Performance Analysis of MIMO-OSTBC based Selective DF Cooperative Wireless System with Node Mobility and Channel Estimation Errors

Size: px
Start display at page:

Download "Performance Analysis of MIMO-OSTBC based Selective DF Cooperative Wireless System with Node Mobility and Channel Estimation Errors"

Transcription

1 System Model Performance Analysis of MIMO-OSTBC based Selective DF Cooperative Wireless System with Node Mobility and Channel Estimation Errors Multimedia Wireless Networks (MWN) Group, Indian Institute of Technology, Kanpur March 6, 2016

2 Overview System Model 1 System Model 2 3 4

3 System Model I System Model 1 Figure: MIMO-OSTBC based selective DF cooperative system. 1 N. Varshney, A. Krishna, and A. K. Jagannatham, Selective DF protocol for MIMO STBC based single/multiple relay cooperative communication: End-to-end performance and optimal power allocation, IEEE Transactions on Communications, vol. 63, no. 7, pp , 2015.

4 System Model II System Model The received codeword matrices Y SD (k) C Nd T,Y SR (k) C N T at the destination and relay respectively are given as, where Y SD (k) = Y SR (k) = P0 H SD (k)x(k)+w SD (k), (1) P0 X(k) denotes the transmitted codeword, R c denotes the rate of the OSTBC, P 0 is the transmit power at the source, H SR (k)x(k)+w SR (k), (2) Entries of matrices W SD (k) C N d T and W SR (k) C N T are symmetric complex Gaussian with variance η 0.

5 System Model III System Model The received codeword matrix Y RD (k) C Nd T at the destination, in the second phase, is given as, P1 Y RD (k) = H RD (k)x(k)+w RD (k). (3) where P 1 is the transmit power at the relay, Entries of matrix W RD (k) C N d T is symmetric complex Gaussian with variance η 0 /2 per dimension.

6 System Model IV System Model Each of the links are time-selective in nature and can be modeled using first order Autoregressive (AR) process 2 as, H i (k) =ρ i H i (k 1)+ 1 ρ 2 i E i(k), (4) where i {SD,SR,RD}, The quantities ρ SD,ρ SR and ρ RD, are the correlation parameters for the SD, SR and RD links, The matrices E SD,E SR and E RD are the time-varying components of the SD, SR and RD links whose entries can be modeled as zero mean circularly symmetric complex Gaussian with variances σ 2 e SD,σ 2 e SR and σ 2 e RD respectively. 2 H. S. Wang and P.-C. Chang, On verifying the first-order Markovian assumption for a Rayleigh fading channel model, IEEE Transactions on Vehicular Technology, vol. 45, no. 2, pp , 1996.

7 System Model V System Model Similar to the works 3,4, assume imperfect channel knowledge Ĥ SR (1)=H SR (1)+H ǫ,sr (1), ĤSD(1)=H SD (1)+H ǫ,sd (1) and Ĥ RD (1)=H RD (1)+H ǫ,rd (1), estimated only in the beginning of each frame. The entries of the error matrices H ǫ,sr (1),H ǫsd,(1) and H ǫ,rd (1) are circularly symmetric complex Gaussian with zero mean and variances σ 2 ǫ SR,σ 2 ǫ SD and σ 2 ǫ RD respectively. 3 Y. Khattabi and M. Matalgah, Performance analysis of multiple-relay AF cooperative systems over Rayleigh time-selective fading channels with imperfect channel estimation, IEEE Transactions on Vehicular Technology, vol. 65, no. 1, pp , , Capacity Analysis for MIMO Beamforming Based Cooperative Systems over Time-Selective Links with Full SNR/One-Bit feedback based Path Selection and Imperfect CSI, Accepted in 2016 IEEE Wireless Communications and Networking Conference (WCNC), 3-6 April 2016.

8 System Model VI System Model Using AR model, one can obtain the expression for H SD (k) as, H SD (k) =ρ k 1 SD H k 1 SD(1)+ 1 ρ 2 SD ρ k i 1 SD E SD (i), =ρ k 1 SD + k 1 ĤSD(1) ρ k 1 1 ρ 2 SD i=1 i=1 SD H ǫ,sd(1) ρ k i 1 SD E SD (i). (5)

9 System Model VII System Model Substituting now the above expression for H SD (k) in (1), the received codeword matrix Y SD (k) can be expressed as, Y SD (k) = P0 ρ k 1 SD ĤSD(1)X(k) W I SD (k) +W M SD (k)+w SD(k), (6) wherew ISD (k) = P 0 ρ k 1 SD H ǫ,sd(1)x(k) denotes the noise component arising due to imperfect channel estimates WSD M (k) = P0(1 ρ 2 SD ) k 1 i=1 ρk i 1 SD E SD (i)x(k) denotes the noise component arising due to node mobility.

10 System Model VIII System Model The effective instantaneous SNR at the destination node for each symbol can be obtained using (6) as, where γ SD (k) = C SD (k) ĤSD(1) 2, (7) C SD (k) = (1+ γ SD ρ 2(k 1) SD γ SD ρ 2(k 1) SD σ 2 ǫ SD + γ SD ( 1 ρ 2(k 1) SD ) σ 2 esd ), and γ SD = P 0 η 0. The quantities σ 2 ǫ SD =N a σ 2 ǫ SD and σ 2 e SD =N a σ 2 e SD, where N a is the number of non-zero symbol transmissions per codeword instant.

11 System Model IX System Model The effective instantaneous SNRs at the relay and destination nodes corresponding to the transmission over the SR and RD links as, γ SR (k)=c SR (k) ĤSR(1) 2, and γ RD (k)=c RD (k) ĤRD(1) 2, where C SR (k) = (1+ γ SR C RD (k) = (1+ γ RD ρ 2(k 1) SR ρ 2(k 1) RD and γ SR = P 0 η 0, γ RD = P 1 η 0. γ SR ρ 2(k 1) SR σ 2 ǫ SR + γ SR γ RD ρ 2(k 1) RD σ 2 ǫ RD + γ RD ( 1 ρ 2(k 1) SR ( 1 ρ 2(k 1) RD ) σ 2 esr ), ) σ 2 erd ),

12 System Model PDF and CDF of various SNR quantities γ SD (k), γ SR (k) & γ RD (k) where f γ (x) = ΛΘ x Θ 1 Γ(Θ) e Λx }{{} Gamma Distribution, F γ (x) = γ(θ,λx), (8) Γ(Θ) 1 1 Θ = NN d,λ = C SD (k) δ sd 2 and δ sd 2 = δ2 sd +σ2 ǫ SD for SD link. 2 Θ = N 2 1, Λ = C SR (k) δ sr 2 and δ sr 2 = δsr 2 +σǫ 2 SR for SR link. 3 1 Θ = NN d,λ = C RD (k) δ rd 2 and δ rd 2 = δ2 rd +σ2 ǫ RD for RD link.

13 System Model Pair-wise Error Probability (PEP) I Theorem (Per-frame average PEP) The per-frame average PEP bound at the destination for the selective DF based MIMO-OSTBC cooperative system is given by P e 1 N b C P e (X 0 (k) X i (k)), (9) N b k=1 i=1 where P e (X 0 (k) X i (k)) = P S D (X 0 (k) X i (k)) P (k) S R ( 1 P (k) S R and P (k) S R +P S D,R D (X 0 (k) X i (k)) P S R (X 0 (k) X j (k)). X j (k) C, X j (k) X 0 (k) ),

14 System Model Pair-wise Error Probability (PEP) II P S R (X 0 (k) X j (k)) =E γsr (k) ( =G { 1 π π/ λ2 j C SR(k) δ 2 sr 4sin 2 θ ( exp λ2 j γ ) } SR(k) 4sin 2 dθ, θ ) N 2, (10) π 2 0 where the function G(ν(θ)) is defined as G(ν(θ))= 1 π Similarly, ( ) NNd P S D (X 0 (k) X i (k)) = G 1+ λ2 i C SD(k) δ 2 sd 4sin 2 θ 1 ν(θ) dθ [?]. (11)

15 System Model Pair-wise Error Probability (PEP) III P S D,R D (X 0 (k) X i (k)) { 1 π/2 = E γsd (k),γ RD (k) exp π 0 (( ) NNd ( = G 1+ λ2 i C SD(k) δ 2 sd 4sin 2 θ ( λ2 i (γ SD(k)+γ RD (k)) 4sin 2 θ 1+ λ2 i C RD(k) δ 2 rd 4sin 2 θ ) NNd ) ) } dθ,. (12)

16 Outage Probability I System Model Theorem (Per-frame average outage probability) The per-frame average outage probability P out (γ 0 ) at the destination for the selective DF based MIMO-OSTBC cooperative system is given by, P out (γ 0 ) = 1 N b N b k=1 P (k) out(γ 0 ) (13) where P (k) out(γ 0 ) =E γ { Pr(γSD (k) γ 0 )Pr(γ SR (k) γ 0 ) +Pr (γ SD (k)+γ RD (k) γ 0 )Pr(γ SR (k) > γ 0 ) }, =F γsd (k)(γ 0 )F γsr (k)(γ 0 )+F γsd (k)+γ RD (k)(γ 0 ) (1 F γsr (k)(γ 0 )), (14)

17 Outage Probability II System Model CDF F γsd (k)+γ RD (k)(γ 0 ) is given by F γsd (k)+γ RD (k)(γ 0 ) 1 = Γ(2NN d )(C SD (k) δ sd 2 )NN d (CRD (k) δ rd 2 )NN d ( K NN (n) d n=0 2NN (n) d n!(c RD(k) δ rd )2NNd+n C RD (k) δ rd 2 C SD (k) δ sd 2 ( γ γ 0 2NN d +n, C RD (k) δ rd 2 ) 2NNd +n where N 0 d = 1,N(n) d = N d (N d +1) (N d +n 1). ) n, (15)

18 System Model Optimal Power Allocation I The convex optimization problem for optimal source-relay power allocation can be formulated as, ( ) N {C 2 +NN d ( ) NNd ( ) } NNd 1 +C 2 1P0 1P0 1P1 min P 0,P 1 where C 1 = s.t. P 0 +P 1 = P. (γ 0 η 0 ) N2 +NN d N 2!(NN d )!(δ 2 sr) N2 (δ 2 sd )NN d and C 2 = (γ 0 η 0 ) 2NN d (2NN d )!(δ 2 sd )NN d(δ 2 rd )NN d.,

19 System Model Optimal Power Allocation II Theorem (Optimal Power Allocation) One non-negative zero of the polynomial equation below ζ(n,n d )(P P 0 ) NN d+1 P N P N2 0 (P P 0 ) = 0, (16) determines the optimal power factor P0 at the source and hence, the optimal power factor P1 at the relay is P 1 = P P 0 for a given total cooperative power budget P. where ζ(n,n d ) = 2(2N 2 )!(δ 2 rd )N2 (N 2!) 2 (δ 2 sr) N2 for N d = N, (N 2 +NN d )(2NN d )!(δrd 2 )NN d(γ 0 η 0 ) N2 NN d for N > N N 2!(NN d )!NN d (δsr 2 d, )N2 (N 2 +NN d )(2NN d )!(δrd 2 )NN d for N < N N 2!(NN d )!NN d (δsr) 2 N2 (γ 0 η 0 ) NN d N2 d.

20 System Model Simulation Result I: PEP Performance Per Frame Average PEP PEP (Analytical) PEP (Simulated) Asymptotic Floor (Analytical) All nodes are mobile with speed 58 mph All nodes are mobile with speed 32 mph All nodes are static with imperfect CSI SNR(dB) All nodes are static with perfect CSI Figure: Per-block average PEP, asymptotic floor, simulated PEP for a Alamouti-coded selective DF-MIMO cooperative communication with N=N d =2,N b =20, channel gains δsd 2 =δ2 sr =δ2 rd =1 and error variances σe 2 = 0.1, σǫ 2 = 0.01.

21 System Model Simulation Result II: PEP Performance 10 0 Per Frame Average PEP PEP (Analytical) PEP (Simulated) Either source or destination is mobile, i.e., ρ rd =1,ρ sd =ρ sr = or ρ sr =1,ρ sd =ρ rd = All nodes are static, i.e., ρ sd =ρ sr =ρ sr = SNR(dB) Only relay is mobile, i.e., ρ sd =1,ρ sr =ρ sr = Figure: Per-block average PEP, asymptotic floor, simulated PEP for a Alamouti-coded selective DF-MIMO cooperative communication with N=N d =2,N b =20, channel gains δsd 2 =δ2 sr =δ2 rd =1 and error variances σe 2 = 0.01, σǫ 2 = 0.

22 System Model Simulation Result III: Outage Performance Per Frame Avg.Outage Probability (a) 10 6 Analytical, (P /P) 0 Equal Simulated, (P /P) Equal R =1/2, (δ =0.5,δsd=0.3,δrd=0.3) c sr 10 7 Simulated, (P 0 /P) Optimal Asymptotic Floor Simulated, Fixed DF [1] SNR(dB) R =1, (δ =0.5,δsd=0.5,δrd=0.5) c sr R c =1, (δ =1,δsd=0.5,δrd sr =0.5) R =1/2, (δ =0.3,δsd=0.3,δrd=0.3) c sr Figure: Simulated outage performance with equal power i.e., P0 and optimal power allocation. P =P1 P =1 2

23 System Model Simulation Result IV: Outage Performance 10 0 Per Frame Avg.Outage Probability Mobile S only, (P 0 /P) Equal Mobile S only, (P 0 /P) Optimal Mobile R or D only, (P 0 /P) Optimal Asymptotic Floor R =1, (δ =0.5,δsd=0.5,δrd=0.5) c sr R =1, (δ =1,δsd=0.5,δrd=0.5) c sr R =1/2, (δ =0.3,δsd=0.3,δrd=0.5) c sr SNR(dB) Figure: Simulated outage performance with equal power i.e., P0 and optimal power allocation. P =P1 P =1 2

24 System Model Thank You

Cooperative Communication in Spatially Modulated MIMO systems

Cooperative Communication in Spatially Modulated MIMO systems Cooperative Communication in Spatially Modulated MIMO systems Multimedia Wireless Networks (MWN) Group, Department Of Electrical Engineering, Indian Institute of Technology, Kanpur, India {neerajv,adityaj}@iitk.ac.in

More information

The Effect of Channel State Information on Optimum Energy Allocation and Energy Efficiency of Cooperative Wireless Transmission Systems

The Effect of Channel State Information on Optimum Energy Allocation and Energy Efficiency of Cooperative Wireless Transmission Systems The Effect of Channel State Information on Optimum Energy Allocation and Energy Efficiency of Cooperative Wireless Transmission Systems Jie Yang and D.R. Brown III Worcester Polytechnic Institute Department

More information

BER Performance Analysis of Cooperative DaF Relay Networks and a New Optimal DaF Strategy

BER Performance Analysis of Cooperative DaF Relay Networks and a New Optimal DaF Strategy 144 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 1, NO. 4, APRIL 11 BER Performance Analysis of Cooperative DaF Relay Networks and a New Optimal DaF Strategy George A. Ropokis, Athanasios A. Rontogiannis,

More information

Quantifying the Performance Gain of Direction Feedback in a MISO System

Quantifying the Performance Gain of Direction Feedback in a MISO System Quantifying the Performance Gain of Direction Feedback in a ISO System Shengli Zhou, Jinhong Wu, Zhengdao Wang 3, and ilos Doroslovacki Dept. of Electrical and Computer Engineering, University of Connecticut

More information

Secrecy Outage Performance of Cooperative Relay Network With Diversity Combining

Secrecy Outage Performance of Cooperative Relay Network With Diversity Combining Secrecy Outage erformance of Cooperative Relay Network With Diversity Combining Khyati Chopra Dept. of lectrical ngineering Indian Institute of Technology, Delhi New Delhi-110016, India mail: eez148071@ee.iitd.ac.in

More information

Multi-Antenna Cooperative Wireless Systems: A Diversity-Multiplexing Tradeoff Perspective

Multi-Antenna Cooperative Wireless Systems: A Diversity-Multiplexing Tradeoff Perspective IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. X, NO. X, DECEMBER 007 Multi-Antenna Cooperative Wireless Systems: A Diversity-Multiplexing Tradeoff Perspective Melda Yuksel, Student Member, IEEE, and Elza

More information

Performance Analysis of a Threshold-Based Relay Selection Algorithm in Wireless Networks

Performance Analysis of a Threshold-Based Relay Selection Algorithm in Wireless Networks Communications and Networ, 2010, 2, 87-92 doi:10.4236/cn.2010.22014 Published Online May 2010 (http://www.scirp.org/journal/cn Performance Analysis of a Threshold-Based Relay Selection Algorithm in Wireless

More information

Comparison of Full-Duplex and Half-Duplex Modes with a Fixed Amplify-and-Forward Relay

Comparison of Full-Duplex and Half-Duplex Modes with a Fixed Amplify-and-Forward Relay Comparison of Full-Duplex and Half-Duplex Modes with a Fixed Amplify-and-Forward Relay Taneli Riihonen, Stefan Werner, and Risto Wichman Helsinki University of Technology, Finland IEEE WCNC, Budapest,

More information

2318 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 6, JUNE Mai Vu, Student Member, IEEE, and Arogyaswami Paulraj, Fellow, IEEE

2318 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 6, JUNE Mai Vu, Student Member, IEEE, and Arogyaswami Paulraj, Fellow, IEEE 2318 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 6, JUNE 2006 Optimal Linear Precoders for MIMO Wireless Correlated Channels With Nonzero Mean in Space Time Coded Systems Mai Vu, Student Member,

More information

Approximately achieving the feedback interference channel capacity with point-to-point codes

Approximately achieving the feedback interference channel capacity with point-to-point codes Approximately achieving the feedback interference channel capacity with point-to-point codes Joyson Sebastian*, Can Karakus*, Suhas Diggavi* Abstract Superposition codes with rate-splitting have been used

More information

Secrecy Outage Probability of Selective Relaying Wiretap Channels with Collaborative Eavesdropping

Secrecy Outage Probability of Selective Relaying Wiretap Channels with Collaborative Eavesdropping MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Secrecy Outage Probability of Selective Relaying Wiretap Channels with Collaborative Eavesdropping Yeoh, P.L.; Yang, N.; Kim, K.J. TR25-28

More information

Multi-User Gain Maximum Eigenmode Beamforming, and IDMA. Peng Wang and Li Ping City University of Hong Kong

Multi-User Gain Maximum Eigenmode Beamforming, and IDMA. Peng Wang and Li Ping City University of Hong Kong Multi-User Gain Maximum Eigenmode Beamforming, and IDMA Peng Wang and Li Ping City University of Hong Kong 1 Contents Introduction Multi-user gain (MUG) Maximum eigenmode beamforming (MEB) MEB performance

More information

Limited Feedback in Wireless Communication Systems

Limited Feedback in Wireless Communication Systems Limited Feedback in Wireless Communication Systems - Summary of An Overview of Limited Feedback in Wireless Communication Systems Gwanmo Ku May 14, 17, and 21, 2013 Outline Transmitter Ant. 1 Channel N

More information

Diversity Performance of a Practical Non-Coherent Detect-and-Forward Receiver

Diversity Performance of a Practical Non-Coherent Detect-and-Forward Receiver Diversity Performance of a Practical Non-Coherent Detect-and-Forward Receiver Michael R. Souryal and Huiqing You National Institute of Standards and Technology Advanced Network Technologies Division Gaithersburg,

More information

Exploiting Partial Channel Knowledge at the Transmitter in MISO and MIMO Wireless

Exploiting Partial Channel Knowledge at the Transmitter in MISO and MIMO Wireless Exploiting Partial Channel Knowledge at the Transmitter in MISO and MIMO Wireless SPAWC 2003 Rome, Italy June 18, 2003 E. Yoon, M. Vu and Arogyaswami Paulraj Stanford University Page 1 Outline Introduction

More information

Title. Author(s)Tsai, Shang-Ho. Issue Date Doc URL. Type. Note. File Information. Equal Gain Beamforming in Rayleigh Fading Channels

Title. Author(s)Tsai, Shang-Ho. Issue Date Doc URL. Type. Note. File Information. Equal Gain Beamforming in Rayleigh Fading Channels Title Equal Gain Beamforming in Rayleigh Fading Channels Author(s)Tsai, Shang-Ho Proceedings : APSIPA ASC 29 : Asia-Pacific Signal Citationand Conference: 688-691 Issue Date 29-1-4 Doc URL http://hdl.handle.net/2115/39789

More information

Advanced Spatial Modulation Techniques for MIMO Systems

Advanced Spatial Modulation Techniques for MIMO Systems Advanced Spatial Modulation Techniques for MIMO Systems Ertugrul Basar Princeton University, Department of Electrical Engineering, Princeton, NJ, USA November 2011 Outline 1 Introduction 2 Spatial Modulation

More information

WIRELESS COMMUNICATIONS AND COGNITIVE RADIO TRANSMISSIONS UNDER QUALITY OF SERVICE CONSTRAINTS AND CHANNEL UNCERTAINTY

WIRELESS COMMUNICATIONS AND COGNITIVE RADIO TRANSMISSIONS UNDER QUALITY OF SERVICE CONSTRAINTS AND CHANNEL UNCERTAINTY University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Theses, Dissertations, and Student Research from Electrical & Computer Engineering Electrical & Computer Engineering, Department

More information

Performance Analysis of MIMO Relay Networks with Beamforming. Hyunjun Kim

Performance Analysis of MIMO Relay Networks with Beamforming. Hyunjun Kim Performance Analysis of MIMO Relay Networks with Beamforming by Hyunjun Kim A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved July 2012 by

More information

Variable-Rate Two-Phase Collaborative Communication Protocols for Wireless Networks

Variable-Rate Two-Phase Collaborative Communication Protocols for Wireless Networks Variable-Rate Two-Phase Collaborative Communication Protocols for Wireless Networks Hideki Ochiai Department of Electrical and Computer Engineering, Yokohama National University 79-5 Tokiwadai, Hodogaya-ku,

More information

Capacity Region of the Two-Way Multi-Antenna Relay Channel with Analog Tx-Rx Beamforming

Capacity Region of the Two-Way Multi-Antenna Relay Channel with Analog Tx-Rx Beamforming Capacity Region of the Two-Way Multi-Antenna Relay Channel with Analog Tx-Rx Beamforming Authors: Christian Lameiro, Alfredo Nazábal, Fouad Gholam, Javier Vía and Ignacio Santamaría University of Cantabria,

More information

Reliability of Radio-mobile systems considering fading and shadowing channels

Reliability of Radio-mobile systems considering fading and shadowing channels Reliability of Radio-mobile systems considering fading and shadowing channels Philippe Mary ETIS UMR 8051 CNRS, ENSEA, Univ. Cergy-Pontoise, 6 avenue du Ponceau, 95014 Cergy, France Philippe Mary 1 / 32

More information

Achievable Rates and Optimal Resource Allocation for Imperfectly-Known Fading Relay Channels

Achievable Rates and Optimal Resource Allocation for Imperfectly-Known Fading Relay Channels Achievable Rates and Optimal Resource Allocation for Imperfectly-Known Fading Relay hannels Junwei Zhang, Mustafa enk Gursoy Department of Electrical Engineering University of Nebraska-Lincoln, Lincoln,

More information

Optimization of relay placement and power allocation for decode-and-forward cooperative relaying over correlated shadowed fading channels

Optimization of relay placement and power allocation for decode-and-forward cooperative relaying over correlated shadowed fading channels Han et al. EURASIP Journal on Wireless Communications and Networking 4, 4:4 RESEARCH Open Access Optimization of relay placement and power allocation for decode-and-forwa cooperative relaying over correlated

More information

Spatial and Temporal Power Allocation for MISO Systems with Delayed Feedback

Spatial and Temporal Power Allocation for MISO Systems with Delayed Feedback Spatial and Temporal ower Allocation for MISO Systems with Delayed Feedback Venkata Sreekanta Annapureddy and Srikrishna Bhashyam Department of Electrical Engineering Indian Institute of Technology Madras

More information

Optimal Transmit Strategies in MIMO Ricean Channels with MMSE Receiver

Optimal Transmit Strategies in MIMO Ricean Channels with MMSE Receiver Optimal Transmit Strategies in MIMO Ricean Channels with MMSE Receiver E. A. Jorswieck 1, A. Sezgin 1, H. Boche 1 and E. Costa 2 1 Fraunhofer Institute for Telecommunications, Heinrich-Hertz-Institut 2

More information

SAGE-based Estimation Algorithms for Time-varying Channels in Amplify-and-Forward Cooperative Networks

SAGE-based Estimation Algorithms for Time-varying Channels in Amplify-and-Forward Cooperative Networks SAGE-based Estimation Algorithms for Time-varying Channels in Amplify-and-Forward Cooperative Networks Nico Aerts and Marc Moeneclaey Department of Telecommunications and Information Processing Ghent University

More information

Optimum Relay Position for Differential Amplify-and-Forward Cooperative Communications

Optimum Relay Position for Differential Amplify-and-Forward Cooperative Communications Optimum Relay Position for Differential Amplify-and-Forard Cooperative Communications Kazunori Hayashi #1, Kengo Shirai #, Thanongsak Himsoon 1, W Pam Siriongpairat, Ahmed K Sadek 3,KJRayLiu 4, and Hideaki

More information

Analysis of Cooperative Communication and Link Layer. Performance under Imperfectly Known Fading Channel. Gains

Analysis of Cooperative Communication and Link Layer. Performance under Imperfectly Known Fading Channel. Gains Analysis of Cooperative Communication and Link Layer Performance under Imperfectly Known Fading Channel Gains by Ali Zarei Ghanavati M.Sc., Sharif University of Technology, 009 B.Sc., University of Tehran,

More information

Distributed Space-Frequency Coding over Amplify-and-Forward Relay Channels

Distributed Space-Frequency Coding over Amplify-and-Forward Relay Channels Distributed Space-Frequency Coding over Amplify-and-Forward Relay Channels Karim G. Seddik and K. J. Ray Liu Department of Electrical and Computer Engineering, and Institute for Systems Research University

More information

A robust transmit CSI framework with applications in MIMO wireless precoding

A robust transmit CSI framework with applications in MIMO wireless precoding A robust transmit CSI framework with applications in MIMO wireless precoding Mai Vu, and Arogyaswami Paulraj Information Systems Laboratory, Department of Electrical Engineering Stanford University, Stanford,

More information

Outage Probability of Multiple-Input. Single-Output (MISO) Systems with Delayed Feedback

Outage Probability of Multiple-Input. Single-Output (MISO) Systems with Delayed Feedback Outage Probability of Multiple-Input 1 Single-Output (MISO Systems with Delayed Feedback Venkata Sreekanta Annapureddy 1, Devdutt V. Marathe 2, T. R. Ramya 3 and Srikrishna Bhashyam 3 1 Coordinated Science

More information

Space-Time Coding for Multi-Antenna Systems

Space-Time Coding for Multi-Antenna Systems Space-Time Coding for Multi-Antenna Systems ECE 559VV Class Project Sreekanth Annapureddy vannapu2@uiuc.edu Dec 3rd 2007 MIMO: Diversity vs Multiplexing Multiplexing Diversity Pictures taken from lectures

More information

Trust Degree Based Beamforming for Multi-Antenna Cooperative Communication Systems

Trust Degree Based Beamforming for Multi-Antenna Cooperative Communication Systems Introduction Main Results Simulation Conclusions Trust Degree Based Beamforming for Multi-Antenna Cooperative Communication Systems Mojtaba Vaezi joint work with H. Inaltekin, W. Shin, H. V. Poor, and

More information

DEVICE-TO-DEVICE COMMUNICATIONS: THE PHYSICAL LAYER SECURITY ADVANTAGE

DEVICE-TO-DEVICE COMMUNICATIONS: THE PHYSICAL LAYER SECURITY ADVANTAGE DEVICE-TO-DEVICE COMMUNICATIONS: THE PHYSICAL LAYER SECURITY ADVANTAGE Daohua Zhu, A. Lee Swindlehurst, S. Ali A. Fakoorian, Wei Xu, Chunming Zhao National Mobile Communications Research Lab, Southeast

More information

Diversity-Multiplexing Tradeoff of Asynchronous Cooperative Diversity in Wireless Networks

Diversity-Multiplexing Tradeoff of Asynchronous Cooperative Diversity in Wireless Networks Diversity-Multiplexing Tradeoff of Asynchronous Cooperative Diversity in Wireless Networks Shuangqing Wei Abstract Synchronization of relay nodes is an important and critical issue in exploiting cooperative

More information

Outage Capacity of the Fading Relay Channel in the Low SNR Regime

Outage Capacity of the Fading Relay Channel in the Low SNR Regime Outage Capacity of the Fading Relay Channel in the Low SNR Regime Amir Salman Avestimehr Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2006-36

More information

MULTI-INPUT multi-output (MIMO) channels, usually

MULTI-INPUT multi-output (MIMO) channels, usually 3086 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 8, AUGUST 2009 Worst-Case Robust MIMO Transmission With Imperfect Channel Knowledge Jiaheng Wang, Student Member, IEEE, and Daniel P. Palomar,

More information

The Optimality of Beamforming: A Unified View

The Optimality of Beamforming: A Unified View The Optimality of Beamforming: A Unified View Sudhir Srinivasa and Syed Ali Jafar Electrical Engineering and Computer Science University of California Irvine, Irvine, CA 92697-2625 Email: sudhirs@uciedu,

More information

Multiple Antennas for MIMO Communications - Basic Theory

Multiple Antennas for MIMO Communications - Basic Theory Multiple Antennas for MIMO Communications - Basic Theory 1 Introduction The multiple-input multiple-output (MIMO) technology (Fig. 1) is a breakthrough in wireless communication system design. It uses

More information

Lecture 5: Antenna Diversity and MIMO Capacity Theoretical Foundations of Wireless Communications 1. Overview. CommTh/EES/KTH

Lecture 5: Antenna Diversity and MIMO Capacity Theoretical Foundations of Wireless Communications 1. Overview. CommTh/EES/KTH : Antenna Diversity and Theoretical Foundations of Wireless Communications Wednesday, May 4, 206 9:00-2:00, Conference Room SIP Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication

More information

Half-Duplex Gaussian Relay Networks with Interference Processing Relays

Half-Duplex Gaussian Relay Networks with Interference Processing Relays Half-Duplex Gaussian Relay Networks with Interference Processing Relays Bama Muthuramalingam Srikrishna Bhashyam Andrew Thangaraj Department of Electrical Engineering Indian Institute of Technology Madras

More information

Cell throughput analysis of the Proportional Fair scheduler in the single cell environment

Cell throughput analysis of the Proportional Fair scheduler in the single cell environment Cell throughput analysis of the Proportional Fair scheduler in the single cell environment Jin-Ghoo Choi and Seawoong Bahk IEEE Trans on Vehicular Tech, Mar 2007 *** Presented by: Anh H. Nguyen February

More information

DEGREE PROGRAMME IN WIRELESS COMMUNICATIONS ENGINEERING MASTER S THESIS

DEGREE PROGRAMME IN WIRELESS COMMUNICATIONS ENGINEERING MASTER S THESIS DEGREE PROGRAMME IN WIRELESS COMMUNICATIONS ENGINEERING MASTER S THESIS PERFORMANCE ANALYSIS OF MIMO DUAL-HOP AF RELAY NETWORKS OVER ASYMMETRIC FADING CHANNELS Author Supervisor Second Supervisor Technical

More information

Soft-Decision-and-Forward Protocol for Cooperative Communication Networks with Multiple Antennas

Soft-Decision-and-Forward Protocol for Cooperative Communication Networks with Multiple Antennas Soft-Decision-and-Forward Protocol for Cooperative Communication Networks with Multiple Antenn Jae-Dong Yang, Kyoung-Young Song Department of EECS, INMC Seoul National University Email: {yjdong, sky6174}@ccl.snu.ac.kr

More information

ELEC546 Review of Information Theory

ELEC546 Review of Information Theory ELEC546 Review of Information Theory Vincent Lau 1/1/004 1 Review of Information Theory Entropy: Measure of uncertainty of a random variable X. The entropy of X, H(X), is given by: If X is a discrete random

More information

Max-Min Relay Selection for Legacy Amplify-and-Forward Systems with Interference

Max-Min Relay Selection for Legacy Amplify-and-Forward Systems with Interference 1 Max-Min Relay Selection for Legacy Amplify-and-Forward Systems with Interference Ioannis Kriidis, Member, IEEE, John S. Thompson, Member, IEEE, Steve McLaughlin, Senior Member, IEEE, and Norbert Goertz,

More information

Nash Bargaining in Beamforming Games with Quantized CSI in Two-user Interference Channels

Nash Bargaining in Beamforming Games with Quantized CSI in Two-user Interference Channels Nash Bargaining in Beamforming Games with Quantized CSI in Two-user Interference Channels Jung Hoon Lee and Huaiyu Dai Department of Electrical and Computer Engineering, North Carolina State University,

More information

Dirty Paper Coding vs. TDMA for MIMO Broadcast Channels

Dirty Paper Coding vs. TDMA for MIMO Broadcast Channels TO APPEAR IEEE INTERNATIONAL CONFERENCE ON COUNICATIONS, JUNE 004 1 Dirty Paper Coding vs. TDA for IO Broadcast Channels Nihar Jindal & Andrea Goldsmith Dept. of Electrical Engineering, Stanford University

More information

Lecture 7 MIMO Communica2ons

Lecture 7 MIMO Communica2ons Wireless Communications Lecture 7 MIMO Communica2ons Prof. Chun-Hung Liu Dept. of Electrical and Computer Engineering National Chiao Tung University Fall 2014 1 Outline MIMO Communications (Chapter 10

More information

ABSTRACT. Cooperative Detection and Network Coding in Wireless Networks. Mohammed W. Baidas, Master of Science, 2009

ABSTRACT. Cooperative Detection and Network Coding in Wireless Networks. Mohammed W. Baidas, Master of Science, 2009 ABSTRACT Title of Thesis: Cooperative Detection and Network Coding in Wireless Networks Mohammed W. Baidas, Master of Science, 2009 Thesis directed by: Professor K. J. Ray Liu Department of Electrical

More information

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH : Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1 Rayleigh Wednesday, June 1, 2016 09:15-12:00, SIP 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication

More information

Single-Symbol ML Decodable Distributed STBCs for Partially-Coherent Cooperative Networks

Single-Symbol ML Decodable Distributed STBCs for Partially-Coherent Cooperative Networks This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings Single-Symbol ML Decodable Distributed STBCs for

More information

Multiuser Capacity in Block Fading Channel

Multiuser Capacity in Block Fading Channel Multiuser Capacity in Block Fading Channel April 2003 1 Introduction and Model We use a block-fading model, with coherence interval T where M independent users simultaneously transmit to a single receiver

More information

On the Throughput of Proportional Fair Scheduling with Opportunistic Beamforming for Continuous Fading States

On the Throughput of Proportional Fair Scheduling with Opportunistic Beamforming for Continuous Fading States On the hroughput of Proportional Fair Scheduling with Opportunistic Beamforming for Continuous Fading States Andreas Senst, Peter Schulz-Rittich, Gerd Ascheid, and Heinrich Meyr Institute for Integrated

More information

Capacity of multiple-input multiple-output (MIMO) systems in wireless communications

Capacity of multiple-input multiple-output (MIMO) systems in wireless communications 15/11/02 Capacity of multiple-input multiple-output (MIMO) systems in wireless communications Bengt Holter Department of Telecommunications Norwegian University of Science and Technology 1 Outline 15/11/02

More information

Asymptotic Distortion Performance of Source-Channel Diversity Schemes over Relay Channels

Asymptotic Distortion Performance of Source-Channel Diversity Schemes over Relay Channels Asymptotic istortion Performance of Source-Channel iversity Schemes over Relay Channels Karim G. Seddik 1, Andres Kwasinski 2, and K. J. Ray Liu 1 1 epartment of Electrical and Computer Engineering, 2

More information

Blind Channel Identification in (2 1) Alamouti Coded Systems Based on Maximizing the Eigenvalue Spread of Cumulant Matrices

Blind Channel Identification in (2 1) Alamouti Coded Systems Based on Maximizing the Eigenvalue Spread of Cumulant Matrices Blind Channel Identification in (2 1) Alamouti Coded Systems Based on Maximizing the Eigenvalue Spread of Cumulant Matrices Héctor J. Pérez-Iglesias 1, Daniel Iglesia 1, Adriana Dapena 1, and Vicente Zarzoso

More information

Cooperative HARQ with Poisson Interference and Opportunistic Routing

Cooperative HARQ with Poisson Interference and Opportunistic Routing Cooperative HARQ with Poisson Interference and Opportunistic Routing Amogh Rajanna & Mostafa Kaveh Department of Electrical and Computer Engineering University of Minnesota, Minneapolis, MN USA. Outline

More information

Ergodic and Outage Capacity of Narrowband MIMO Gaussian Channels

Ergodic and Outage Capacity of Narrowband MIMO Gaussian Channels Ergodic and Outage Capacity of Narrowband MIMO Gaussian Channels Yang Wen Liang Department of Electrical and Computer Engineering The University of British Columbia, Vancouver, British Columbia Email:

More information

Lecture 4. Capacity of Fading Channels

Lecture 4. Capacity of Fading Channels 1 Lecture 4. Capacity of Fading Channels Capacity of AWGN Channels Capacity of Fading Channels Ergodic Capacity Outage Capacity Shannon and Information Theory Claude Elwood Shannon (April 3, 1916 February

More information

Cooperative Diversity in CDMA over Nakagami m Fading Channels

Cooperative Diversity in CDMA over Nakagami m Fading Channels Cooperative Diversity in CDMA over Nakagami m Fading Channels Ali Moftah Ali Mehemed A Thesis in The Department of Electrical and Computer Engineering Presented in Partial Fulfillment of the Requirements

More information

EE 5407 Part II: Spatial Based Wireless Communications

EE 5407 Part II: Spatial Based Wireless Communications EE 5407 Part II: Spatial Based Wireless Communications Instructor: Prof. Rui Zhang E-mail: rzhang@i2r.a-star.edu.sg Website: http://www.ece.nus.edu.sg/stfpage/elezhang/ Lecture II: Receive Beamforming

More information

Achievable Rates and Optimal Resource Allocation for Imperfectly-Known Fading Relay Channels

Achievable Rates and Optimal Resource Allocation for Imperfectly-Known Fading Relay Channels Achievable Rates and Optimal Resource Allocation for Imperfectly-Known Fading Relay Channels Junwei Zhang, Mustafa Cenk Gursoy Department of Electrical Engineering arxiv:83.992v [cs.it] 3 Mar 28 University

More information

Cooperative Transmission for Wireless Relay Networks Using Limited Feedback

Cooperative Transmission for Wireless Relay Networks Using Limited Feedback 1 Cooperative Transmission for Wireless Relay Networks Using Limited Feedback Javier M. Paredes, Babak H. Khalaj, and Alex B. Gershman arxiv:0904.1369v2 [cs.it] 29 Jul 2009 Abstract To achieve the available

More information

Optimal Power Allocation for Energy Recycling Assisted Cooperative Communications

Optimal Power Allocation for Energy Recycling Assisted Cooperative Communications Optimal Power llocation for Energy Recycling ssisted Cooperative Communications George. Ropokis, M. Majid Butt, Nicola Marchetti and Luiz. DaSilva CONNECT Centre, Trinity College, University of Dublin,

More information

A Precoding Method for Multiple Antenna System on the Riemannian Manifold

A Precoding Method for Multiple Antenna System on the Riemannian Manifold Journal of Communications Vol. 9, No. 2, February 2014 A Precoding Method for Multiple Antenna System on the Riemannian Manifold Lin Zhang1 and S. H. Leung2 1 Department of Electronic Engineering, City

More information

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1 : Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1 Rayleigh Friday, May 25, 2018 09:00-11:30, Kansliet 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless

More information

Schur-convexity of the Symbol Error Rate in Correlated MIMO Systems with Precoding and Space-time Coding

Schur-convexity of the Symbol Error Rate in Correlated MIMO Systems with Precoding and Space-time Coding Schur-convexity of the Symbol Error Rate in Correlated MIMO Systems with Precoding and Space-time Coding RadioVetenskap och Kommunikation (RVK 08) Proceedings of the twentieth Nordic Conference on Radio

More information

Single-User MIMO systems: Introduction, capacity results, and MIMO beamforming

Single-User MIMO systems: Introduction, capacity results, and MIMO beamforming Single-User MIMO systems: Introduction, capacity results, and MIMO beamforming Master Universitario en Ingeniería de Telecomunicación I. Santamaría Universidad de Cantabria Contents Introduction Multiplexing,

More information

Lattice Reduction Aided Precoding for Multiuser MIMO using Seysen s Algorithm

Lattice Reduction Aided Precoding for Multiuser MIMO using Seysen s Algorithm Lattice Reduction Aided Precoding for Multiuser MIMO using Seysen s Algorithm HongSun An Student Member IEEE he Graduate School of I & Incheon Korea ahs3179@gmail.com Manar Mohaisen Student Member IEEE

More information

ON BEAMFORMING WITH FINITE RATE FEEDBACK IN MULTIPLE ANTENNA SYSTEMS

ON BEAMFORMING WITH FINITE RATE FEEDBACK IN MULTIPLE ANTENNA SYSTEMS ON BEAMFORMING WITH FINITE RATE FEEDBACK IN MULTIPLE ANTENNA SYSTEMS KRISHNA KIRAN MUKKAVILLI ASHUTOSH SABHARWAL ELZA ERKIP BEHNAAM AAZHANG Abstract In this paper, we study a multiple antenna system where

More information

Constellation Precoded Beamforming

Constellation Precoded Beamforming Constellation Precoded Beamforming Hong Ju Park and Ender Ayanoglu Center for Pervasive Communications and Computing Department of Electrical Engineering and Computer Science University of California,

More information

On the Design of Scalar Feedback Techniques for MIMO Broadcast Scheduling

On the Design of Scalar Feedback Techniques for MIMO Broadcast Scheduling On the Design of Scalar Feedback Techniques for MIMO Broadcast Scheduling Ruben de Francisco and Dirk T.M. Slock Eurecom Institute Sophia-Antipolis, France Email: {defranci, slock}@eurecom.fr Abstract

More information

Optimum Power Allocation in Fading MIMO Multiple Access Channels with Partial CSI at the Transmitters

Optimum Power Allocation in Fading MIMO Multiple Access Channels with Partial CSI at the Transmitters Optimum Power Allocation in Fading MIMO Multiple Access Channels with Partial CSI at the Transmitters Alkan Soysal Sennur Ulukus Department of Electrical and Computer Engineering University of Maryland,

More information

Space-Time Diversity Enhancements Using Collaborative Communications

Space-Time Diversity Enhancements Using Collaborative Communications IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. YY, MONTH 2005 1 Space-Time Diversity Enhancements Using Collaborative Communications Patrick Mitran, Student Member, IEEE, Hideki Ochiai, Member,

More information

Minimum Feedback Rates for Multi-Carrier Transmission With Correlated Frequency Selective Fading

Minimum Feedback Rates for Multi-Carrier Transmission With Correlated Frequency Selective Fading Minimum Feedback Rates for Multi-Carrier Transmission With Correlated Frequency Selective Fading Yakun Sun and Michael L. Honig Department of ECE orthwestern University Evanston, IL 60208 Abstract We consider

More information

Wideband Fading Channel Capacity with Training and Partial Feedback

Wideband Fading Channel Capacity with Training and Partial Feedback Wideband Fading Channel Capacity with Training and Partial Feedback Manish Agarwal, Michael L. Honig ECE Department, Northwestern University 145 Sheridan Road, Evanston, IL 6008 USA {m-agarwal,mh}@northwestern.edu

More information

Combining Beamforming and Space-Time Coding Using Quantized Feedback

Combining Beamforming and Space-Time Coding Using Quantized Feedback Combining Beamforming and Space-Time Coding Using Quantized Feedback 1 Siavash Ekbatani, IEEE Student Member and Hamid Jafarkhani, IEEE Fellow Abstract We combine space-time coding and transmit beamforming

More information

Nearest Neighbor Decoding in MIMO Block-Fading Channels With Imperfect CSIR

Nearest Neighbor Decoding in MIMO Block-Fading Channels With Imperfect CSIR IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 3, MARCH 2012 1483 Nearest Neighbor Decoding in MIMO Block-Fading Channels With Imperfect CSIR A. Taufiq Asyhari, Student Member, IEEE, Albert Guillén

More information

672 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 2, FEBRUARY We only include here some relevant references that focus on the complex

672 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 2, FEBRUARY We only include here some relevant references that focus on the complex 672 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 2, FEBRUARY 2009 Ordered Eigenvalues of a General Class of Hermitian Rom Matrices With Application to the Performance Analysis of MIMO Systems Luis

More information

Timing errors in distributed space-time communications

Timing errors in distributed space-time communications Timing errors in distributed space-time communications Emanuele Viterbo Dipartimento di Elettronica Politecnico di Torino Torino, Italy viterbo@polito.it Yi Hong Institute for Telecom. Research University

More information

Ergodic and Outage Capacity of Narrowband MIMO Gaussian Channels

Ergodic and Outage Capacity of Narrowband MIMO Gaussian Channels Ergodic and Outage Capacity of Narrowband MIMO Gaussian Channels Yang Wen Liang Department of Electrical and Computer Engineering The University of British Columbia April 19th, 005 Outline of Presentation

More information

USING multiple antennas has been shown to increase the

USING multiple antennas has been shown to increase the IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 55, NO. 1, JANUARY 2007 11 A Comparison of Time-Sharing, DPC, and Beamforming for MIMO Broadcast Channels With Many Users Masoud Sharif, Member, IEEE, and Babak

More information

Optimum MIMO-OFDM receivers with imperfect channel state information

Optimum MIMO-OFDM receivers with imperfect channel state information Optimum MIMO-OFDM receivers with imperfect channel state information Giulio Coluccia Politecnico di Torino, Italy Email: giulio.coluccia@polito.it Erwin Riegler ftw, Austria E-mail: riegler@ftw.at Christoph

More information

On the Optimality of the ARQ-DDF Protocol

On the Optimality of the ARQ-DDF Protocol On the Optimality of the ARQ-DDF Protocol Kambiz Azarian, Hesham El Gamal, and Philip Schniter January 18, 006 Abstract The performance of the automatic repeat request-dynamic decode and forward (ARQ-DDF)

More information

Exploiting Quantized Channel Norm Feedback Through Conditional Statistics in Arbitrarily Correlated MIMO Systems

Exploiting Quantized Channel Norm Feedback Through Conditional Statistics in Arbitrarily Correlated MIMO Systems Exploiting Quantized Channel Norm Feedback Through Conditional Statistics in Arbitrarily Correlated MIMO Systems IEEE TRANSACTIONS ON SIGNAL PROCESSING Volume 57, Issue 10, Pages 4027-4041, October 2009.

More information

Random Matrices and Wireless Communications

Random Matrices and Wireless Communications Random Matrices and Wireless Communications Jamie Evans Centre for Ultra-Broadband Information Networks (CUBIN) Department of Electrical and Electronic Engineering University of Melbourne 3.5 1 3 0.8 2.5

More information

Throughput and BER of wireless powered DF relaying in Nakagami-m fading

Throughput and BER of wireless powered DF relaying in Nakagami-m fading . RESEARCH PAPER. SCIENCE CHINA Information Sciences October 17, Vol. 6 136:1 136:13 doi: 1.17/s1143-16-611-x Throughput and BER of wireless powered DF relaying in Nakagami-m fading Yan GAO 1, Yunfei CHEN

More information

Characterizing the Capacity for MIMO Wireless Channels with Non-zero Mean and Transmit Covariance

Characterizing the Capacity for MIMO Wireless Channels with Non-zero Mean and Transmit Covariance Characterizing the Capacity for MIMO Wireless Channels with Non-zero Mean and Transmit Covariance Mai Vu and Arogyaswami Paulraj Information Systems Laboratory, Department of Electrical Engineering Stanford

More information

Differential Full Diversity Spatial Modulation using Amplitude Phase Shift Keying

Differential Full Diversity Spatial Modulation using Amplitude Phase Shift Keying RADIOENGINEERING, VOL 7, NO 1, APRIL 018 151 Differential ull Diversity Spatial Modulation using Amplitude Phase Shift Keying Kavishaur DWARIKA 1, Hongjun XU 1, 1 School of Engineering, University of KwaZulu-Natal,

More information

Lecture 18: Gaussian Channel

Lecture 18: Gaussian Channel Lecture 18: Gaussian Channel Gaussian channel Gaussian channel capacity Dr. Yao Xie, ECE587, Information Theory, Duke University Mona Lisa in AWGN Mona Lisa Noisy Mona Lisa 100 100 200 200 300 300 400

More information

Upper bound on the ergodic rate density of ALOHA wireless ad-hoc networks

Upper bound on the ergodic rate density of ALOHA wireless ad-hoc networks Upper bound on the ergodic rate density of ALOHA wireless ad-hoc networks 1 Yaniv George, Itsik Bergel, Senior Member, IEEE, Ephraim Zehavi, Fellow, IEEE Abstract We present a novel upper bound on the

More information

Optimal Receiver for MPSK Signaling with Imperfect Channel Estimation

Optimal Receiver for MPSK Signaling with Imperfect Channel Estimation This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 27 proceedings. Optimal Receiver for PSK Signaling with Imperfect

More information

Resource Allocation for Wireless Fading Relay Channels: Max-Min Solution 1 2

Resource Allocation for Wireless Fading Relay Channels: Max-Min Solution 1 2 Submitted to IEEE Trans. Inform. Theory, Special Issue on Models, Theory and odes for elaying and ooperation in ommunication Networs, Aug. 2006, revised Jan. 2007 esource Allocation for Wireless Fading

More information

Differential Amplify-and-Forward Relaying Using Linear Combining in Time-Varying Channels

Differential Amplify-and-Forward Relaying Using Linear Combining in Time-Varying Channels Differential Amplify-and-Forward Relaying Using Linear Comining in Time-Varying Channels M. R. Avendi, Ha H. Nguyen and Dac-Binh Ha University of California, Irvine, USA University of Saskatchewan, Saskatoon,

More information

Diversity-Multiplexing Tradeoff in MIMO Channels with Partial CSIT. ECE 559 Presentation Hoa Pham Dec 3, 2007

Diversity-Multiplexing Tradeoff in MIMO Channels with Partial CSIT. ECE 559 Presentation Hoa Pham Dec 3, 2007 Diversity-Multiplexing Tradeoff in MIMO Channels with Partial CSIT ECE 559 Presentation Hoa Pham Dec 3, 2007 Introduction MIMO systems provide two types of gains Diversity Gain: each path from a transmitter

More information

IEEE TRANSACTIONS ON COMMUNICATIONS (ACCEPTED TO APPEAR) 1. Diversity-Multiplexing Tradeoff in Selective Cooperation for Cognitive Radio

IEEE TRANSACTIONS ON COMMUNICATIONS (ACCEPTED TO APPEAR) 1. Diversity-Multiplexing Tradeoff in Selective Cooperation for Cognitive Radio IEEE TRANSACTIONS ON COMMUNICATIONS (ACCEPTED TO APPEAR) Diversity-Multiplexing Tradeoff in Selective Cooperation for Cognitive Radio Yulong Zou, Member, IEEE, Yu-Dong Yao, Fellow, IEEE, and Baoyu Zheng,

More information

NOMA: Principles and Recent Results

NOMA: Principles and Recent Results NOMA: Principles and Recent Results Jinho Choi School of EECS GIST September 2017 (VTC-Fall 2017) 1 / 46 Abstract: Non-orthogonal multiple access (NOMA) becomes a key technology in 5G as it can improve

More information

Non Orthogonal Multiple Access for 5G and beyond

Non Orthogonal Multiple Access for 5G and beyond Non Orthogonal Multiple Access for 5G and beyond DIET- Sapienza University of Rome mai.le.it@ieee.org November 23, 2018 Outline 1 5G Era Concept of NOMA Classification of NOMA CDM-NOMA in 5G-NR Low-density

More information