Trust Degree Based Beamforming for Multi-Antenna Cooperative Communication Systems

Size: px
Start display at page:

Download "Trust Degree Based Beamforming for Multi-Antenna Cooperative Communication Systems"

Transcription

1 Introduction Main Results Simulation Conclusions Trust Degree Based Beamforming for Multi-Antenna Cooperative Communication Systems Mojtaba Vaezi joint work with H. Inaltekin, W. Shin, H. V. Poor, and J. Zhang Department of Electrical Engineering Princeton University Globecom 17, Singapore December 5, 2017 December 11, 2017 M. Vaezi (Princeton) Trust Degree Based Beamforming Globecom 17 1

2 Introduction Main Results Simulation Conclusions Motivation System Model Problem Formulation Mobile/Social Networks - Motivation A salient characteristic of mobile data networks: person behind each device Mobile Data Networks Physical coupling between mobile devices Virtual coupling among the users behind these devices Virtual ties, in many ways, shape the data traffic flows and quality-of-service (QoS) requirements in the physical domain. M. Vaezi (Princeton) Trust Degree Based Beamforming Globecom 17 2

3 Introduction Main Results Simulation Conclusions Motivation System Model Problem Formulation Mobile/Social Networks - Motivation A salient characteristic of mobile data networks: person behind each device Mobile Data Networks Physical coupling between mobile devices Virtual coupling among the users behind these devices Virtual ties, in many ways, shape the data traffic flows and quality-of-service (QoS) requirements in the physical domain. Key questions How can we model/quantify social-physical interactions in communication networks? - Trust degrees How can we exploit social connections to improve physical communication performance? - cooperation among nodes to increase rate, security, access, etc. M. Vaezi (Princeton) Trust Degree Based Beamforming Globecom 17 3

4 Introduction Main Results Simulation Conclusions Motivation System Model Problem Formulation System Model T X H.. RN. h physical connections g R X M. Vaezi (Princeton) Trust Degree Based Beamforming Globecom 17 4

5 Introduction Main Results Simulation Conclusions Motivation System Model Problem Formulation System Model T X H.. RN. h physical connections Node g R X # antenna source (S) relay (R) destination (D) 1 N s N r - channel state information (CSI) is known at the transmitters T X (α 1, β 1 )... RN. (α 0, β 0 ) (α 2, β 2 ) R X virtual (social) connections M. Vaezi (Princeton) Trust Degree Based Beamforming Globecom 17 5

6 Introduction Main Results Simulation Conclusions Motivation System Model Problem Formulation System Model T X H.. RN. h physical connections Node g R X # antenna source (S) relay (R) destination (D) 1 N s N r - channel state information (CSI) is known at the transmitters T X (α 1, β 1 )... RN. (α 0, β 0 ) (α 2, β 2 ) R X virtual (social) connections social system is modeled by trust degree trust degree is a level of belief that one node can help the other node for relaying M. Vaezi (Princeton) Trust Degree Based Beamforming Globecom 17 6

7 Introduction Main Results Simulation Conclusions Motivation System Model Problem Formulation System Model w s T X H. w r. RN. h g R X Why beamforming? To improve signal-to-noise ratio (SNR) signal-to-interference-plus-noise ratio (SINR) An optimal beamformer aims to balance between the direct link and the cooperating link as well as respecting the trust degree. M. Vaezi (Princeton) Trust Degree Based Beamforming Globecom 17 7

8 Introduction Main Results Simulation Conclusions Motivation System Model Problem Formulation Physical Channel T X H.. RN. h physical connections (a two-hop relay) R X symbol x s is first multiplied by a beamforming vector w s before being transmitted at S Source Transmission: received signal at D and R y SD = h t w s x s + n SD, y SR = H t w s x s + n SR, -n SD CN (0, 1), n SR CN (0, I) are complex Gaussian noise -w s is beamforming vector received SNRs at D and R γ SD = h t w s 2 P s, γ SR = H t w s 2 P s, and C SD = log 2 (1 + γ SD ), C SR = log 2 (1 + γ SR ). M. Vaezi (Princeton) Trust Degree Based Beamforming Globecom 17 8

9 Introduction Main Results Simulation Conclusions Motivation System Model Problem Formulation Physical Channel T X.. RN. physical connections (a two-hop relay) decode-and-forward (DF) relaying g R X Relay Transmission: y RD = g t w r x r + n RD, where n RD CN (0, 1). - received SNR at D γ RD = g t w r 2 P r. -D can combine the signal received from S and R C D = log 2 (1 + γ SD + γ RD ). M. Vaezi (Princeton) Trust Degree Based Beamforming Globecom 17 9

10 Introduction Main Results Simulation Conclusions Motivation System Model Problem Formulation Physical Channel T X H.. RN. h g R X Relay may work in the full-duplex of half-duplex mod Half-duplex case is more practical but more involved (see [Vaezi et al. 17]) DF Achievable Rate: An achievable rate for full-duplex DF relay system is given by [Host-Madsen-Zhang 05] C DF = min{c SR, C D } { } = min log 2 (1 + γ SR ), log 2 (1 + γ SD + γ RD ). Beamforming design: is extensively studied [Tang-Hua 07],[Ryu-Choi 08],[ Xiong et al. 14] M. Vaezi (Princeton) Trust Degree Based Beamforming Globecom 17 10

11 Introduction Main Results Simulation Conclusions Motivation System Model Problem Formulation Social-Physical Cooperation T X H (α 1, β 1 ).. RN. h (α 0, β 0 ) (α 2, β 2 ) g R X For each link i, (α i, β i ) represents a virtual (social) tie [Ryu-Lee-Quek 15] α i : the probability of cooperation β i : the fraction of power a node uses for relaying Physical-Virtual Cooperation Achievable Rate: the expected trust degree based rate R T = α 1 C DF + (1 α 1 )C SD { } = α 1 min log 2 (1 + γ SR ), log 2 (1 + γ SD + γ RD ) + ᾱ 1 log 2 (1 + γ SD ) (1) Optimal beamforming is open in general M. Vaezi (Princeton) Trust Degree Based Beamforming Globecom 17 11

12 Introduction Main Results Simulation Conclusions Motivation System Model Problem Formulation A New Problem Formulation Our goal is to jointly optimize the beamforming vectors w s and w r as well as α to maximize R T, i.e., where R T is defined in (1). max w s,w r,α R T s.t. w s 2 1, (2) w r 2 1, 0 α α 1, This optimization problem is non-convex α = 1 = MIMO DF realy MISO case (N r = 1) with α = α 1 [Ryu-Lee-Quek 15] M. Vaezi (Princeton) Trust Degree Based Beamforming Globecom 17 12

13 Introduction Main Results Simulation Conclusions Observations Solution Special Cases This Talk H w s T X. w r. RN. h g R X Our observations and contribution Question find optimal w s, w s, and α α = α 1 is not necessarily optimal; we find optimal α Maximal ratio transmission (MRT) beamformer is optimal at relay, i.e., w r = g g Optimal w s is found either in closed-form or heuristically The same approach is applicable to the half-duplex case M. Vaezi (Princeton) Trust Degree Based Beamforming Globecom 17 13

14 Introduction Main Results Simulation Conclusions Observations Solution Special Cases Optimal Trust Degree and w r Lemma 1: Maximal ratio transmission (MRT) beamformer is optimal at the relay, i.e., w r = g g. Proof: w r merely affects γ RD (γ SD and γ SR are independent of w r ) M. Vaezi (Princeton) Trust Degree Based Beamforming Globecom 17 14

15 Introduction Main Results Simulation Conclusions Observations Solution Special Cases Optimal Trust Degree and w r Lemma 1: Maximal ratio transmission (MRT) beamformer is optimal at the relay, i.e., w r = g g. Proof: w r merely affects γ RD (γ SD and γ SR are independent of w r ) M. Vaezi (Princeton) Trust Degree Based Beamforming Globecom 17 15

16 Introduction Main Results Simulation Conclusions Observations Solution Special Cases Optimal Trust Degree and w r Lemma 1: Maximal ratio transmission (MRT) beamformer is optimal at the relay, i.e., w r = g g. Proof: w r merely affects γ RD (γ SD and γ SR are independent of w r ) Lemma 2: The optimal value of α is either zero or α 1. Proof: R T is linear with α. Thus, its maximum happens in either of the ends. M. Vaezi (Princeton) Trust Degree Based Beamforming Globecom 17 16

17 Introduction Main Results Simulation Conclusions Observations Solution Special Cases Optimal Trust Degree and w r Lemma 1: Maximal ratio transmission (MRT) beamformer is optimal at the relay, i.e., w r = g g. Proof: w r merely affects γ RD (γ SD and γ SR are independent of w r ) Lemma 2: The optimal value of α is either zero or α 1. Proof: R T is linear with α. Thus, its maximum happens in either of the ends. M. Vaezi (Princeton) Trust Degree Based Beamforming Globecom 17 17

18 Introduction Main Results Simulation Conclusions Observations Solution Special Cases Optimal Trust Degree and w r Lemma 1: Maximal ratio transmission (MRT) beamformer is optimal at the relay, i.e., w r = g g. Proof: w r merely affects γ RD (γ SD and γ SR are independent of w r ) Lemma 2: The optimal value of α is either zero or α 1. Proof: R T is linear with α. Thus, its maximum happens in either of the ends. Lemma 3: For α = 0, MRT is optimal at the source (w s = h h ). Proof: For α = 0 direct transmission is optimal and R T is linear with α. Thus, its maximum happens in either of the ends M. Vaezi (Princeton) Trust Degree Based Beamforming Globecom 17 18

19 Introduction Main Results Simulation Conclusions Observations Solution Special Cases Solving the New Problem where The only case left is to find w s for α = 1. Thus, the optimization problem is reduced to max w s R T s.t. w s 2 1 { } R T = α 1 min log 2 (1 + γ SR ), log 2 (1 + γ SD + γrd) + ᾱ 1 log 2 (1 + γ SD ) An optimal beamformer must balance between the direct link (γ SD ) and the cooperating link (γ SR ). M. Vaezi (Princeton) Trust Degree Based Beamforming Globecom 17 19

20 Introduction Main Results Simulation Conclusions Observations Solution Special Cases Precoding and Power Allocation w s depends on γ SD and γ SR which are functions of h and H Let w s = ch + N r i=1 c ih i, where h i is the ith column of H Intractable! as h and the h i s are not orthogonal We compute the following orthogonal vectors w h h w i h i h i, i {1,..., N r}. By definition, we have w w i, i.e., w.w i = 0 i {1,..., N r }. M. Vaezi (Princeton) Trust Degree Based Beamforming Globecom 17 20

21 Introduction Main Results Simulation Conclusions Observations Solution Special Cases Special Cases Theorem The transmit beamformer that maximizes the achievable rate can be represented as w s = N r γ 0 w + γi w i in which w and the w i s are orthonormal bases spanning the column space of h and H, and γ 0 + γ γ Nr = 1. i=1 Proof. We prove this Theorem by contradiction. M. Vaezi (Princeton) Trust Degree Based Beamforming Globecom 17 21

22 Introduction Main Results Simulation Conclusions Observations Solution Special Cases Special Cases Remark 1: We only need to find N r real numbers whereas in the original problem we needed to find N s complex numbers. Usually N s N r and N r as relay nodes are assumed to be network users. M. Vaezi (Princeton) Trust Degree Based Beamforming Globecom 17 22

23 Introduction Main Results Simulation Conclusions Observations Solution Special Cases Special Cases Remark 1: We only need to find N r real numbers whereas in the original problem we needed to find N s complex numbers. Usually N s N r and N r as relay nodes are assumed to be network users. Remark 2: For the MISO case (N r = 1), w = w 1. Then, to find w s, we only need to find. γ 0. M. Vaezi (Princeton) Trust Degree Based Beamforming Globecom 17 23

24 Introduction Main Results Simulation Conclusions Observations Solution Special Cases Special Cases Remark 1: We only need to find N r real numbers whereas in the original problem we needed to find N s complex numbers. Usually N s N r and N r as relay nodes are assumed to be network users. Remark 2: For the MISO case (N r = 1), w = w 1. Then, to find w s, we only need to find. γ 0. Remark 3: Ignoring social connection (α 1 = 0), the system and solution reduces to those of DF relay. M. Vaezi (Princeton) Trust Degree Based Beamforming Globecom 17 24

25 Introduction Main Results Simulation Conclusions Simulation Results Achievable Rate (bps/hz) Optimized α Ryu et al. BF [7] Direct transmission Transmission SNR (db) Achievable Rate (bps/hz) Proposed BF (Nr =4) Proposed BF (Nr =2) Proposed BF (Nr =1) Direct transmission Transmission SNR (db) N s = 4, N r = 1, α 1 = 0.7 N s = 4, α 1 = 0.7 (σ 2 h, σ 2 H, σ 2 g) = ( 5, 4, 10)dB (σ 2 h, σ 2 H, σ 2 g) = ( 5, 0, 10)dB M. Vaezi (Princeton) Trust Degree Based Beamforming Globecom 17 25

26 Introduction Main Results Simulation Conclusions Conclusions Summary Design communication systems with consideration of social links beside physical connection Cooperative communication can largely benefit from social connections modeled by trust degree The underlying problem in non-convex and hard to solve Linear beamforming is designed to maximize achievable rate Future Work This kind of approaches does not scale with network nodes Can we use machine learning for this purpose? M. Vaezi (Princeton) Trust Degree Based Beamforming Globecom 17 26

27 Introduction Main Results Simulation Conclusions Thank you! M. Vaezi (Princeton) Trust Degree Based Beamforming Globecom 17 27

Trust Degree Based Beamforming for Multi-Antenna Cooperative Communication Systems

Trust Degree Based Beamforming for Multi-Antenna Cooperative Communication Systems Trust Degree Based Beamforming for Multi-Antenna Cooperative Communication Systems Mojtaba Vaezi, Hazer Inaltekin, Wonjae Sin, H. Vincent Poor, and Junsan Zang* Department of Electrical Engineering, Princeton

More information

Half-Duplex Gaussian Relay Networks with Interference Processing Relays

Half-Duplex Gaussian Relay Networks with Interference Processing Relays Half-Duplex Gaussian Relay Networks with Interference Processing Relays Bama Muthuramalingam Srikrishna Bhashyam Andrew Thangaraj Department of Electrical Engineering Indian Institute of Technology Madras

More information

Secure Multiuser MISO Communication Systems with Quantized Feedback

Secure Multiuser MISO Communication Systems with Quantized Feedback Secure Multiuser MISO Communication Systems with Quantized Feedback Berna Özbek*, Özgecan Özdoğan*, Güneş Karabulut Kurt** *Department of Electrical and Electronics Engineering Izmir Institute of Technology,Turkey

More information

Comparison of Full-Duplex and Half-Duplex Modes with a Fixed Amplify-and-Forward Relay

Comparison of Full-Duplex and Half-Duplex Modes with a Fixed Amplify-and-Forward Relay Comparison of Full-Duplex and Half-Duplex Modes with a Fixed Amplify-and-Forward Relay Taneli Riihonen, Stefan Werner, and Risto Wichman Helsinki University of Technology, Finland IEEE WCNC, Budapest,

More information

Nash Bargaining in Beamforming Games with Quantized CSI in Two-user Interference Channels

Nash Bargaining in Beamforming Games with Quantized CSI in Two-user Interference Channels Nash Bargaining in Beamforming Games with Quantized CSI in Two-user Interference Channels Jung Hoon Lee and Huaiyu Dai Department of Electrical and Computer Engineering, North Carolina State University,

More information

NOMA: Principles and Recent Results

NOMA: Principles and Recent Results NOMA: Principles and Recent Results Jinho Choi School of EECS GIST September 2017 (VTC-Fall 2017) 1 / 46 Abstract: Non-orthogonal multiple access (NOMA) becomes a key technology in 5G as it can improve

More information

Capacity Region of the Two-Way Multi-Antenna Relay Channel with Analog Tx-Rx Beamforming

Capacity Region of the Two-Way Multi-Antenna Relay Channel with Analog Tx-Rx Beamforming Capacity Region of the Two-Way Multi-Antenna Relay Channel with Analog Tx-Rx Beamforming Authors: Christian Lameiro, Alfredo Nazábal, Fouad Gholam, Javier Vía and Ignacio Santamaría University of Cantabria,

More information

Random Access Protocols for Massive MIMO

Random Access Protocols for Massive MIMO Random Access Protocols for Massive MIMO Elisabeth de Carvalho Jesper H. Sørensen Petar Popovski Aalborg University Denmark Emil Björnson Erik G. Larsson Linköping University Sweden 2016 Tyrrhenian International

More information

Lecture 8: MIMO Architectures (II) Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH

Lecture 8: MIMO Architectures (II) Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH MIMO : MIMO Theoretical Foundations of Wireless Communications 1 Wednesday, May 25, 2016 09:15-12:00, SIP 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication 1 / 20 Overview MIMO

More information

On the Optimization of Two-way AF MIMO Relay Channel with Beamforming

On the Optimization of Two-way AF MIMO Relay Channel with Beamforming On the Optimization of Two-way AF MIMO Relay Channel with Beamforming Namjeong Lee, Chan-Byoung Chae, Osvaldo Simeone, Joonhyuk Kang Information and Communications Engineering ICE, KAIST, Korea Email:

More information

DEVICE-TO-DEVICE COMMUNICATIONS: THE PHYSICAL LAYER SECURITY ADVANTAGE

DEVICE-TO-DEVICE COMMUNICATIONS: THE PHYSICAL LAYER SECURITY ADVANTAGE DEVICE-TO-DEVICE COMMUNICATIONS: THE PHYSICAL LAYER SECURITY ADVANTAGE Daohua Zhu, A. Lee Swindlehurst, S. Ali A. Fakoorian, Wei Xu, Chunming Zhao National Mobile Communications Research Lab, Southeast

More information

The Optimality of Beamforming: A Unified View

The Optimality of Beamforming: A Unified View The Optimality of Beamforming: A Unified View Sudhir Srinivasa and Syed Ali Jafar Electrical Engineering and Computer Science University of California Irvine, Irvine, CA 92697-2625 Email: sudhirs@uciedu,

More information

Physical-Layer MIMO Relaying

Physical-Layer MIMO Relaying Model Gaussian SISO MIMO Gauss.-BC General. Physical-Layer MIMO Relaying Anatoly Khina, Tel Aviv University Joint work with: Yuval Kochman, MIT Uri Erez, Tel Aviv University August 5, 2011 Model Gaussian

More information

Single-User MIMO systems: Introduction, capacity results, and MIMO beamforming

Single-User MIMO systems: Introduction, capacity results, and MIMO beamforming Single-User MIMO systems: Introduction, capacity results, and MIMO beamforming Master Universitario en Ingeniería de Telecomunicación I. Santamaría Universidad de Cantabria Contents Introduction Multiplexing,

More information

Transmitter-Receiver Cooperative Sensing in MIMO Cognitive Network with Limited Feedback

Transmitter-Receiver Cooperative Sensing in MIMO Cognitive Network with Limited Feedback IEEE INFOCOM Workshop On Cognitive & Cooperative Networks Transmitter-Receiver Cooperative Sensing in MIMO Cognitive Network with Limited Feedback Chao Wang, Zhaoyang Zhang, Xiaoming Chen, Yuen Chau. Dept.of

More information

Stability Analysis in a Cognitive Radio System with Cooperative Beamforming

Stability Analysis in a Cognitive Radio System with Cooperative Beamforming Stability Analysis in a Cognitive Radio System with Cooperative Beamforming Mohammed Karmoose 1 Ahmed Sultan 1 Moustafa Youseff 2 1 Electrical Engineering Dept, Alexandria University 2 E-JUST Agenda 1

More information

Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems

Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User

More information

Secure Degrees of Freedom of the MIMO Multiple Access Wiretap Channel

Secure Degrees of Freedom of the MIMO Multiple Access Wiretap Channel Secure Degrees of Freedom of the MIMO Multiple Access Wiretap Channel Pritam Mukherjee Sennur Ulukus Department of Electrical and Computer Engineering University of Maryland, College Park, MD 074 pritamm@umd.edu

More information

Performance Analysis of a Threshold-Based Relay Selection Algorithm in Wireless Networks

Performance Analysis of a Threshold-Based Relay Selection Algorithm in Wireless Networks Communications and Networ, 2010, 2, 87-92 doi:10.4236/cn.2010.22014 Published Online May 2010 (http://www.scirp.org/journal/cn Performance Analysis of a Threshold-Based Relay Selection Algorithm in Wireless

More information

Large-Scale MIMO Relaying Techniques for Physical Layer Security: AF or DF?

Large-Scale MIMO Relaying Techniques for Physical Layer Security: AF or DF? 1 Large-Scale MIMO Relaying Techniques for Physical Layer Security: AF or? Xiaoming Chen, Senior Member, IEEE, Lei Lei, Member, IEEE, Huazi Zhang, Member, IEEE, and Chau Yuen Senior Member, IEEE arxiv:1505.099v1

More information

Resource Management and Interference Control in Distributed Multi-Tier and D2D Systems. Ali Ramezani-Kebrya

Resource Management and Interference Control in Distributed Multi-Tier and D2D Systems. Ali Ramezani-Kebrya Resource Management and Interference Control in Distributed Multi-Tier and D2D Systems by Ali Ramezani-Kebrya A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy

More information

Adaptive Successive Transmission in Virtual Full-Duplex Cooperative NOMA

Adaptive Successive Transmission in Virtual Full-Duplex Cooperative NOMA Adaptive Successive Transmission in Virtual Full-Duplex Cooperative NOMA Young-bin Kim Future Access Network Division KDDI Research, Inc Fujimino-shi, Japan yo-kim@kddi-researchjp Kosuke Yamazaki Future

More information

CHANNEL FEEDBACK QUANTIZATION METHODS FOR MISO AND MIMO SYSTEMS

CHANNEL FEEDBACK QUANTIZATION METHODS FOR MISO AND MIMO SYSTEMS CHANNEL FEEDBACK QUANTIZATION METHODS FOR MISO AND MIMO SYSTEMS June Chul Roh and Bhaskar D Rao Department of Electrical and Computer Engineering University of California, San Diego La Jolla, CA 9293 47,

More information

Minimum Mean Squared Error Interference Alignment

Minimum Mean Squared Error Interference Alignment Minimum Mean Squared Error Interference Alignment David A. Schmidt, Changxin Shi, Randall A. Berry, Michael L. Honig and Wolfgang Utschick Associate Institute for Signal Processing Technische Universität

More information

Game Theoretic Solutions for Precoding Strategies over the Interference Channel

Game Theoretic Solutions for Precoding Strategies over the Interference Channel Game Theoretic Solutions for Precoding Strategies over the Interference Channel Jie Gao, Sergiy A. Vorobyov, and Hai Jiang Department of Electrical & Computer Engineering, University of Alberta, Canada

More information

Lecture 5: Antenna Diversity and MIMO Capacity Theoretical Foundations of Wireless Communications 1. Overview. CommTh/EES/KTH

Lecture 5: Antenna Diversity and MIMO Capacity Theoretical Foundations of Wireless Communications 1. Overview. CommTh/EES/KTH : Antenna Diversity and Theoretical Foundations of Wireless Communications Wednesday, May 4, 206 9:00-2:00, Conference Room SIP Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication

More information

Characterization of Convex and Concave Resource Allocation Problems in Interference Coupled Wireless Systems

Characterization of Convex and Concave Resource Allocation Problems in Interference Coupled Wireless Systems 2382 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL 59, NO 5, MAY 2011 Characterization of Convex and Concave Resource Allocation Problems in Interference Coupled Wireless Systems Holger Boche, Fellow, IEEE,

More information

Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems

Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User

More information

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH : Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1 Rayleigh Wednesday, June 1, 2016 09:15-12:00, SIP 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication

More information

Performance Analysis of MIMO Relay Networks with Beamforming. Hyunjun Kim

Performance Analysis of MIMO Relay Networks with Beamforming. Hyunjun Kim Performance Analysis of MIMO Relay Networks with Beamforming by Hyunjun Kim A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved July 2012 by

More information

Outline - Part III: Co-Channel Interference

Outline - Part III: Co-Channel Interference General Outline Part 0: Background, Motivation, and Goals. Part I: Some Basics. Part II: Diversity Systems. Part III: Co-Channel Interference. Part IV: Multi-Hop Communication Systems. Outline - Part III:

More information

Degrees-of-Freedom Robust Transmission for the K-user Distributed Broadcast Channel

Degrees-of-Freedom Robust Transmission for the K-user Distributed Broadcast Channel /33 Degrees-of-Freedom Robust Transmission for the K-user Distributed Broadcast Channel Presented by Paul de Kerret Joint work with Antonio Bazco, Nicolas Gresset, and David Gesbert ESIT 2017 in Madrid,

More information

WIRELESS COMMUNICATIONS AND COGNITIVE RADIO TRANSMISSIONS UNDER QUALITY OF SERVICE CONSTRAINTS AND CHANNEL UNCERTAINTY

WIRELESS COMMUNICATIONS AND COGNITIVE RADIO TRANSMISSIONS UNDER QUALITY OF SERVICE CONSTRAINTS AND CHANNEL UNCERTAINTY University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Theses, Dissertations, and Student Research from Electrical & Computer Engineering Electrical & Computer Engineering, Department

More information

ECE Information theory Final (Fall 2008)

ECE Information theory Final (Fall 2008) ECE 776 - Information theory Final (Fall 2008) Q.1. (1 point) Consider the following bursty transmission scheme for a Gaussian channel with noise power N and average power constraint P (i.e., 1/n X n i=1

More information

12.4 Known Channel (Water-Filling Solution)

12.4 Known Channel (Water-Filling Solution) ECEn 665: Antennas and Propagation for Wireless Communications 54 2.4 Known Channel (Water-Filling Solution) The channel scenarios we have looed at above represent special cases for which the capacity

More information

Mode Selection for Multi-Antenna Broadcast Channels

Mode Selection for Multi-Antenna Broadcast Channels Mode Selection for Multi-Antenna Broadcast Channels Gill November 22, 2011 Gill (University of Delaware) November 22, 2011 1 / 25 Part I Mode Selection for MISO BC with Perfect/Imperfect CSI [1]-[3] Gill

More information

Short-Packet Communications in Non-Orthogonal Multiple Access Systems

Short-Packet Communications in Non-Orthogonal Multiple Access Systems Short-Packet Communications in Non-Orthogonal Multiple Access Systems Xiaofang Sun, Shihao Yan, Nan Yang, Zhiguo Ding, Chao Shen, and Zhangdui Zhong State Key Lab of Rail Traffic Control and Safety, Beijing

More information

Multi-User Gain Maximum Eigenmode Beamforming, and IDMA. Peng Wang and Li Ping City University of Hong Kong

Multi-User Gain Maximum Eigenmode Beamforming, and IDMA. Peng Wang and Li Ping City University of Hong Kong Multi-User Gain Maximum Eigenmode Beamforming, and IDMA Peng Wang and Li Ping City University of Hong Kong 1 Contents Introduction Multi-user gain (MUG) Maximum eigenmode beamforming (MEB) MEB performance

More information

Efficient Computation of the Pareto Boundary for the Two-User MISO Interference Channel with Multi-User Decoding Capable Receivers

Efficient Computation of the Pareto Boundary for the Two-User MISO Interference Channel with Multi-User Decoding Capable Receivers Efficient Computation of the Pareto Boundary for the Two-User MISO Interference Channel with Multi-User Decoding Capable Receivers Johannes Lindblom, Eleftherios Karipidis and Erik G. Larsson Linköping

More information

Wireless Transmission with Energy Harvesting and Storage. Fatemeh Amirnavaei

Wireless Transmission with Energy Harvesting and Storage. Fatemeh Amirnavaei Wireless Transmission with Energy Harvesting and Storage by Fatemeh Amirnavaei A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in The Faculty of Engineering

More information

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1 : Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1 Rayleigh Friday, May 25, 2018 09:00-11:30, Kansliet 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless

More information

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 2, FEBRUARY Uplink Downlink Duality Via Minimax Duality. Wei Yu, Member, IEEE (1) (2)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 2, FEBRUARY Uplink Downlink Duality Via Minimax Duality. Wei Yu, Member, IEEE (1) (2) IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 2, FEBRUARY 2006 361 Uplink Downlink Duality Via Minimax Duality Wei Yu, Member, IEEE Abstract The sum capacity of a Gaussian vector broadcast channel

More information

Incremental Coding over MIMO Channels

Incremental Coding over MIMO Channels Model Rateless SISO MIMO Applications Summary Incremental Coding over MIMO Channels Anatoly Khina, Tel Aviv University Joint work with: Yuval Kochman, MIT Uri Erez, Tel Aviv University Gregory W. Wornell,

More information

Interactive Interference Alignment

Interactive Interference Alignment Interactive Interference Alignment Quan Geng, Sreeram annan, and Pramod Viswanath Coordinated Science Laboratory and Dept. of ECE University of Illinois, Urbana-Champaign, IL 61801 Email: {geng5, kannan1,

More information

DEGREE PROGRAMME IN WIRELESS COMMUNICATIONS ENGINEERING MASTER S THESIS

DEGREE PROGRAMME IN WIRELESS COMMUNICATIONS ENGINEERING MASTER S THESIS DEGREE PROGRAMME IN WIRELESS COMMUNICATIONS ENGINEERING MASTER S THESIS PERFORMANCE ANALYSIS OF MIMO DUAL-HOP AF RELAY NETWORKS OVER ASYMMETRIC FADING CHANNELS Author Supervisor Second Supervisor Technical

More information

Anatoly Khina. Joint work with: Uri Erez, Ayal Hitron, Idan Livni TAU Yuval Kochman HUJI Gregory W. Wornell MIT

Anatoly Khina. Joint work with: Uri Erez, Ayal Hitron, Idan Livni TAU Yuval Kochman HUJI Gregory W. Wornell MIT Network Modulation: Transmission Technique for MIMO Networks Anatoly Khina Joint work with: Uri Erez, Ayal Hitron, Idan Livni TAU Yuval Kochman HUJI Gregory W. Wornell MIT ACC Workshop, Feder Family Award

More information

Exploiting Partial Channel Knowledge at the Transmitter in MISO and MIMO Wireless

Exploiting Partial Channel Knowledge at the Transmitter in MISO and MIMO Wireless Exploiting Partial Channel Knowledge at the Transmitter in MISO and MIMO Wireless SPAWC 2003 Rome, Italy June 18, 2003 E. Yoon, M. Vu and Arogyaswami Paulraj Stanford University Page 1 Outline Introduction

More information

L interférence dans les réseaux non filaires

L interférence dans les réseaux non filaires L interférence dans les réseaux non filaires Du contrôle de puissance au codage et alignement Jean-Claude Belfiore Télécom ParisTech 7 mars 2013 Séminaire Comelec Parts Part 1 Part 2 Part 3 Part 4 Part

More information

Transmit Beamforming Techniques for Wireless Information and Power Transfer in MISO Interference Channels

Transmit Beamforming Techniques for Wireless Information and Power Transfer in MISO Interference Channels Transmit Beamforming Techniques for Wireless Information and Power Transfer in MISO Interference Channels Hoon Lee, Student Member, IEEE, Sang-Rim Lee, Student Member, IEEE, Kyoung-Jae Lee, Member, IEEE,

More information

Average Throughput Analysis of Downlink Cellular Networks with Multi-Antenna Base Stations

Average Throughput Analysis of Downlink Cellular Networks with Multi-Antenna Base Stations Average Throughput Analysis of Downlink Cellular Networks with Multi-Antenna Base Stations Rui Wang, Jun Zhang, S.H. Song and K. B. Letaief, Fellow, IEEE Dept. of ECE, The Hong Kong University of Science

More information

Multi-Antenna Cooperative Wireless Systems: A Diversity-Multiplexing Tradeoff Perspective

Multi-Antenna Cooperative Wireless Systems: A Diversity-Multiplexing Tradeoff Perspective IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. X, NO. X, DECEMBER 007 Multi-Antenna Cooperative Wireless Systems: A Diversity-Multiplexing Tradeoff Perspective Melda Yuksel, Student Member, IEEE, and Elza

More information

Lattice Reduction Aided Precoding for Multiuser MIMO using Seysen s Algorithm

Lattice Reduction Aided Precoding for Multiuser MIMO using Seysen s Algorithm Lattice Reduction Aided Precoding for Multiuser MIMO using Seysen s Algorithm HongSun An Student Member IEEE he Graduate School of I & Incheon Korea ahs3179@gmail.com Manar Mohaisen Student Member IEEE

More information

Gaussian Relay Channel Capacity to Within a Fixed Number of Bits

Gaussian Relay Channel Capacity to Within a Fixed Number of Bits Gaussian Relay Channel Capacity to Within a Fixed Number of Bits Woohyuk Chang, Sae-Young Chung, and Yong H. Lee arxiv:.565v [cs.it] 23 Nov 2 Abstract In this paper, we show that the capacity of the threenode

More information

Diversity Performance of a Practical Non-Coherent Detect-and-Forward Receiver

Diversity Performance of a Practical Non-Coherent Detect-and-Forward Receiver Diversity Performance of a Practical Non-Coherent Detect-and-Forward Receiver Michael R. Souryal and Huiqing You National Institute of Standards and Technology Advanced Network Technologies Division Gaithersburg,

More information

Delay QoS Provisioning and Optimal Resource Allocation for Wireless Networks

Delay QoS Provisioning and Optimal Resource Allocation for Wireless Networks Syracuse University SURFACE Dissertations - ALL SURFACE June 2017 Delay QoS Provisioning and Optimal Resource Allocation for Wireless Networks Yi Li Syracuse University Follow this and additional works

More information

Novel spectrum sensing schemes for Cognitive Radio Networks

Novel spectrum sensing schemes for Cognitive Radio Networks Novel spectrum sensing schemes for Cognitive Radio Networks Cantabria University Santander, May, 2015 Supélec, SCEE Rennes, France 1 The Advanced Signal Processing Group http://gtas.unican.es The Advanced

More information

Massive MU-MIMO Downlink TDD Systems with Linear Precoding and Downlink Pilots

Massive MU-MIMO Downlink TDD Systems with Linear Precoding and Downlink Pilots Massive MU-MIMO Downlink TDD Systems with Linear Precoding and Downlink Pilots Hien Quoc Ngo, Erik G. Larsson, and Thomas L. Marzetta Department of Electrical Engineering (ISY) Linköping University, 58

More information

Clean relaying aided cognitive radio under the coexistence constraint

Clean relaying aided cognitive radio under the coexistence constraint Clean relaying aided cognitive radio under the coexistence constraint Pin-Hsun Lin, Shih-Chun Lin, Hsuan-Jung Su and Y.-W. Peter Hong Abstract arxiv:04.3497v [cs.it] 8 Apr 0 We consider the interference-mitigation

More information

On the complexity of maximizing the minimum Shannon capacity in wireless networks by joint channel assignment and power allocation

On the complexity of maximizing the minimum Shannon capacity in wireless networks by joint channel assignment and power allocation On the complexity of maximizing the minimum Shannon capacity in wireless networks by joint channel assignment and power allocation Mikael Fallgren Royal Institute of Technology December, 2009 Abstract

More information

Outage Capacity of the Fading Relay Channel in the Low SNR Regime

Outage Capacity of the Fading Relay Channel in the Low SNR Regime Outage Capacity of the Fading Relay Channel in the Low SNR Regime Amir Salman Avestimehr Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2006-36

More information

Secrecy Outage Performance of Cooperative Relay Network With Diversity Combining

Secrecy Outage Performance of Cooperative Relay Network With Diversity Combining Secrecy Outage erformance of Cooperative Relay Network With Diversity Combining Khyati Chopra Dept. of lectrical ngineering Indian Institute of Technology, Delhi New Delhi-110016, India mail: eez148071@ee.iitd.ac.in

More information

Cooperative Communication in Spatially Modulated MIMO systems

Cooperative Communication in Spatially Modulated MIMO systems Cooperative Communication in Spatially Modulated MIMO systems Multimedia Wireless Networks (MWN) Group, Department Of Electrical Engineering, Indian Institute of Technology, Kanpur, India {neerajv,adityaj}@iitk.ac.in

More information

Linear Processing for the Downlink in Multiuser MIMO Systems with Multiple Data Streams

Linear Processing for the Downlink in Multiuser MIMO Systems with Multiple Data Streams Linear Processing for the Downlin in Multiuser MIMO Systems with Multiple Data Streams Ali M. Khachan, Adam J. Tenenbaum and Raviraj S. Adve Dept. of Electrical and Computer Engineering, University of

More information

Sub-modularity and Antenna Selection in MIMO systems

Sub-modularity and Antenna Selection in MIMO systems Sub-modularity and Antenna Selection in MIMO systems Rahul Vaze Harish Ganapathy Point-to-Point MIMO Channel 1 1 Tx H Rx N t N r Point-to-Point MIMO Channel 1 1 Tx H Rx N t N r Antenna Selection Transmit

More information

Spectrum Leasing via Cooperation for Enhanced. Physical-Layer Secrecy

Spectrum Leasing via Cooperation for Enhanced. Physical-Layer Secrecy Spectrum Leasing via Cooperation for Enhanced 1 Physical-Layer Secrecy Keonkook Lee, Member, IEEE, Chan-Byoung Chae, Senior Member, IEEE, Joonhyuk Kang, Member, IEEE arxiv:1205.0085v1 [cs.it] 1 May 2012

More information

Limited Feedback in Wireless Communication Systems

Limited Feedback in Wireless Communication Systems Limited Feedback in Wireless Communication Systems - Summary of An Overview of Limited Feedback in Wireless Communication Systems Gwanmo Ku May 14, 17, and 21, 2013 Outline Transmitter Ant. 1 Channel N

More information

Interference, Cooperation and Connectivity A Degrees of Freedom Perspective

Interference, Cooperation and Connectivity A Degrees of Freedom Perspective Interference, Cooperation and Connectivity A Degrees of Freedom Perspective Chenwei Wang, Syed A. Jafar, Shlomo Shamai (Shitz) and Michele Wigger EECS Dept., University of California Irvine, Irvine, CA,

More information

Lecture 6: Modeling of MIMO Channels Theoretical Foundations of Wireless Communications 1. Overview. CommTh/EES/KTH

Lecture 6: Modeling of MIMO Channels Theoretical Foundations of Wireless Communications 1. Overview. CommTh/EES/KTH : Theoretical Foundations of Wireless Communications 1 Wednesday, May 11, 2016 9:00-12:00, Conference Room SIP 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication 1 / 1 Overview

More information

Optimal Power Allocation for Energy Recycling Assisted Cooperative Communications

Optimal Power Allocation for Energy Recycling Assisted Cooperative Communications Optimal Power llocation for Energy Recycling ssisted Cooperative Communications George. Ropokis, M. Majid Butt, Nicola Marchetti and Luiz. DaSilva CONNECT Centre, Trinity College, University of Dublin,

More information

On the Design of Scalar Feedback Techniques for MIMO Broadcast Scheduling

On the Design of Scalar Feedback Techniques for MIMO Broadcast Scheduling On the Design of Scalar Feedback Techniques for MIMO Broadcast Scheduling Ruben de Francisco and Dirk T.M. Slock Eurecom Institute Sophia-Antipolis, France Email: {defranci, slock}@eurecom.fr Abstract

More information

Joint FEC Encoder and Linear Precoder Design for MIMO Systems with Antenna Correlation

Joint FEC Encoder and Linear Precoder Design for MIMO Systems with Antenna Correlation Joint FEC Encoder and Linear Precoder Design for MIMO Systems with Antenna Correlation Chongbin Xu, Peng Wang, Zhonghao Zhang, and Li Ping City University of Hong Kong 1 Outline Background Mutual Information

More information

Space-Time Coding for Multi-Antenna Systems

Space-Time Coding for Multi-Antenna Systems Space-Time Coding for Multi-Antenna Systems ECE 559VV Class Project Sreekanth Annapureddy vannapu2@uiuc.edu Dec 3rd 2007 MIMO: Diversity vs Multiplexing Multiplexing Diversity Pictures taken from lectures

More information

Advanced 3 G and 4 G Wireless Communication Prof. Aditya K Jagannathan Department of Electrical Engineering Indian Institute of Technology, Kanpur

Advanced 3 G and 4 G Wireless Communication Prof. Aditya K Jagannathan Department of Electrical Engineering Indian Institute of Technology, Kanpur Advanced 3 G and 4 G Wireless Communication Prof. Aditya K Jagannathan Department of Electrical Engineering Indian Institute of Technology, Kanpur Lecture - 19 Multi-User CDMA Uplink and Asynchronous CDMA

More information

Harnessing Interaction in Bursty Interference Networks

Harnessing Interaction in Bursty Interference Networks 215 IEEE Hong Kong-Taiwan Joint Workshop on Information Theory and Communications Harnessing Interaction in Bursty Interference Networks I-Hsiang Wang NIC Lab, NTU GICE 1/19, 215 Modern Wireless: Grand

More information

Resource Allocation for Wireless Fading Relay Channels: Max-Min Solution 1 2

Resource Allocation for Wireless Fading Relay Channels: Max-Min Solution 1 2 Submitted to IEEE Trans. Inform. Theory, Special Issue on Models, Theory and odes for elaying and ooperation in ommunication Networs, Aug. 2006, revised Jan. 2007 esource Allocation for Wireless Fading

More information

NOMA: Principles and Recent Results

NOMA: Principles and Recent Results NOMA: Principles and Recent Results Jinho Choi School of EECS, GIST Email: jchoi114@gist.ac.kr Invited Paper arxiv:176.885v1 [cs.it] 27 Jun 217 Abstract Although non-orthogonal multiple access NOMA is

More information

Degrees-of-Freedom for the 4-User SISO Interference Channel with Improper Signaling

Degrees-of-Freedom for the 4-User SISO Interference Channel with Improper Signaling Degrees-of-Freedom for the -User SISO Interference Channel with Improper Signaling C Lameiro and I Santamaría Dept of Communications Engineering University of Cantabria 9005 Santander Cantabria Spain Email:

More information

Low complexity sum rate maximization for single and multiple stream MIMO AF relay networks

Low complexity sum rate maximization for single and multiple stream MIMO AF relay networks Low complexity sum rate maximization for single and multiple stream MIMO AF relay networks Cong Sun, Student Member, IEEE, and Eduard Jorswieck, Senior Member, IEEE Abstract arxiv:1211.5884v1 [cs.it] 26

More information

Joint Source and Relay Matrices Optimization for Interference MIMO Relay Systems

Joint Source and Relay Matrices Optimization for Interference MIMO Relay Systems Joint Source and Relay Matrices Optimization for Interference MIMO Relay Systems Khoa Xuan Nguyen Dept Electrical & Computer Engineering Curtin University Bentley, WA 6102, Australia Email: xuankhoanguyen@curtineduau

More information

PERFORMANCE COMPARISON OF DATA-SHARING AND COMPRESSION STRATEGIES FOR CLOUD RADIO ACCESS NETWORKS. Pratik Patil, Binbin Dai, and Wei Yu

PERFORMANCE COMPARISON OF DATA-SHARING AND COMPRESSION STRATEGIES FOR CLOUD RADIO ACCESS NETWORKS. Pratik Patil, Binbin Dai, and Wei Yu PERFORMANCE COMPARISON OF DATA-SHARING AND COMPRESSION STRATEGIES FOR CLOUD RADIO ACCESS NETWORKS Pratik Patil, Binbin Dai, and Wei Yu Department of Electrical and Computer Engineering University of Toronto,

More information

Spatial and Temporal Power Allocation for MISO Systems with Delayed Feedback

Spatial and Temporal Power Allocation for MISO Systems with Delayed Feedback Spatial and Temporal Power Allocation for MISO Systems with Delayed Feedback Venkata Sreekanta Annapureddy 1 Srikrishna Bhashyam 2 1 Department of Electrical and Computer Engineering University of Illinois

More information

On the Power Allocation for Hybrid DF and CF Protocol with Auxiliary Parameter in Fading Relay Channels

On the Power Allocation for Hybrid DF and CF Protocol with Auxiliary Parameter in Fading Relay Channels On the Power Allocation for Hybrid DF and CF Protocol with Auxiliary Parameter in Fading Relay Channels arxiv:4764v [csit] 4 Dec 4 Zhengchuan Chen, Pingyi Fan, Dapeng Wu and Liquan Shen Tsinghua National

More information

Hierarchical Cooperation Achieves Optimal Capacity Scaling in Ad Hoc Networks

Hierarchical Cooperation Achieves Optimal Capacity Scaling in Ad Hoc Networks Hierarchical Cooperation Achieves Optimal Capacity Scaling in Ad Hoc Networks Ayfer Özgür, Olivier Lévêque Faculté Informatique et Communications Ecole Polytechnique Fédérale de Lausanne 05 Lausanne, Switzerland

More information

ELEC E7210: Communication Theory. Lecture 10: MIMO systems

ELEC E7210: Communication Theory. Lecture 10: MIMO systems ELEC E7210: Communication Theory Lecture 10: MIMO systems Matrix Definitions, Operations, and Properties (1) NxM matrix a rectangular array of elements a A. an 11 1....... a a 1M. NM B D C E ermitian transpose

More information

Distributed MIMO Network Optimization Based on Duality and Local Message Passing

Distributed MIMO Network Optimization Based on Duality and Local Message Passing Forty-Seventh Annual Allerton Conference Allerton House, UIUC, Illinois, USA September 30 - October 2, 2009 Distributed MIMO Network Optimization Based on Duality and Local Message Passing An Liu 1, Ashutosh

More information

Ressource Allocation Schemes for D2D Communications

Ressource Allocation Schemes for D2D Communications 1 / 24 Ressource Allocation Schemes for D2D Communications Mohamad Assaad Laboratoire des Signaux et Systèmes (L2S), CentraleSupélec, Gif sur Yvette, France. Indo-french Workshop on D2D Communications

More information

Secrecy in the 2-User Symmetric Interference Channel with Transmitter Cooperation: Deterministic View

Secrecy in the 2-User Symmetric Interference Channel with Transmitter Cooperation: Deterministic View Secrecy in the 2-User Symmetric Interference Channel with Transmitter Cooperation: Deterministic View P. Mohapatra 9 th March 2013 Outline Motivation Problem statement Achievable scheme 1 Weak interference

More information

Cognitive Wireless Powered Network: Spectrum Sharing Models and Throughput Maximization. User terminals

Cognitive Wireless Powered Network: Spectrum Sharing Models and Throughput Maximization. User terminals Cognitive Wireless Powered Network: Spectrum Sharing Models and Throughput Maximization Seunghyun Lee Student Member IEEE and Rui Zhang Senior Member IEEE arxiv:56.595v [cs.it] Dec 5 Abstract The recent

More information

Variable-Rate Two-Phase Collaborative Communication Protocols for Wireless Networks

Variable-Rate Two-Phase Collaborative Communication Protocols for Wireless Networks Variable-Rate Two-Phase Collaborative Communication Protocols for Wireless Networks Hideki Ochiai Department of Electrical and Computer Engineering, Yokohama National University 79-5 Tokiwadai, Hodogaya-ku,

More information

Lecture 6: Modeling of MIMO Channels Theoretical Foundations of Wireless Communications 1

Lecture 6: Modeling of MIMO Channels Theoretical Foundations of Wireless Communications 1 Fading : Theoretical Foundations of Wireless Communications 1 Thursday, May 3, 2018 9:30-12:00, Conference Room SIP 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication 1 / 23 Overview

More information

Pilot Optimization and Channel Estimation for Multiuser Massive MIMO Systems

Pilot Optimization and Channel Estimation for Multiuser Massive MIMO Systems 1 Pilot Optimization and Channel Estimation for Multiuser Massive MIMO Systems Tadilo Endeshaw Bogale and Long Bao Le Institute National de la Recherche Scientifique (INRS) Université de Québec, Montréal,

More information

Performance Analysis of MIMO-OSTBC based Selective DF Cooperative Wireless System with Node Mobility and Channel Estimation Errors

Performance Analysis of MIMO-OSTBC based Selective DF Cooperative Wireless System with Node Mobility and Channel Estimation Errors System Model Performance Analysis of MIMO-OSTBC based Selective DF Cooperative Wireless System with Node Mobility and Channel Estimation Errors Multimedia Wireless Networks (MWN) Group, Indian Institute

More information

Multi-antenna Relay Network Beamforming Design for Multiuser Peer-to-Peer Communications

Multi-antenna Relay Network Beamforming Design for Multiuser Peer-to-Peer Communications 14 IEEE International Conference on Acoustic, Speech and Signal Processing ICASSP Multi-antenna Relay Networ Beamforming Design for Multiuser Peer-to-Peer Communications Jiangwei Chen and Min Dong Department

More information

On the Capacity of the Two-Hop Half-Duplex Relay Channel

On the Capacity of the Two-Hop Half-Duplex Relay Channel On the Capacity of the Two-Hop Half-Duplex Relay Channel Nikola Zlatanov, Vahid Jamali, and Robert Schober University of British Columbia, Vancouver, Canada, and Friedrich-Alexander-University Erlangen-Nürnberg,

More information

On the Optimality of Multiuser Zero-Forcing Precoding in MIMO Broadcast Channels

On the Optimality of Multiuser Zero-Forcing Precoding in MIMO Broadcast Channels On the Optimality of Multiuser Zero-Forcing Precoding in MIMO Broadcast Channels Saeed Kaviani and Witold A. Krzymień University of Alberta / TRLabs, Edmonton, Alberta, Canada T6G 2V4 E-mail: {saeed,wa}@ece.ualberta.ca

More information

Linear Precoding for Relay Networks with Finite-Alphabet Constraints

Linear Precoding for Relay Networks with Finite-Alphabet Constraints Linear Precoding for Relay Networks with Finite-Alphabet Constraints Weiliang Zeng, Chengshan Xiao, Mingxi Wang, and Jianhua Lu State Key Laboratory on Microwave and Digital Communications Tsinghua National

More information

Approximate Ergodic Capacity of a Class of Fading Networks

Approximate Ergodic Capacity of a Class of Fading Networks Approximate Ergodic Capacity of a Class of Fading Networks Sang-Woon Jeon, Chien-Yi Wang, and Michael Gastpar School of Computer and Communication Sciences EPFL Lausanne, Switzerland {sangwoon.jeon, chien-yi.wang,

More information

Joint Channel Estimation and Co-Channel Interference Mitigation in Wireless Networks Using Belief Propagation

Joint Channel Estimation and Co-Channel Interference Mitigation in Wireless Networks Using Belief Propagation Joint Channel Estimation and Co-Channel Interference Mitigation in Wireless Networks Using Belief Propagation Yan Zhu, Dongning Guo and Michael L. Honig Northwestern University May. 21, 2008 Y. Zhu, D.

More information

Cooperative Diamond Channel With Energy Harvesting Nodes Berk Gurakan, Student Member, IEEE, and Sennur Ulukus, Fellow, IEEE

Cooperative Diamond Channel With Energy Harvesting Nodes Berk Gurakan, Student Member, IEEE, and Sennur Ulukus, Fellow, IEEE 1604 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 5, MAY 016 Cooperative Diamond Channel With Energy Harvesting Nodes Berk Gurakan, Student Member, IEEE, and Sennur Ulukus, Fellow, IEEE

More information

Optimal Utility-Lifetime Trade-off in Self-regulating Wireless Sensor Networks: A Distributed Approach

Optimal Utility-Lifetime Trade-off in Self-regulating Wireless Sensor Networks: A Distributed Approach Optimal Utility-Lifetime Trade-off in Self-regulating Wireless Sensor Networks: A Distributed Approach Hithesh Nama, WINLAB, Rutgers University Dr. Narayan Mandayam, WINLAB, Rutgers University Joint work

More information