µ ρ K σ ` µ σ K ρ 0 σ µ K ρ σ ρ K µ 0 ρ µ K σ `

More information

Mark Scheme 4727 June 2006

Mark Scheme 4727 June 2006 Mak Scheme 77 June 006 77 Mak Scheme June 006 (a) Identity = + 0 i Invese = + i i = + i i 0 0 (b) Identity = 0 0 0 Invese = 0 0 i B Fo coect identity. Allow B Fo seen o implied + i = B Fo coect invese

More information

Phys 201A. Homework 5 Solutions

Phys 201A. Homework 5 Solutions Phys 201A Homewok 5 Solutions 3. In each of the thee cases, you can find the changes in the velocity vectos by adding the second vecto to the additive invese of the fist and dawing the esultant, and by

More information

OLYMON. Produced by the Canadian Mathematical Society and the Department of Mathematics of the University of Toronto. Issue 9:2.

OLYMON. Produced by the Canadian Mathematical Society and the Department of Mathematics of the University of Toronto. Issue 9:2. OLYMON Poduced by the Canadian Mathematical Society and the Depatment of Mathematics of the Univesity of Toonto Please send you solution to Pofesso EJ Babeau Depatment of Mathematics Univesity of Toonto

More information

ME 210 Applied Mathematics for Mechanical Engineers

ME 210 Applied Mathematics for Mechanical Engineers Tangent and Ac Length of a Cuve The tangent to a cuve C at a point A on it is defined as the limiting position of the staight line L though A and B, as B appoaches A along the cuve as illustated in the

More information

SUPPLEMENTARY MATERIAL CHAPTER 7 A (2 ) B. a x + bx + c dx

SUPPLEMENTARY MATERIAL CHAPTER 7 A (2 ) B. a x + bx + c dx SUPPLEMENTARY MATERIAL 613 7.6.3 CHAPTER 7 ( px + q) a x + bx + c dx. We choose constants A and B such that d px + q A ( ax + bx + c) + B dx A(ax + b) + B Compaing the coefficients of x and the constant

More information

AE301 Aerodynamics I UNIT B: Theory of Aerodynamics

AE301 Aerodynamics I UNIT B: Theory of Aerodynamics AE301 Aeodynamics I UNIT B: Theoy of Aeodynamics ROAD MAP... B-1: Mathematics fo Aeodynamics B-2: Flow Field Repesentations B-3: Potential Flow Analysis B-4: Applications of Potential Flow Analysis AE301

More information

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi ENGI 44 Non-Catesian Coodinates Page 7-7. Conesions between Coodinate Systems In geneal, the conesion of a ecto F F xi Fy j Fzk fom Catesian coodinates x, y, z to anothe othonomal coodinate system u,,

More information

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2 THE LAPLACE EQUATION The Laplace (o potential) equation is the equation whee is the Laplace opeato = 2 x 2 u = 0. in R = 2 x 2 + 2 y 2 in R 2 = 2 x 2 + 2 y 2 + 2 z 2 in R 3 The solutions u of the Laplace

More information

d 4 x x 170 n 20 R 8 A 200 h S 1 y 5000 x 3240 A 243

d 4 x x 170 n 20 R 8 A 200 h S 1 y 5000 x 3240 A 243 nswes: (1984-8 HKMO Final Events) eated by: M. Fancis Hung Last updated: 4 pil 017 Individual Events SI a I1 a I a 1 I3 a 4 I4 a I t 8 b 4 b 0 b 1 b 16 b 10 u 13 c c 9 c 3 c 199 c 96 v 4 d 1 d d 16 d 4

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

Nalanda Open University

Nalanda Open University B.Sc. Mathematics (Honous), Pat-I Pape-I Answe any Five questions, selecting at least one fom each goup. All questions cay equal maks. Goup - A. If A, B, C, D ae any sets then pove that (a) A BC D AC BD

More information

1. Review of Probability.

1. Review of Probability. 1. Review of Pobability. What is pobability? Pefom an expeiment. The esult is not pedictable. One of finitely many possibilities R 1, R 2,, R k can occu. Some ae pehaps moe likely than othes. We assign

More information

Δt The textbook chooses to say that the average velocity is

Δt The textbook chooses to say that the average velocity is 1-D Motion Basic I Definitions: One dimensional motion (staight line) is a special case of motion whee all but one vecto component is zeo We will aange ou coodinate axis so that the x-axis lies along the

More information

Australian Intermediate Mathematics Olympiad 2017

Australian Intermediate Mathematics Olympiad 2017 Austalian Intemediate Mathematics Olympiad 207 Questions. The numbe x is when witten in base b, but it is 22 when witten in base b 2. What is x in base 0? [2 maks] 2. A tiangle ABC is divided into fou

More information

MAGNETIC FIELD INTRODUCTION

MAGNETIC FIELD INTRODUCTION MAGNETIC FIELD INTRODUCTION It was found when a magnet suspended fom its cente, it tends to line itself up in a noth-south diection (the compass needle). The noth end is called the Noth Pole (N-pole),

More information

Graphs of Sine and Cosine Functions

Graphs of Sine and Cosine Functions Gaphs of Sine and Cosine Functions In pevious sections, we defined the tigonometic o cicula functions in tems of the movement of a point aound the cicumfeence of a unit cicle, o the angle fomed by the

More information

MATH 220: SECOND ORDER CONSTANT COEFFICIENT PDE. We consider second order constant coefficient scalar linear PDEs on R n. These have the form

MATH 220: SECOND ORDER CONSTANT COEFFICIENT PDE. We consider second order constant coefficient scalar linear PDEs on R n. These have the form MATH 220: SECOND ORDER CONSTANT COEFFICIENT PDE ANDRAS VASY We conside second ode constant coefficient scala linea PDEs on R n. These have the fom Lu = f L = a ij xi xj + b i xi + c i whee a ij b i and

More information

Math 2263 Solutions for Spring 2003 Final Exam

Math 2263 Solutions for Spring 2003 Final Exam Math 6 Solutions fo Sping Final Exam ) A staightfowad appoach to finding the tangent plane to a suface at a point ( x, y, z ) would be to expess the cuve as an explicit function z = f ( x, y ), calculate

More information

Physics 2A Chapter 10 - Moment of Inertia Fall 2018

Physics 2A Chapter 10 - Moment of Inertia Fall 2018 Physics Chapte 0 - oment of netia Fall 08 The moment of inetia of a otating object is a measue of its otational inetia in the same way that the mass of an object is a measue of its inetia fo linea motion.

More information

6 PROBABILITY GENERATING FUNCTIONS

6 PROBABILITY GENERATING FUNCTIONS 6 PROBABILITY GENERATING FUNCTIONS Cetain deivations pesented in this couse have been somewhat heavy on algeba. Fo example, detemining the expectation of the Binomial distibution (page 5.1 tuned out to

More information

A Crash Course in (2 2) Matrices

A Crash Course in (2 2) Matrices A Cash Couse in ( ) Matices Seveal weeks woth of matix algeba in an hou (Relax, we will only stuy the simplest case, that of matices) Review topics: What is a matix (pl matices)? A matix is a ectangula

More information

B. Spherical Wave Propagation

B. Spherical Wave Propagation 11/8/007 Spheical Wave Popagation notes 1/1 B. Spheical Wave Popagation Evey antenna launches a spheical wave, thus its powe density educes as a function of 1, whee is the distance fom the antenna. We

More information

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3.

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3. Appendix A Vecto Algeba As is natual, ou Aeospace Stuctues will be descibed in a Euclidean thee-dimensional space R 3. A.1 Vectos A vecto is used to epesent quantities that have both magnitude and diection.

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

MATH 417 Homework 3 Instructor: D. Cabrera Due June 30. sin θ v x = v r cos θ v θ r. (b) Then use the Cauchy-Riemann equations in polar coordinates

MATH 417 Homework 3 Instructor: D. Cabrera Due June 30. sin θ v x = v r cos θ v θ r. (b) Then use the Cauchy-Riemann equations in polar coordinates MATH 417 Homewok 3 Instucto: D. Cabea Due June 30 1. Let a function f(z) = u + iv be diffeentiable at z 0. (a) Use the Chain Rule and the fomulas x = cosθ and y = to show that u x = u cosθ u θ, v x = v

More information

MockTime.com. (b) 9/2 (c) 18 (d) 27

MockTime.com. (b) 9/2 (c) 18 (d) 27 212 NDA Mathematics Practice Set 1. Let X be any non-empty set containing n elements. Then what is the number of relations on X? 2 n 2 2n 2 2n n 2 2. Only 1 2 and 3 1 and 2 1 and 3 3. Consider the following

More information

763620SS STATISTICAL PHYSICS Solutions 2 Autumn 2012

763620SS STATISTICAL PHYSICS Solutions 2 Autumn 2012 763620SS STATISTICAL PHYSICS Solutions 2 Autumn 2012 1. Continuous Random Walk Conside a continuous one-dimensional andom walk. Let w(s i ds i be the pobability that the length of the i th displacement

More information

Berkeley Math Circle AIME Preparation March 5, 2013

Berkeley Math Circle AIME Preparation March 5, 2013 Algeba Toolkit Rules of Thumb. Make sue that you can pove all fomulas you use. This is even bette than memoizing the fomulas. Although it is best to memoize, as well. Stive fo elegant, economical methods.

More information

Physics 2212 GH Quiz #2 Solutions Spring 2016

Physics 2212 GH Quiz #2 Solutions Spring 2016 Physics 2212 GH Quiz #2 Solutions Sping 216 I. 17 points) Thee point chages, each caying a chage Q = +6. nc, ae placed on an equilateal tiangle of side length = 3. mm. An additional point chage, caying

More information

Physics 11 Chapter 3: Vectors and Motion in Two Dimensions. Problem Solving

Physics 11 Chapter 3: Vectors and Motion in Two Dimensions. Problem Solving Physics 11 Chapte 3: Vectos and Motion in Two Dimensions The only thing in life that is achieved without effot is failue. Souce unknown "We ae what we epeatedly do. Excellence, theefoe, is not an act,

More information

Quantum theory of angular momentum

Quantum theory of angular momentum Quantum theoy of angula momentum Igo Mazets igo.mazets+e141@tuwien.ac.at (Atominstitut TU Wien, Stadionallee 2, 1020 Wien Time: Fiday, 13:00 14:30 Place: Feihaus, Sem.R. DA gün 06B (exception date 18 Nov.:

More information

Kota Chandigarh Ahmedabad

Kota Chandigarh Ahmedabad TARGT : J 0 SCOR J (Advanced) Home Assignment # 0 Kota Chandigah Ahmedabad \\NOD6\_NOD6 ()\DATA\0\IIT-J\TARGT\MATHS\HOM ASSIGNMNT (Q.BANK)\NG\HOM ASSIGNMNT # 0.P65 HOM ASSIGNMNT # 0 STRAIGHT OBJCTIV TYP

More information

Subject : MATHEMATICS

Subject : MATHEMATICS CCE RF 560 00 KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESWARAM, BANGALORE 560 00 05 S. S. L. C. EXAMINATION, MARCH/APRIL, 05 : 06. 04. 05 ] MODEL ANSWERS : 8-E Date : 06. 04. 05 ] CODE NO.

More information

Trigonometry Standard Position and Radians

Trigonometry Standard Position and Radians MHF 4UI Unit 6 Day 1 Tigonomety Standad Position and Radians A. Standad Position of an Angle teminal am initial am Angle is in standad position when the initial am is the positive x-axis and the vetex

More information

Section 8.2 Polar Coordinates

Section 8.2 Polar Coordinates Section 8. Pola Coodinates 467 Section 8. Pola Coodinates The coodinate system we ae most familia with is called the Catesian coodinate system, a ectangula plane divided into fou quadants by the hoizontal

More information

KEPLER S LAWS OF PLANETARY MOTION

KEPLER S LAWS OF PLANETARY MOTION EPER S AWS OF PANETARY MOTION 1. Intoduction We ae now in a position to apply what we have leaned about the coss poduct and vecto valued functions to deive eple s aws of planetay motion. These laws wee

More information

Class #16 Monday, March 20, 2017

Class #16 Monday, March 20, 2017 D. Pogo Class #16 Monday, Mach 0, 017 D Non-Catesian Coodinate Systems A point in space can be specified by thee numbes:, y, and z. O, it can be specified by 3 diffeent numbes:,, and z, whee = cos, y =

More information

Math 151. Rumbos Spring Solutions to Assignment #7

Math 151. Rumbos Spring Solutions to Assignment #7 Math. Rumbos Sping 202 Solutions to Assignment #7. Fo each of the following, find the value of the constant c fo which the given function, p(x, is the pobability mass function (pmf of some discete andom

More information

(read nabla or del) is defined by, k. (9.7.1*)

(read nabla or del) is defined by, k. (9.7.1*) 9.7 Gadient of a scala field. Diectional deivative Some of the vecto fields in applications can be obtained fom scala fields. This is vey advantageous because scala fields can be handled moe easily. The

More information

Motion in One Dimension

Motion in One Dimension Motion in One Dimension Intoduction: In this lab, you will investigate the motion of a olling cat as it tavels in a staight line. Although this setup may seem ovesimplified, you will soon see that a detailed

More information

Chapter 2: Introduction to Implicit Equations

Chapter 2: Introduction to Implicit Equations Habeman MTH 11 Section V: Paametic and Implicit Equations Chapte : Intoduction to Implicit Equations When we descibe cuves on the coodinate plane with algebaic equations, we can define the elationship

More information

Kinematics of rigid bodies

Kinematics of rigid bodies Kinematics of igid bodies elations between time and the positions, elocities, and acceleations of the paticles foming a igid body. (1) Rectilinea tanslation paallel staight paths Cuilinea tanslation (3)

More information

3.6 Applied Optimization

3.6 Applied Optimization .6 Applied Optimization Section.6 Notes Page In this section we will be looking at wod poblems whee it asks us to maimize o minimize something. Fo all the poblems in this section you will be taking the

More information

INTRODUCTION. 2. Vectors in Physics 1

INTRODUCTION. 2. Vectors in Physics 1 INTRODUCTION Vectos ae used in physics to extend the study of motion fom one dimension to two dimensions Vectos ae indispensable when a physical quantity has a diection associated with it As an example,

More information

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion AH Mechanics Checklist (Unit ) AH Mechanics Checklist (Unit ) Cicula Motion No. kill Done 1 Know that cicula motion efes to motion in a cicle of constant adius Know that cicula motion is conveniently descibed

More information

Vector d is a linear vector function of vector d when the following relationships hold:

Vector d is a linear vector function of vector d when the following relationships hold: Appendix 4 Dyadic Analysis DEFINITION ecto d is a linea vecto function of vecto d when the following elationships hold: d x = a xxd x + a xy d y + a xz d z d y = a yxd x + a yy d y + a yz d z d z = a zxd

More information

Physics 111 Lecture 5 (Walker: 3.3-6) Vectors & Vector Math Motion Vectors Sept. 11, 2009

Physics 111 Lecture 5 (Walker: 3.3-6) Vectors & Vector Math Motion Vectors Sept. 11, 2009 Physics 111 Lectue 5 (Walke: 3.3-6) Vectos & Vecto Math Motion Vectos Sept. 11, 2009 Quiz Monday - Chap. 2 1 Resolving a vecto into x-component & y- component: Pola Coodinates Catesian Coodinates x y =

More information

Page 1 of 6 Physics II Exam 1 155 points Name Discussion day/time Pat I. Questions 110. 8 points each. Multiple choice: Fo full cedit, cicle only the coect answe. Fo half cedit, cicle the coect answe and

More information

DonnishJournals

DonnishJournals DonnishJounals 041-1189 Donnish Jounal of Educational Reseach and Reviews. Vol 1(1) pp. 01-017 Novembe, 014. http:///dje Copyight 014 Donnish Jounals Oiginal Reseach Pape Vecto Analysis Using MAXIMA Savaş

More information

1.6. Trigonometric Functions. 48 Chapter 1: Preliminaries. Radian Measure

1.6. Trigonometric Functions. 48 Chapter 1: Preliminaries. Radian Measure 48 Chapte : Peliminaies.6 Tigonometic Functions Cicle B' B θ C A Unit of cicle adius FIGURE.63 The adian measue of angle ACB is the length u of ac AB on the unit cicle centeed at C. The value of u can

More information

is the instantaneous position vector of any grid point or fluid

is the instantaneous position vector of any grid point or fluid Absolute inetial, elative inetial and non-inetial coodinates fo a moving but non-defoming contol volume Tao Xing, Pablo Caica, and Fed Sten bjective Deive and coelate the govening equations of motion in

More information

REVIEW Polar Coordinates and Equations

REVIEW Polar Coordinates and Equations REVIEW 9.1-9.4 Pola Coodinates and Equations You ae familia with plotting with a ectangula coodinate system. We ae going to look at a new coodinate system called the pola coodinate system. The cente of

More information

CAREER POINT TARGET IIT JEE CHEMISTRY, MATHEMATICS & PHYSICS HINTS & SOLUTION (B*) (C*) (D) MeMgBr 9. [A, D]

CAREER POINT TARGET IIT JEE CHEMISTRY, MATHEMATICS & PHYSICS HINTS & SOLUTION (B*) (C*) (D) MeMgBr 9. [A, D] CAREER PINT TARGET IIT JEE CEMISTRY, MATEMATICS & PYSICS RS -- I -A INTS & SLUTIN CEMISTRY Section I n +. [B] C n n + n + nc + (n + ) V 7 n + (n + ) / 7 n VC 4 n 4 alkane is C 6 a.[a] P + (v b) RT V at

More information

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1 Please ead this fist... AST S: The oigin and evolution of the Univese Intoduction to Mathematical Handout This is an unusually long hand-out and one which uses in places mathematics that you may not be

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

JEE MAIN 2013 Mathematics

JEE MAIN 2013 Mathematics JEE MAIN 01 Mathematics 1. The circle passing through (1, ) and touching the axis of x at (, 0) also passes through the point (1) (, 5) () (5, ) () (, 5) (4) ( 5, ) The equation of the circle due to point

More information

Magnetic field due to a current loop.

Magnetic field due to a current loop. Example using spheical hamonics Sp 18 Magnetic field due to a cuent loop. A cicula loop of adius a caies cuent I. We place the oigin at the cente of the loop, with pola axis pependicula to the plane of

More information

Euclidean Figures and Solids without Incircles or Inspheres

Euclidean Figures and Solids without Incircles or Inspheres Foum Geometicoum Volume 16 (2016) 291 298. FOUM GEOM ISSN 1534-1178 Euclidean Figues and Solids without Incicles o Insphees Dimitis M. Chistodoulou bstact. ll classical convex plana Euclidean figues that

More information

Online Mathematics Competition Wednesday, November 30, 2016

Online Mathematics Competition Wednesday, November 30, 2016 Math@Mac Online Mathematics Competition Wednesday, Novembe 0, 206 SOLUTIONS. Suppose that a bag contains the nine lettes of the wod OXOMOXO. If you take one lette out of the bag at a time and line them

More information

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006 1 Qualifying Examination Electicity and Magnetism Solutions Januay 12, 2006 PROBLEM EA. a. Fist, we conside a unit length of cylinde to find the elationship between the total chage pe unit length λ and

More information

SMT 2013 Team Test Solutions February 2, 2013

SMT 2013 Team Test Solutions February 2, 2013 1 Let f 1 (n) be the numbe of divisos that n has, and define f k (n) = f 1 (f k 1 (n)) Compute the smallest intege k such that f k (013 013 ) = Answe: 4 Solution: We know that 013 013 = 3 013 11 013 61

More information

CBN 98-1 Developable constant perimeter surfaces: Application to the end design of a tape-wound quadrupole saddle coil

CBN 98-1 Developable constant perimeter surfaces: Application to the end design of a tape-wound quadrupole saddle coil CBN 98-1 Developale constant peimete sufaces: Application to the end design of a tape-wound quadupole saddle coil G. Dugan Laoatoy of Nuclea Studies Conell Univesity Ithaca, NY 14853 1. Intoduction Constant

More information

J. N. R E DDY ENERGY PRINCIPLES AND VARIATIONAL METHODS APPLIED MECHANICS

J. N. R E DDY ENERGY PRINCIPLES AND VARIATIONAL METHODS APPLIED MECHANICS J. N. E DDY ENEGY PINCIPLES AND VAIATIONAL METHODS IN APPLIED MECHANICS T H I D E DI T IO N JN eddy - 1 MEEN 618: ENEGY AND VAIATIONAL METHODS A EVIEW OF VECTOS AND TENSOS ead: Chapte 2 CONTENTS Physical

More information

Vectors and 2D Motion. Vectors and Scalars

Vectors and 2D Motion. Vectors and Scalars Vectos and 2D Motion Vectos and Scalas Vecto aithmetic Vecto desciption of 2D motion Pojectile Motion Relative Motion -- Refeence Fames Vectos and Scalas Scala quantities: equie magnitude & unit fo complete

More information

1) (A B) = A B ( ) 2) A B = A. i) A A = φ i j. ii) Additional Important Properties of Sets. De Morgan s Theorems :

1) (A B) = A B ( ) 2) A B = A. i) A A = φ i j. ii) Additional Important Properties of Sets. De Morgan s Theorems : Additional Impotant Popeties of Sets De Mogan s Theoems : A A S S Φ, Φ S _ ( A ) A ) (A B) A B ( ) 2) A B A B Cadinality of A, A, is defined as the numbe of elements in the set A. {a,b,c} 3, { }, while

More information

EFFECTS OF FRINGING FIELDS ON SINGLE PARTICLE DYNAMICS. M. Bassetti and C. Biscari INFN-LNF, CP 13, Frascati (RM), Italy

EFFECTS OF FRINGING FIELDS ON SINGLE PARTICLE DYNAMICS. M. Bassetti and C. Biscari INFN-LNF, CP 13, Frascati (RM), Italy Fascati Physics Seies Vol. X (998), pp. 47-54 4 th Advanced ICFA Beam Dynamics Wokshop, Fascati, Oct. -5, 997 EFFECTS OF FRININ FIELDS ON SINLE PARTICLE DYNAMICS M. Bassetti and C. Biscai INFN-LNF, CP

More information

Tutorial Exercises: Central Forces

Tutorial Exercises: Central Forces Tutoial Execises: Cental Foces. Tuning Points fo the Keple potential (a) Wite down the two fist integals fo cental motion in the Keple potential V () = µm/ using J fo the angula momentum and E fo the total

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Chapte 7-8 Review Math 1316 Name SHORT ANSWER. Wite the wod o phase that best completes each statement o answes the question. Solve the tiangle. 1) B = 34.4 C = 114.2 b = 29.0 1) Solve the poblem. 2) Two

More information

When two numbers are written as the product of their prime factors, they are in factored form.

When two numbers are written as the product of their prime factors, they are in factored form. 10 1 Study Guide Pages 420 425 Factos Because 3 4 12, we say that 3 and 4 ae factos of 12. In othe wods, factos ae the numbes you multiply to get a poduct. Since 2 6 12, 2 and 6 ae also factos of 12. The

More information

Is there a magnification paradox in gravitational lensing?

Is there a magnification paradox in gravitational lensing? Is thee a magnification paadox in gavitational ing? Olaf Wucknitz wucknitz@asto.uni-bonn.de Astophysics semina/colloquium, Potsdam, 6 Novembe 7 Is thee a magnification paadox in gavitational ing? gavitational

More information

Electrostatics (Electric Charges and Field) #2 2010

Electrostatics (Electric Charges and Field) #2 2010 Electic Field: The concept of electic field explains the action at a distance foce between two chaged paticles. Evey chage poduces a field aound it so that any othe chaged paticle expeiences a foce when

More information

Solving Problems of Advance of Mercury s Perihelion and Deflection of. Photon Around the Sun with New Newton s Formula of Gravity

Solving Problems of Advance of Mercury s Perihelion and Deflection of. Photon Around the Sun with New Newton s Formula of Gravity Solving Poblems of Advance of Mecuy s Peihelion and Deflection of Photon Aound the Sun with New Newton s Fomula of Gavity Fu Yuhua (CNOOC Reseach Institute, E-mail:fuyh945@sina.com) Abstact: Accoding to

More information

4. Two and Three Dimensional Motion

4. Two and Three Dimensional Motion 4. Two and Thee Dimensional Motion 1 Descibe motion using position, displacement, elocity, and acceleation ectos Position ecto: ecto fom oigin to location of the object. = x i ˆ + y ˆ j + z k ˆ Displacement:

More information

Physics 122, Fall October 2012

Physics 122, Fall October 2012 Today in Physics 1: electostatics eview David Blaine takes the pactical potion of his electostatics midtem (Gawke). 11 Octobe 01 Physics 1, Fall 01 1 Electostatics As you have pobably noticed, electostatics

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Depatment Physics 8.033 Decembe 5, 003 Poblem Set 10 Solutions Poblem 1 M s y x test paticle The figue above depicts the geomety of the poblem. The position

More information

Sources of Magnetic Fields (chap 28)

Sources of Magnetic Fields (chap 28) Souces of Magnetic Fields (chap 8) In chapte 7, we consideed the magnetic field effects on a moving chage, a line cuent and a cuent loop. Now in Chap 8, we conside the magnetic fields that ae ceated by

More information

Polar Coordinates. a) (2; 30 ) b) (5; 120 ) c) (6; 270 ) d) (9; 330 ) e) (4; 45 )

Polar Coordinates. a) (2; 30 ) b) (5; 120 ) c) (6; 270 ) d) (9; 330 ) e) (4; 45 ) Pola Coodinates We now intoduce anothe method of labelling oints in a lane. We stat by xing a oint in the lane. It is called the ole. A standad choice fo the ole is the oigin (0; 0) fo the Catezian coodinate

More information