Quantum phase transitions of correlated electrons in two dimensions

Size: px
Start display at page:

Download "Quantum phase transitions of correlated electrons in two dimensions"

Transcription

1 Quantum phase transitions of correlated electrons in two dimensions Subir Sachdev Science 86, 479 (1999). Quantum Phase Transitions Cambridge University Press Transparencies online at

2 Outline I. Coupled Ladder Antiferromagnet A. Ground states in limiting regimes B. Coherent state path integral C. Quantum field theory for critical point II. III. IV. Berry phases in one dimension S=1/ quantum XY model. Berry phases in two dimensions Bond-centered charge ( spin-peierls ) order. Magnetic transitions in d-wave superconductors Effect of an applied magnetic field V. Transitions between BCS superconductors with distinct internal Cooper pair wavefunctions. A. Quantum field theory B. Photoemission and tunnelling experiments on the high temperature superconductors VI. Conclusions

3 I.A Coupled Ladder Antiferromagnet N. Katoh and M. Imada, J. Phys. Soc. Jpn. 63, 459 (1994). J. Tworzydlo, O. Y. Osman, C. N. A. van Duin, J. Zaanen, Phys. Rev. B 59, 115 (1999). M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, cond-mat/ S=1/ spins on coupled -leg ladders H = < ij> J ij! S i! S j 0 λ 1 J λ J

4 λ close to 1 Square lattice antiferromagnet Experimental realization: La CuO 4 Ground state has long-range magnetic (Neel) order! S i = ( ) i 1 + x iy N 0 0 Excitations: spin waves k cx kx cy ky ε = +

5 λ close to 0 Weakly coupled ladders 1 = ( ) Paramagnetic ground state! S = i Excitation: S=1 exciton (spin collective mode) Energy dispersion away from antiferromagnetic wavevector ε k = + x x + cy ky c k 0

6 T=0 Spin gap λ c Neel order N0 0 1 Quantum paramagnet S! = 0 Neel state! S =± N 0 0 λ

7 I.B Coherent state path integral See Chapter 13 of Quantum Phase Transitions, S. Sachdev, Cambridge University Press (1999). Z = Path integral for a single spin ( H[ S] / T Tr e ) ( ) τ δ τ τ τ τ ( ) ( = D N N 1) exp is A ( ) d d H S ( ) τ N ( ) Aτ τ dτ = Oriented area of triangle on surface of unit sphere bounded Action for lattice antiferromagnet ( τ) ( τ + dτ) 0 by N, N,and a fixed reference N ( ) ( Z = D n x, τ δ n 1) exp is ηjaτ ( xj, τ) dτ j 1 ( ( ) ( ) ) d d x τ n + c xn g η =± 1 identifies sublattices j

8 I.C Quantum field theory for critical point φα S b 3-component antiferromagnetic order parameter Oscillations of φ α about zero (for r > 0) spin-1 collective mode λ close to λ c (( ) ( ) ) g ( ) x α τ α α α 1 = d xdτ φ + c φ + rφ + φ 4! r > 0 λ < λ c r < 0 λ > λ c Imχ ( k, ω ) ε = + ck T=0 spectrum ω

9 Outline I. Coupled Ladder Antiferromagnet A. Ground states in limiting regimes B. Coherent state path integral C. Quantum field theory for critical point II. III. IV. Berry phases in one dimension S=1/ quantum XY model. Berry phases in two dimensions Bond-centered charge ( spin-peierls ) order. Magnetic transitions in d-wave superconductors Effect of an applied magnetic field V. Transitions between BCS superconductors with distinct internal Cooper pair wavefunctions. A. Quantum field theory B. Photoemission and tunnelling experiments on the high temperature superconductors VI. Conclusions

10 II. Quantum XY model in one dimension S. Sachdev and K. Park, cond-mat/ Write H XY = J 1 (S xj S x,j+1 + S yj S y,j+1 + λs zj S z,j+1 ) j + J (S xj S x,j+ + S yj S y,j+ + λs zj S z,j+ ) j n j = (cos(θ j ), sin(θ j ), 0) where j is now a discrete spacetime index upon a square lattice. Structure of Berry phase terms. S j η j A jτ = S j l j ɛ µν µ A jν For XY model, Sɛ µν µ A jν =(πs) vortex number Vortices in odd columns carry a factor ( 1) S. where l j =0(l j =1)on even (odd) columns.

11 S integer. Z XY = j dθ j exp 1 g cos( µ θ j ) j where µ = x, τ. This is the action for a classical XY model in D =. Displays Kosterlitz-Thouless transition. Dual height model for KT transition: Z XY = {m jµ } j dθ j exp 1 g j ( µ θ j πm jµ ) This is the Villain periodic Gaussian form. Poisson summation leads to Z XY = exp g {p j} j ( µ p j ) Height (or roughening) model on the square lattice All heights are integers.

12 For XY model, the A flux measures vortex number. In the periodic Gaussian formulation Sɛ µν µ A jν = πɛ µν µ m jν So with Berry phases partition function of S =1/ quantum XY model is Z XY = {m jµ } j dθ j exp 1 g j ( µ θ j πm jµ ) + iπ j l j ɛ µν µ m jν Vortices in odd columns contribute a factor ( 1) to the partition function Weights are not positive. Dual height model for Z XY Z XY = exp g {p j} j ( µ p j 1 ) µl j Height model in which the heights are integers (half-integers) on even (odd) columns.

13 Phases of height model Rough interface Tomonaga-Luttinger liquid with power-law spin correlations: n ix n jx = n iy n jy n iz n jz 1 i j g/(π) 1 i j π/g Smooth interface All correlations decay exponentially there is a gap to all excitations p j l j / has a definite value: any such definite value breaks a discrete symmetry of the Hamiltonian. p j l j / =0, 1/ (plus integer) are states with bond-centered charge order i.e. neighboring links have valence bonds with distinct probabilities p j l j / =1/4, 3/4 (plus integer) are the two states with Ising antiferromagnetic order.

14 Excitations of paramagnet with bond-charge-order Deconfined S=1/ spinons λ Phase diagram Luttinger liquid (quasi-long-range XY order) J / J 1

15 Outline I. Coupled Ladder Antiferromagnet A. Ground states in limiting regimes B. Coherent state path integral C. Quantum field theory for critical point II. III. IV. Berry phases in one dimension S=1/ quantum XY model. Berry phases in two dimensions Bond-centered charge ( spin-peierls ) order. Magnetic transitions in d-wave superconductors Effect of an applied magnetic field V. Transitions between BCS superconductors with distinct internal Cooper pair wavefunctions. A. Quantum field theory B. Photoemission and tunnelling experiments on the high temperature superconductors VI. Conclusions

16 III. Berry phases and the square lattice antiferromagnet H = J S! S! Action: i< j S Missing: Spin Berry Phases A b ij i j 1 = d xdτ φ + c φ + V φ (( ) ( ) ) ( ) x α τ α α S. Chakravarty, B.I. Halperin, and D.R. Nelson, Phys. Rev. B 39, 344 (1989). isa e Berry phases induce bond charge order in quantum disordered phase with φ α = 0 ; Dual order parameter N. Read and S. Sachdev, Phys. Rev. Lett. 6, 1694 (1989).

17 H = J S! S! i< j ij i j Square lattice with first (J 1 ) and second (J ) neighbor exchange interactions N. Read and S. Sachdev, Phys. Rev. Lett. 6, 1694 (1989). O. P. Sushkov, J. Oitmaa, and Z. Weihong, Phys. Rev. B 63, (001). M.S.L. du Croo de Jongh, J.M.J. van Leeuwen, W. van Saarloos, Phys. Rev. B 6, (000). Neel state Spin-Peierls state Bond-centered charge order S. Sachdev and K. Park, cond-mat/ Co-existence? 0.4 J / J 1 1 = ( )

18 Quantum dimer model D. Rokhsar and S. Kivelson Phys. Rev. Lett. 61, 376 (1988) Quantum entropic effects prefer one-dimensional striped structures in which the largest number of singlet pairs can resonate. The state on the upper left has more flippable pairs of singlets than the one on the lower left. These effects lead to a broken square lattice symmetry near the transition to the Neel state. N. Read and S. Sachdev Phys. Rev. B 4, 4568 (1990).

19 Properties of paramagnet with bond-charge-order Stable S=1 spin exciton quanta of 3-component φα ε k = + ck + ck x x y y Spin gap S=1/ spinons are confined by a linear potential.

20 Effect of static non-magnetic impurities (Zn or Li) Zn Zn Zn Zn Spinon confinement implies that free S=1/ moments form near each impurity χ impurity ( T 0) = SS ( + 1) kt 3 B A.M Finkelstein, V.E. Kataev, E.F. Kukovitskii, G.B. Teitel baum, Physica C 168, 370 (1990). J. Bobroff, H. Alloul, W.A. MacFarlane, P. Mendels, N. Blanchard, G. Collin, and J.-F. Marucco, Phys. Rev. Lett. 86, 4116 (001).

21 Field theory of bond order Discretize coherent state path integral on a cubic lattice in spacetime: Z = ( ) dn j δ(n j 1) exp 1 n j n j+ˆµ i η j A jτ g j j,µ j where µ = x, y, τ, and we assume henceforth that S =1/. For large g, perform a high temperature expansion to obtain an effective action for the A jµ. This action must be invariant under the gauge transformation A jµ A jµ µ γ j associated with the change in choice of n 0 (γ j is the oriented area of the spherical triangle formed by n j and the two choices for n 0 ). Also, it should be invariant under A jµ A jµ +4π because area of triangle is uncertain modulo 4π. Simplest large g effective model Z = ( 1 ( ) ) 1 da jµ exp cos e ɛ µνλ ν A jλ i η j A jτ j j with e g. This is compact QED in +1 dimensions with Berry phases.

22 Exact duality transform on periodic Gaussian ( Villain ) action for compact QED yields Z = ( ) exp e ( µ h j µ X j ) {h j} with h j integer. Height model in +1 dimensions with offsets X j =0, 1/4, 1/, 3/4 onthe four dual sublattices. j

23 For large e, low energy height configurations are in exact one-toone correspondence with dimer coverings of the square lattice +1 dimensional height model is the path integral of the quantum dimer model There is no roughening transition for three dimensional interfaces, which are smooth for all couplings There is a definite average height of the interface Ground state has bond-charge order.

24 Outline I. Coupled Ladder Antiferromagnet A. Ground states in limiting regimes B. Coherent state path integral C. Quantum field theory for critical point II. III. IV. Berry phases in one dimension S=1/ quantum XY model. Berry phases in two dimensions Bond-centered charge ( spin-peierls ) order. Magnetic transitions in d-wave superconductors Effect of an applied magnetic field V. Transitions between BCS superconductors with distinct internal Cooper pair wavefunctions. A. Quantum field theory B. Photoemission and tunnelling experiments on the high temperature superconductors VI. Conclusions

25 IV. Magnetic transitions in d-wave superconductors T=0, H=0 Superconductor (SC) + Spin density wave (SDW) Superconductor (SC) r c r (some parameter in the Hamiltonian, possibly carrier concentration) Many experimental indications that the cuprate superconductors are not too far from such a quantum phase transition: G. Aeppli, T.E. Mason, S.M. Hayden, H.A. Mook, J. Kulda, Science 78, 143 (1997). Y. S. Lee, R. J. Birgeneau, M. A. Kastner et al., Phys. Rev. B 60, 3643 (1999). S. Katano, M. Sato, K. Yamada, T. Suzuki, and T. Fukase Phys. Rev. B 6, (000). B. Lake, G. Aeppli et al., Science 91, 1759 (001). Y. Sidis, C. Ulrich, P. Bourges, et al., cond-mat/ H. Mook, P. Dai, F. Dogan, cond-mat/ J.E. Sonier et al., preprint.

26 Structure of quantum theory Charge-order is not critical: can neglect Berry phases. Generically, momentum conservation prohibits decay of S=1 exciton φ α into S=1/ fermionic excitations at low energies. Virtual pairs of fermions only renormalize parameters in the effective action for φ α. Zeeman coupling only leads to corrections at order H Simple Landau theory couplings between φ α and superconducting order ψ are allowed (S.-C. Zhang, Science 75, 1089 (1997)), e.g.: V φ V φ + λφ ψ S b ( ) ( ) α α α 1 = d xdτ φ + c φ + V φ (( ) ( ) ) ( ) x α τ α α

27 Main results (extreme Type II superconductivity) T=0 Elastic scattering intensity I( H) H 3H 1 a ln I(0) H H c = + c H ( r rc ) ~ ln 1/ ( ( r rc )) S = 1 exciton energy ε ( H) ε(0) H 3H 1 b ln H c = c H All functional forms are exact. Similar results apply to other competing orders e.g. SC + staggered flux E. Demler, S. Sachdev, and Y. Zhang, Phys. Rev. Lett. 87, 0670 (001).

28 Theory should account for quantum spin fluctuations All effects are ~ H except those associated with H induced superflow. Can treat SC order in a static Ginzburg-Landau theory Action F / T + S + S GL b c 4 ψ FGL = d x ψ + + x ia ( ) ψ v Sc = d xdτ φα ψ S b 1/ T 1 g 0 ( ( ) ( ) ) ( ) x α τ α α α = d x dτ φ + c φ + rφ + φ 4!

29 Self-consistent Hartree theory of quantum spin fluctuations (large N limit) ( xx,, ) = ( x, ) ( x, ) χ ω δ φ ω φ ω n αβ α n β n ( ω ) n c x + V ( x) χ( x, x, ωn) = δ( x x ) V ( x) ( ) ( / 6 ) (,, ) = r+ v ψ x + NgT χ x x ω ( ) ( )! 1 + ψ x x ia ψ( x) + ( NvT / ) χ( x, x, ωn) ψ( x) = 0 V ( x) local classical energy of spin fluctuations; can become negative in vortex cores for v > 0. However, spin gap remains finite because of quantum fluctuations ω ω n n n

30 Energy Lowest energy spin-exciton eigenmode V ( x) " Spin gap 0 x Vortex cores As 0, ", because of self interaction, g, of spin excitations. A.J. Bray and M.A. Moore, J. Phys. C 15, L765 (198). J.A. Hertz, A. Fleishman, and P.W. Anderson, Phys. Rev. Lett. 43, 94 (1979).

31 Dominant effect: uniform softening of spin excitations by superflow kinetic energy r v s 1 r Spatially averaged superflow kinetic energy H 3H v ln c s Hc H See D. P. Arovas et al., Phys. Rev. Lett. 79, 871 (1997) for a different viewpoint.

32 ( x) Influence of ψ on extended spin eigenmodes: ψ ψ 1 x ( x) = 1 outside each vortex core because ( x) In SC phase, spin gap obeys: of superflow kinetic energy 3.0H c = 1 ln Hc H 3.0H c ( H ) = ( 0) ln 3v Hc H Ng 1 g In SC+SDW phase, intensity of elastic scattering obey s: H 4π c v 6v H 3.0H = + 3v Hc H g 1 g c ( ) I( 0) ln I H H

33 Intensity (counts/min) Elastic neutron scattering off La CuO 4+ y B. Khaykovich, Y. S. Lee, S. Wakimoto, K. J. Thomas, M. A. Kastner, and R.J. Birgeneau, preprint. H = 7.5 T k H = 0 T h H c I(H)/I(0) h (r.l.u.) Solid line --- fit to : ( ) ( 0) I H a is the only fitting parameter Best fit value - a =.4 with H I H (T) H 3.0H 1 a ln c = + Hc H c = 60T

34 Neutron scattering of La -xsrxcuo 4 at x=0.1 B. Lake, G. Aeppli, et al. H Hc Solid line - fit to : I( H) a ln H H = c

35 Presence of vortex lattice leads to supermodulation in the spin exciton spectrum Computation of spin susceptibility χ ( k, ω) in self-consistent large N theory of φ fluctuations in a vortex lattice α r = 0.1, H/H c = 0.04 Intensity 0 ω k π / ( vortex lattice spacing)

36 Neutron scattering off La Sr CuO -x x 4 ( x = 0.163, SC phase) in H=0 ( red dots) and H=7.5T ( blue dots). B. Lake, G. Aeppli et al., Science 91, 1759 ( 001) Elastic neutron scattering off La Sr CuO -x x 4 ( x = 0.10, SC + SDW phase) in H=0 (blue dots) and H=5T ( red do ts). B. Lake, H. Ronnow et al., cond-mat/010406

37 Consequences of a finite London penetration depth (finite κ)

38 Outline I. Coupled Ladder Antiferromagnet A. Ground states in limiting regimes B. Coherent state path integral C. Quantum field theory for critical point II. III. IV. Berry phases in one dimension S=1/ quantum XY model. Berry phases in two dimensions Bond-centered charge ( spin-peierls ) order. Magnetic transitions in d-wave superconductors Effect of an applied magnetic field V. Transitions between BCS superconductors with distinct internal Cooper pair wavefunctions. A. Quantum field theory B. Photoemission and tunnelling experiments on the high temperature superconductors VI. Conclusions

39 V. Quantum transitions between BCS superconductors From numerical/analytical/rg studies of the square lattice Hubbard model we know that ground state has d x y superconductivity near half filling C.J. Halboth and W. Metzner Phys. Rev. Lett. 85, 516 (000). d xy superconductivity for small electron density M.A. Baranov and M. Yu Kagan, Z. Phys. B 86, 37 (199). M.A. Baranov, A.V. Chubukov, and M. Yu Kagan, Int. J. Mod. Phys. B 6, 471 (199). We model this phenomenologically: H = ε k c kσ c kσ + J 1 S j S j+ˆµ + J S j S j+ˆν k j,µ j,ν where the sum on µ is over x, y, thatonν is over x + y, x y, S j 1 c jσ σ σσ c jσ with σ the Pauli matrices, and the dispersion ε k = t 1 (cos(k x ) + cos(k y )) t (cos(k x + k y ) + cos(k x k y )) µ

40 BCS mean-field theory We choose H BCS = k ε k c kσ c kσ J 1 J j,µ j,ν µ (c j c j+ˆµ, c j c j+ˆµ, )+h.c. ν (c j c j+ˆν, c j c j+ˆν, )+h.c. x = y x y x+y = x y xy The complex numbers x y and xy are to be determined by minimizing the ground state energy per site E BCS = J 1 x y + J xy where the fermionic quasiparticle dispersion is d k 4π [E k ε k ] E k = [ ε k + J 1 x y (cos k x cos k y )+J xy sin k x sin k y ] 1/ The energy only depends upon the relative phase between x y and xy.

41 Evolution of ground state x 0 xy 0 x y xy = 0 ( ) ( ) π arg xy = arg ± x y d x y superconductor d + id superconductor x y y 0 xy = x xy d xy 0 y 0 superconductor J / J 1 BCS theory fails near quantum critical points

42 Field theory for transition from d to d id superconductivity + x y x y xy y x 1 Gapless Fermi Points in a d-wave superconductor at wavevectors ( ±K, ± K) K=0.391π 3 4 Ψ 1 = f f f f3 Ψ = f f f 4 f4 dk ( π ) + ( π ) n ( z x ω ) n F xτ yτ S = T Ψ i + v k + v k Ψ Ψ ω 1 1 dk ( ) T z x Ψ i ωn + v F k yτ + v k xτ Ψ ω n

43 Ising order parameter for transition φ ~ i Coupling to low energy fermions ( ) iλ d xdτ φ f f f f f f f f ( y y Ψ ) 1 Ψ1 Ψ Ψ = d xdτ λφ τ τ Action for low energy fluctuations near critical point S 1 c s u = d xd τ ( τφ) ( φ) φ φ xy ( z x) τ ivf xτ iv yτ + Ψ + + Ψ 1 1 h.c. ( z x) τ ivf yτ iv xτ + Ψ + + Ψ ( y y ) + λφ Ψ1τ Ψ1 Ψτ Ψ

44 {For v = v terms with fermions F = ( ) Ψγ Ψ +Ψ γ Ψ + λφ Ψ Ψ Ψ Ψ 1 µ µ 1 µ µ 1 1 Chiral symmetry breaking in the Higgs-Yukawa model} Momentum shell renormalization group equations dλ (3 d) 3 = λ C1λ d" du 4 = (3 du ) Cu + C3λ C4λ u d" where C are functions of v / v ; similar flow equation f or v F 1 4 F / v. Critical point is controlled by fixed point u = u λ = λ v v * *,, F =, which obeys hyperscaling, and is Lorentz invariant.

45 Finite temperature crossovers near a quantum critical point: Quantum Ising Chain ( x z z gσ + σ σ ) H = I J i i i+ 1 i Quasiclassical dynamics Quasiclassical dynamics i χω ( ) = dt σ j () t, σk ( 0) e = T k 7/4 $ 0 A ( 1 iω / Γ +...) π kt B Γ R = tan 16 $ z z iωt S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 411 (199). S. Sachdev and A.P. Young, Phys. Rev. Lett. 78, 0 (1997). R σσ z j z k = = ~ j k P. Pfeuty Annals of Physics, 57, 79 (1970) ( + ) ( ) 1/4

46 In quasiparticle regimes of Ising chain, spin relaxation rate ~ In a Fermi liquid, quasiparticle relaxation rate ~ T In a BCS d-wave superconductor, quasiparticle relaxation rate ~ T e / T 3 In quantum critical region associated with a second-order phase transition with hyperscaling properties Relaxation dynamics with rate ~ kt B / $ χ ω C = η Φ T ( ) $ ω kbt

47 Crossovers near transition in d-wave superconductor T Superconducting T c d x y superconductivity Quantum critical s c d x + y superconductivity s id xy S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 411 (199). M. Vojta, Y. Zhang, and S. Sachdev, Phys. Rev. Lett. 85, 4940 (000).

48 Damping of Nodal Quasiparticles Photoemission on BSSCO (Valla et al Science 85, 110 (1999)) Im Σ ~ kt B

49 Yoram Dagan and Guy Deutscher, cond-mat/ Observations of splitting of the ZBCP Spontaneous splitting (zero field) Magnetic field splitting Covington, M. et al. Observation of Surface-Induced Broken Time-Reversal Symmetry in YBa Cu 3 O 7-δ Tunnel Junctions, Phys. Rev. Lett. 79, (1997)

50 Zero Field splitting and χ -1 versus [ max - ] 1/ All YBCO samples g [mv] /kt c /kt c

51 Conclusions I: Phase transitions of BCS superconductors Examined general theory of all possible candidates for zero momentum, spin-singlet order parameters which can induce a second-order quantum phase transitions in a d-wave superconductor Only cases (A) d d + is x y x y (B) d d + id x y x y pairing and pairing have renormalization group fixed points with a non-zero interaction strength between the bosonic order parameter mode and the nodal fermions, and so are candidates for producing damping ~ k B T of nodal fermions. xy Independent evidence for (B) from tunneling experiments.

52 Further neighbor magnetic couplings La CuO4 Conclusions II: Framework for spin/charge order in cuprate superconductors %! S 0 Experiments Magnetic order %! S = 0 T=0 Confined, paramagnetic Mott insulator has 1. Stable S=1 spin exciton. φ α. Broken translational symmetry:- bondcentered charge order. 3. S=1/ moments near non-magnetic impurities Concentration of mobile carriers δ Theory of magnetic ordering quantum transitions in antiferromagnets and superconductors leads to quantitative theories for Spin correlations in a magnetic field Effect of Zn/Li impurities on collective spin excitations

Quantum transitions of d-wave superconductors in a magnetic field

Quantum transitions of d-wave superconductors in a magnetic field Quantum transitions of d-wave superconductors in a magnetic field Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 86, 479 (1999). Transparencies

More information

Competing orders and quantum criticality in the high temperature superconductors

Competing orders and quantum criticality in the high temperature superconductors Competing orders and quantum criticality in the high temperature superconductors Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479

More information

Quantum phase transitions in antiferromagnets and d-wave superconductors

Quantum phase transitions in antiferromagnets and d-wave superconductors Quantum phase transitions in antiferromagnets and d-wave superconductors Chiranjeeb Buragohain Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science

More information

Quantum phase transitions in Mott insulators and d-wave superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors Quantum phase transitions in Mott insulators and d-wave superconductors Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies on-line at http://pantheon.yale.edu/~subir

More information

Vortices in the cuprate superconductors

Vortices in the cuprate superconductors Vortices in the cuprate superconductors Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies online at http://pantheon.yale.edu/~subir

More information

Competing orders and quantum criticality in the cuprate superconductors

Competing orders and quantum criticality in the cuprate superconductors Competing orders and quantum criticality in the cuprate superconductors Subir Sachdev Science 286, 2479 (1999). Quantum Phase Transitions Cambridge University Press Transparencies online at http://pantheon.yale.edu/~subir

More information

Tuning order in the cuprate superconductors

Tuning order in the cuprate superconductors Tuning order in the cuprate superconductors Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies online at http://pantheon.yale.edu/~subir

More information

Order and quantum phase transitions in the cuprate superconductors

Order and quantum phase transitions in the cuprate superconductors Order and quantum phase transitions in the cuprate superconductors Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Talk online:

More information

Tuning order in the cuprate superconductors by a magnetic field

Tuning order in the cuprate superconductors by a magnetic field Tuning order in the cuprate superconductors by a magnetic field Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies

More information

Understanding correlated electron systems by a classification of Mott insulators

Understanding correlated electron systems by a classification of Mott insulators Understanding correlated electron systems by a classification of Mott insulators Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe)

More information

Understanding correlated electron systems by a classification of Mott insulators

Understanding correlated electron systems by a classification of Mott insulators Understanding correlated electron systems by a classification of Mott insulators Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe)

More information

Quantum phase transitions in Mott insulators and d-wave superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors Quantum phase transitions in Mott insulators and d-wave superconductors Subir Sachdev Science 286, 2479 (1999). Quantum Phase Transitions Cambridge University Press Transparencies on-line at http://pantheon.yale.edu/~subir

More information

Damping of collective modes and quasiparticles in d-wave superconductors. Subir Sachdev M. Vojta. Yale University. C. Buragohain

Damping of collective modes and quasiparticles in d-wave superconductors. Subir Sachdev M. Vojta. Yale University. C. Buragohain Damping of collective modes and quasiparticles in d-wave superconductors C. Buragohain Y. Zhang Subir Sachdev M. Vojta Transparencies on-line at http://pantheon.yale.edu/~subir Review article: cond-mat/000550

More information

Order and quantum phase transitions in the cuprate superconductors

Order and quantum phase transitions in the cuprate superconductors Order and quantum phase transitions in the cuprate superconductors Subir Sachdev Department of Physics, Yale University, P.O. Box 208120, New Haven CT 06520-8120 March 26, 2003 Abstract This is a summary

More information

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta C. Buragohain K. Damle M. Vojta Subir Sachdev Phys. Rev. Lett. 78, 943 (1997). Phys. Rev. B 57, 8307 (1998). Science 286, 2479 (1999). cond-mat/9912020 Quantum Phase Transitions, Cambridge University Press

More information

Tuning order in cuprate superconductors

Tuning order in cuprate superconductors Tuning order in cuprate superconductors arxiv:cond-mat/0201401 v1 23 Jan 2002 Subir Sachdev 1 and Shou-Cheng Zhang 2 1 Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120,

More information

Subir Sachdev Harvard University

Subir Sachdev Harvard University Quantum phase transitions of correlated electrons and atoms Subir Sachdev Harvard University See also: Quantum phase transitions of correlated electrons in two dimensions, cond-mat/0109419. Quantum Phase

More information

Electronic quasiparticles and competing orders in the cuprate superconductors

Electronic quasiparticles and competing orders in the cuprate superconductors Electronic quasiparticles and competing orders in the cuprate superconductors Andrea Pelissetto Rome Subir Sachdev Ettore Vicari Pisa Yejin Huh Harvard Harvard Gapless nodal quasiparticles in d-wave superconductors

More information

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu Quantum criticality in the cuprate superconductors Talk online: sachdev.physics.harvard.edu The cuprate superconductors Destruction of Neel order in the cuprates by electron doping, R. K. Kaul, M. Metlitksi,

More information

arxiv:cond-mat/ v2 [cond-mat.str-el] 23 Nov 2001

arxiv:cond-mat/ v2 [cond-mat.str-el] 23 Nov 2001 arxiv:cond-mat/0109419v2 [cond-mat.str-el] 23 Nov 2001 Quantum phase transitions of correlated electrons in two dimensions Subir Sachdev Department of Physics, Yale University, P.O. Box 208120, New Haven,

More information

Magnetic phases and critical points of insulators and superconductors

Magnetic phases and critical points of insulators and superconductors Magnetic phases and critical points of insulators and superconductors Colloquium article in Reviews of Modern Physics, July 2003, cond-mat/0211005. cond-mat/0109419 Quantum Phase Transitions Cambridge

More information

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University Global phase diagrams of two-dimensional quantum antiferromagnets Cenke Xu Yang Qi Subir Sachdev Harvard University Outline 1. Review of experiments Phases of the S=1/2 antiferromagnet on the anisotropic

More information

Subir Sachdev Harvard University

Subir Sachdev Harvard University Quantum phase transitions of correlated electrons and atoms Subir Sachdev Harvard University Course at Harvard University: Physics 268r Classical and Quantum Phase Transitions. MWF 10 in Jefferson 256

More information

Quantum Phase Transitions

Quantum Phase Transitions Quantum Phase Transitions Subir Sachdev Department of Physics Yale University P.O. Box 208120, New Haven, CT 06520-8120 USA E-mail: subir.sachdev@yale.edu May 19, 2004 To appear in Encyclopedia of Mathematical

More information

Quantum spin systems - models and computational methods

Quantum spin systems - models and computational methods Summer School on Computational Statistical Physics August 4-11, 2010, NCCU, Taipei, Taiwan Quantum spin systems - models and computational methods Anders W. Sandvik, Boston University Lecture outline Introduction

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

Mean field theories of quantum spin glasses

Mean field theories of quantum spin glasses Mean field theories of quantum spin glasses Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Talk online: Sachdev Classical Sherrington-Kirkpatrick model H = JS S i j ij i j J ij : a

More information

arxiv:cond-mat/ v1 4 Aug 2003

arxiv:cond-mat/ v1 4 Aug 2003 Conductivity of thermally fluctuating superconductors in two dimensions Subir Sachdev arxiv:cond-mat/0308063 v1 4 Aug 2003 Abstract Department of Physics, Yale University, P.O. Box 208120, New Haven CT

More information

Quantum disordering magnetic order in insulators, metals, and superconductors

Quantum disordering magnetic order in insulators, metals, and superconductors Quantum disordering magnetic order in insulators, metals, and superconductors Perimeter Institute, Waterloo, May 29, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Cenke Xu, Harvard arxiv:1004.5431

More information

Magnetic phases and critical points of insulators and superconductors

Magnetic phases and critical points of insulators and superconductors Magnetic phases and critical points of insulators and superconductors Colloquium article in Reviews of Modern Physics, July 2003, cond-mat/0211005. cond-mat/0109419 Quantum Phase Transitions Cambridge

More information

Small and large Fermi surfaces in metals with local moments

Small and large Fermi surfaces in metals with local moments Small and large Fermi surfaces in metals with local moments T. Senthil (MIT) Subir Sachdev Matthias Vojta (Augsburg) cond-mat/0209144 Transparencies online at http://pantheon.yale.edu/~subir Luttinger

More information

Deconfined Quantum Critical Points

Deconfined Quantum Critical Points Deconfined Quantum Critical Points Leon Balents T. Senthil, MIT A. Vishwanath, UCB S. Sachdev, Yale M.P.A. Fisher, UCSB Outline Introduction: what is a DQCP Disordered and VBS ground states and gauge theory

More information

2. Spin liquids and valence bond solids

2. Spin liquids and valence bond solids Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence bond solids (a) Schwinger-boson mean-field theory - square lattice (b) Gauge theories of perturbative

More information

Lecture 2: Deconfined quantum criticality

Lecture 2: Deconfined quantum criticality Lecture 2: Deconfined quantum criticality T. Senthil (MIT) General theoretical questions Fate of Landau-Ginzburg-Wilson ideas at quantum phase transitions? (More precise) Could Landau order parameters

More information

From the pseudogap to the strange metal

From the pseudogap to the strange metal HARVARD From the pseudogap to the strange metal S. Sachdev, E. Berg, S. Chatterjee, and Y. Schattner, PRB 94, 115147 (2016) S. Sachdev and S. Chatterjee, arxiv:1703.00014 APS March meeting March 13, 2017

More information

The bosonic Kondo effect:

The bosonic Kondo effect: The bosonic Kondo effect: probing spin liquids and multicomponent cold gases Serge Florens Institut für Theorie der Kondensierten Materie (Karlsruhe) with: Lars Fritz, ITKM (Karlsruhe) Matthias Vojta,

More information

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets In collaboration with: Olexei Motrunich & Jason Alicea I. Background Outline Avoiding conventional symmetry-breaking in s=1/2 AF Topological

More information

Spin liquids on the triangular lattice

Spin liquids on the triangular lattice Spin liquids on the triangular lattice ICFCM, Sendai, Japan, Jan 11-14, 2011 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Classification of spin liquids Quantum-disordering magnetic order

More information

Quantum criticality of Fermi surfaces

Quantum criticality of Fermi surfaces Quantum criticality of Fermi surfaces Subir Sachdev Physics 268br, Spring 2018 HARVARD Quantum criticality of Ising-nematic ordering in a metal y Occupied states x Empty states A metal with a Fermi surface

More information

Quantum phase transitions and the Luttinger theorem.

Quantum phase transitions and the Luttinger theorem. Quantum phase transitions and the Luttinger theorem. Leon Balents (UCSB) Matthew Fisher (UCSB) Stephen Powell (Yale) Subir Sachdev (Yale) T. Senthil (MIT) Ashvin Vishwanath (Berkeley) Matthias Vojta (Karlsruhe)

More information

Talk online at

Talk online at Talk online at http://sachdev.physics.harvard.edu Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic

More information

Dual vortex theory of doped antiferromagnets

Dual vortex theory of doped antiferromagnets Dual vortex theory of doped antiferromagnets Physical Review B 71, 144508 and 144509 (2005), cond-mat/0502002, cond-mat/0511298 Leon Balents (UCSB) Lorenz Bartosch (Harvard) Anton Burkov (Harvard) Predrag

More information

Topological order in the pseudogap metal

Topological order in the pseudogap metal HARVARD Topological order in the pseudogap metal High Temperature Superconductivity Unifying Themes in Diverse Materials 2018 Aspen Winter Conference Aspen Center for Physics Subir Sachdev January 16,

More information

A New look at the Pseudogap Phase in the Cuprates.

A New look at the Pseudogap Phase in the Cuprates. A New look at the Pseudogap Phase in the Cuprates. Patrick Lee MIT Common themes: 1. Competing order. 2. superconducting fluctuations. 3. Spin gap: RVB. What is the elephant? My answer: All of the above!

More information

The Superfluid-Insulator transition

The Superfluid-Insulator transition The Superfluid-Insulator transition Boson Hubbard model M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989). Superfluid-insulator transition Ultracold 87 Rb atoms

More information

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu arxiv:0809.0694 Yang Qi Harvard Cenke Xu Harvard Max Metlitski Harvard Ribhu Kaul Microsoft Roger Melko

More information

Spin liquids on ladders and in 2d

Spin liquids on ladders and in 2d Spin liquids on ladders and in 2d MPA Fisher (with O. Motrunich) Minnesota, FTPI, 5/3/08 Interest: Quantum Spin liquid phases of 2d Mott insulators Background: Three classes of 2d Spin liquids a) Topological

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

Quantum phases of antiferromagnets and the underdoped cuprates. Talk online: sachdev.physics.harvard.edu

Quantum phases of antiferromagnets and the underdoped cuprates. Talk online: sachdev.physics.harvard.edu Quantum phases of antiferromagnets and the underdoped cuprates Talk online: sachdev.physics.harvard.edu Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and

More information

Emergent gauge fields and the high temperature superconductors

Emergent gauge fields and the high temperature superconductors HARVARD Emergent gauge fields and the high temperature superconductors Unifying physics and technology in light of Maxwell s equations The Royal Society, London November 16, 2015 Subir Sachdev Talk online:

More information

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/0408329, cond-mat/0409470, and to appear Leon Balents (UCSB)

More information

Numerical diagonalization studies of quantum spin chains

Numerical diagonalization studies of quantum spin chains PY 502, Computational Physics, Fall 2016 Anders W. Sandvik, Boston University Numerical diagonalization studies of quantum spin chains Introduction to computational studies of spin chains Using basis states

More information

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3 4D-XY Quantum Criticality in Underdoped High-T c cuprates M. Franz University of British Columbia franz@physics.ubc.ca February 22, 2005 In collaboration with: A.P. Iyengar (theory) D.P. Broun, D.A. Bonn

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

Quantum Phase Transitions

Quantum Phase Transitions Quantum Phase Transitions Subir Sachdev Talks online at http://sachdev.physics.harvard.edu What is a phase transition? A change in the collective properties of a macroscopic number of atoms What is a quantum

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality Hans-Henning Klauss Institut für Festkörperphysik TU Dresden 1 References [1] Stephen Blundell, Magnetism in Condensed

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

What's so unusual about high temperature superconductors? UBC 2005

What's so unusual about high temperature superconductors? UBC 2005 What's so unusual about high temperature superconductors? UBC 2005 Everything... 1. Normal State - doped Mott insulator 2. Pairing Symmetry - d-wave 2. Short Coherence Length - superconducting fluctuations

More information

XY model: particle-vortex duality. Abstract

XY model: particle-vortex duality. Abstract XY model: particle-vortex duality Subir Sachdev Department of Physics, Harvard University, Cambridge, Massachusetts, 02138, USA Dated: February 7, 2018) Abstract We consider the classical XY model in D

More information

Topological order in insulators and metals

Topological order in insulators and metals HARVARD Topological order in insulators and metals 34th Jerusalem Winter School in Theoretical Physics New Horizons in Quantum Matter December 27, 2016 - January 5, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu

More information

Quantum Criticality: Competing Ground States in Low Dimensions

Quantum Criticality: Competing Ground States in Low Dimensions Quantum Criticality: Competing Ground States in Low Dimensions Subir Sachdev arxiv:cond-mat/0009456 v3 6 Nov 2000 Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120, USA

More information

Gapless Spin Liquids in Two Dimensions

Gapless Spin Liquids in Two Dimensions Gapless Spin Liquids in Two Dimensions MPA Fisher (with O. Motrunich, Donna Sheng, Matt Block) Boulder Summerschool 7/20/10 Interest Quantum Phases of 2d electrons (spins) with emergent rather than broken

More information

Magnets, 1D quantum system, and quantum Phase transitions

Magnets, 1D quantum system, and quantum Phase transitions 134 Phys620.nb 10 Magnets, 1D quantum system, and quantum Phase transitions In 1D, fermions can be mapped into bosons, and vice versa. 10.1. magnetization and frustrated magnets (in any dimensions) Consider

More information

Properties of monopole operators in 3d gauge theories

Properties of monopole operators in 3d gauge theories Properties of monopole operators in 3d gauge theories Silviu S. Pufu Princeton University Based on: arxiv:1303.6125 arxiv:1309.1160 (with Ethan Dyer and Mark Mezei) work in progress with Ethan Dyer, Mark

More information

Quantum Melting of Stripes

Quantum Melting of Stripes Quantum Melting of Stripes David Mross and T. Senthil (MIT) D. Mross, TS, PRL 2012 D. Mross, TS, PR B (to appear) Varieties of Stripes Spin, Charge Néel 2π Q c 2π Q s ``Anti-phase stripes, common in La-based

More information

Angle-Resolved Two-Photon Photoemission of Mott Insulator

Angle-Resolved Two-Photon Photoemission of Mott Insulator Angle-Resolved Two-Photon Photoemission of Mott Insulator Takami Tohyama Institute for Materials Research (IMR) Tohoku University, Sendai Collaborators IMR: H. Onodera, K. Tsutsui, S. Maekawa H. Onodera

More information

Competing orders in a magnetic field: Spin and charge order in the cuprate superconductors

Competing orders in a magnetic field: Spin and charge order in the cuprate superconductors Competing orders in a magnetic field: Spin and charge order in the cuprate superconductors The Harvard community has made this article openly available. Please share how this access benefits you. Your

More information

Quantum Spin-Metals in Weak Mott Insulators

Quantum Spin-Metals in Weak Mott Insulators Quantum Spin-Metals in Weak Mott Insulators MPA Fisher (with O. Motrunich, Donna Sheng, Simon Trebst) Quantum Critical Phenomena conference Toronto 9/27/08 Quantum Spin-metals - spin liquids with Bose

More information

The underdoped cuprates as fractionalized Fermi liquids (FL*)

The underdoped cuprates as fractionalized Fermi liquids (FL*) The underdoped cuprates as fractionalized Fermi liquids (FL*) R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, Physical Review B 75, 235122 (2007) R. K. Kaul, Y. B. Kim, S. Sachdev, and T.

More information

Deconfined Quantum Critical Points

Deconfined Quantum Critical Points Deconfined Quantum Critical Points Outline: with T. Senthil, Bangalore A. Vishwanath, UCB S. Sachdev, Yale L. Balents, UCSB conventional quantum critical points Landau paradigm Seeking a new paradigm -

More information

High-Temperature Superconductors: Playgrounds for Broken Symmetries

High-Temperature Superconductors: Playgrounds for Broken Symmetries High-Temperature Superconductors: Playgrounds for Broken Symmetries Gauge / Phase Reflection Time Laura H. Greene Department of Physics Frederick Seitz Materials Research Laboratory Center for Nanoscale

More information

Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr 2 CuO 3 Splitting the electron

Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr 2 CuO 3 Splitting the electron Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr 2 CuO 3 Splitting the electron James Gloudemans, Suraj Hegde, Ian Gilbert, and Gregory Hart December 7, 2012 The paper We describe

More information

Quantum spin liquids and the Mott transition. T. Senthil (MIT)

Quantum spin liquids and the Mott transition. T. Senthil (MIT) Quantum spin liquids and the Mott transition T. Senthil (MIT) Friday, December 9, 2011 Band versus Mott insulators Band insulators: even number of electrons per unit cell; completely filled bands Mott

More information

Valence Bonds in Random Quantum Magnets

Valence Bonds in Random Quantum Magnets Valence Bonds in Random Quantum Magnets theory and application to YbMgGaO 4 Yukawa Institute, Kyoto, November 2017 Itamar Kimchi I.K., Adam Nahum, T. Senthil, arxiv:1710.06860 Valence Bonds in Random Quantum

More information

Neutron scattering from quantum materials

Neutron scattering from quantum materials Neutron scattering from quantum materials Bernhard Keimer Max Planck Institute for Solid State Research Max Planck UBC UTokyo Center for Quantum Materials Detection of bosonic elementary excitations in

More information

Emergent light and the high temperature superconductors

Emergent light and the high temperature superconductors HARVARD Emergent light and the high temperature superconductors Pennsylvania State University State College, January 21, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu Maxwell's equations:

More information

Quantum Choreography: Exotica inside Crystals

Quantum Choreography: Exotica inside Crystals Quantum Choreography: Exotica inside Crystals U. Toronto - Colloquia 3/9/2006 J. Alicea, O. Motrunich, T. Senthil and MPAF Electrons inside crystals: Quantum Mechanics at room temperature Quantum Theory

More information

Quantum criticality of Fermi surfaces in two dimensions

Quantum criticality of Fermi surfaces in two dimensions Quantum criticality of Fermi surfaces in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Yejin Huh, Harvard Max Metlitski, Harvard HARVARD Outline 1. Quantum criticality of Fermi points:

More information

arxiv:cond-mat/ v6 [cond-mat.supr-con] 30 Jun 2003

arxiv:cond-mat/ v6 [cond-mat.supr-con] 30 Jun 2003 Order and quantum phase transitions in the cuprate superconductors Subir Sachdev Department of Physics, Yale University, P.O. Box 208120, New Haven CT 06520-8120 arxiv:cond-mat/0211005v6 [cond-mat.supr-con]

More information

Quantum theory of vortices in d-wave superconductors

Quantum theory of vortices in d-wave superconductors Quantum theory of vortices in d-wave superconductors Physical Review B 71, 144508 and 144509 (2005), Annals of Physics 321, 1528 (2006), Physical Review B 73, 134511 (2006), cond-mat/0606001. Leon Balents

More information

Strongly Correlated Systems:

Strongly Correlated Systems: M.N.Kiselev Strongly Correlated Systems: High Temperature Superconductors Heavy Fermion Compounds Organic materials 1 Strongly Correlated Systems: High Temperature Superconductors 2 Superconductivity:

More information

Detecting boson-vortex duality in the cuprate superconductors

Detecting boson-vortex duality in the cuprate superconductors Detecting boson-vortex duality in the cuprate superconductors Physical Review B 71, 144508 and 144509 (2005), cond-mat/0602429 Leon Balents (UCSB) Lorenz Bartosch (Harvard) Anton Burkov (Harvard) Predrag

More information

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates)

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates) Non-magnetic states Two spins, i and j, in isolation, H ij = J ijsi S j = J ij [Si z Sj z + 1 2 (S+ i S j + S i S+ j )] For Jij>0 the ground state is the singlet; φ s ij = i j i j, E ij = 3J ij /4 2 The

More information

Universal phase transitions in Topological lattice models

Universal phase transitions in Topological lattice models Universal phase transitions in Topological lattice models F. J. Burnell Collaborators: J. Slingerland S. H. Simon September 2, 2010 Overview Matter: classified by orders Symmetry Breaking (Ferromagnet)

More information

Resonating Valence Bond point of view in Graphene

Resonating Valence Bond point of view in Graphene Resonating Valence Bond point of view in Graphene S. A. Jafari Isfahan Univ. of Technology, Isfahan 8456, Iran Nov. 29, Kolkata S. A. Jafari, Isfahan Univ of Tech. RVB view point in graphene /2 OUTLINE

More information

Boson Vortex duality. Abstract

Boson Vortex duality. Abstract Boson Vortex duality Subir Sachdev Department of Physics, Harvard University, Cambridge, Massachusetts, 0238, USA and Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada (Dated:

More information

Exact results concerning the phase diagram of the Hubbard Model

Exact results concerning the phase diagram of the Hubbard Model Steve Kivelson Apr 15, 2011 Freedman Symposium Exact results concerning the phase diagram of the Hubbard Model S.Raghu, D.J. Scalapino, Li Liu, E. Berg H. Yao, W-F. Tsai, A. Lauchli G. Karakonstantakis,

More information

Metals without quasiparticles

Metals without quasiparticles Metals without quasiparticles A. Review of Fermi liquid theory B. A non-fermi liquid: the Ising-nematic quantum critical point C. Fermi surfaces and gauge fields Metals without quasiparticles A. Review

More information

The Role of Charge Order in the Mechanism of High Temperature Superconductivity

The Role of Charge Order in the Mechanism of High Temperature Superconductivity The Role of Charge Order in the Mechanism of High Temperature Superconductivity Eduardo Fradkin Department of Physics University of Illinois at Urbana-Champaign Steven Kivelson, UCLA/Stanford Enrico Arrigoni,

More information

Impurity effects in high T C superconductors

Impurity effects in high T C superconductors Impurity effects in high T C superconductors J. Bobroff, S. Ouazi, H. Alloul, P. Mendels, N. Blanchard Laboratoire de Physique des Solides, Université Paris XI, Orsay G. Collin J.F. Marucco, V. Guillen

More information

Antiferromagnetic Order Induced by an Applied Magnetic Field in a High-Temperature Superconductor

Antiferromagnetic Order Induced by an Applied Magnetic Field in a High-Temperature Superconductor Antiferromagnetic Order Induced by an Applied Magnetic Field in a High-Temperature Superconductor B. Lake 1, H.M. Rønnow 2, N.B. Christensen 3, G. Aeppli 4,3, K. Lefmann 3, D.F. McMorrow 3, P. Vorderwisch

More information

Magnetism in correlated-electron materials

Magnetism in correlated-electron materials Magnetism in correlated-electron materials B. Keimer Max-Planck-Institute for Solid State Research focus on delocalized electrons in metals and superconductors localized electrons: Hinkov talk outline

More information

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions Niels Bohr Institute, Copenhagen, May 6, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Max Metlitski,

More information

Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals

Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals Subir Sachdev sachdev.physics.harvard.edu HARVARD Max Metlitski Erez Berg HARVARD Max Metlitski Erez Berg Sean Hartnoll

More information

A quantum dimer model for the pseudogap metal

A quantum dimer model for the pseudogap metal A quantum dimer model for the pseudogap metal College de France, Paris March 27, 2015 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Andrea Allais Matthias Punk Debanjan Chowdhury (Innsbruck)

More information

Phase transitions in Bi-layer quantum Hall systems

Phase transitions in Bi-layer quantum Hall systems Phase transitions in Bi-layer quantum Hall systems Ming-Che Chang Department of Physics Taiwan Normal University Min-Fong Yang Departmant of Physics Tung-Hai University Landau levels Ferromagnetism near

More information

Vortex States in a Non-Abelian Magnetic Field

Vortex States in a Non-Abelian Magnetic Field Vortex States in a Non-Abelian Magnetic Field Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University SESAPS November 10, 2016 Acknowledgments Collin Broholm IQM

More information

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties High-T c superconductors Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties High-T c superconductors Parent insulators Phase diagram

More information

Examples of Lifshitz topological transition in interacting fermionic systems

Examples of Lifshitz topological transition in interacting fermionic systems Examples of Lifshitz topological transition in interacting fermionic systems Joseph Betouras (Loughborough U. Work in collaboration with: Sergey Slizovskiy (Loughborough, Sam Carr (Karlsruhe/Kent and Jorge

More information