Reliability of Radio-mobile systems considering fading and shadowing channels

Size: px
Start display at page:

Download "Reliability of Radio-mobile systems considering fading and shadowing channels"

Transcription

1 Reliability of Radio-mobile systems considering fading and shadowing channels Philippe Mary ETIS UMR 8051 CNRS, ENSEA, Univ. Cergy-Pontoise, 6 avenue du Ponceau, Cergy, France Philippe Mary 1 / 32

2 General Context Cellular mobile communications (GSM, UMTS, WLAN) Philippe Mary 2 / 32

3 Motivations To increase the quality of services (QoS) of cellular networks : Considering both short and long term effect (multipath and average power variation) In the literature Signal processing community Multipath cancellation (equalization, channel coding, smart antennas...) Network community fight again the QoS variations due to the variation of the average power Minimal research effort has been allocated to the study of both effects Our work Study of a QoS criterium considering both short and long term effects Philippe Mary 3 / 32

4 Purposes of the work Analytical performance of Radio-mobile systems in fading channels and shadowing environment ++ Allows to point out quickly the behavior of a system ++ Allows to predict behavior x x Not tractable when modelisation is more and more accurate Resource allocation considering QoS Philippe Mary 4 / 32

5 Summary 1 Channel models and assumption 2 Quick overview of SEP approximation 3 Outage considering fading and shadowing 4 Outage considering interference 5 Conclusion and further work Philippe Mary 5 / 32

6 Short term effect/long term effect Philippe Mary 6 / 32

7 Dealing with shadowing Work with outage [Conti03] : Symbol error outage (SEO) (non-ergodic channel) P s (O) = Pr (SEP P s ) The important network design criterium is the packet error outage (PEO) Philippe Mary 7 / 32

8 Fading channels model Flat fading channels The received power is : P r α shad α 2 fading α fading : Short term effect (fast fading) Nakagami-m or Rice distributed Instantaneous SNR variation γ s = α 2 fading E s /N 0 α shad : Long term effect (change after one or several packets) log-normally distributed Average SNR variation γ s = α shad E s /N 0, α shad = E ( αfading 2 ) Average SNR log-normally distributed Mean : µ db = E (10 log 10 γ s ) Standard deviation : σ db Philippe Mary 8 / 32

9 Error modelisation in fading channels Average error probability (w.r.t. short term effects) : Classic form of the average SEP : P s (E γ s ) = 0 P s (E γ s, γ s ) }{{} f (Q( γ s)) p γs γ s (γ s ) dγ s Craig91 alternative form for Gaussian function Q Allowed to derive closed-form SEP expressions in an unified way thanks to the moment generating function (MGF) of the SNR [Alouini04] : P s (E γ s ) = 1 π (M 1)π/M 0 ( M γs g ) psk sin 2 dθ θ Philippe Mary 9 / 32

10 Performance with shadowing Symbol error probability SEO : P s (O µ ) = P (P s (E γ s ) P s (E γ s ) µ ) P γs (O µ ) = P (γ s γ th µ ) Need of the SNR threshold : γ th = f (P s (E)) où f (P s (E)) = P s (E γ s ) 1 The SEO is hence : P s (O µ) = Z γth =(P s (E)) 1 0 «µdb 10 log p γs (γ s µ) dγ s = Q 10 γ s (Ps (E)) Steps Find an accurate and simple expression for SEP Inverting this expression w.r.t. the SNR Estimate the SEO σ db Philippe Mary 10 / 32

11 Invertible approximation of the SEP Asymptotic analysis [Giannakis03] : Behavior of the SEP for high SNR P s (E) (G c γ s ) G d G c Coding gain horizontal shift compared to a reference G d Diversity gain error probability slop in high SNR regime x x Not accurate at low SNR Bounds of Conti et al. [Conti03] ++ Tight bounds of the average SEP thanks to bounds on the MGF of the SNR x x One kind of channel (Nakagami-m) x x No channel coding x x No interferences Philippe Mary 11 / 32

12 Laplace method Can be used for Nakagami-m and Rice channels Integral approximation : I = h(y)e λg(y) dy y D λ R, D R The Laplace approximation of I is : 2π Ĩ = λ g (y 0 ) h(y 0)e λg(y0) and I = Ĩ { 1 + O ( λ 1)}, λ y 0 = {z} min g(y) y Philippe Mary 12 / 32

13 Scenario A simple point-to-point SISO system Goal : Estimated the probability that the SEP exceeds the threshold Philippe Mary 13 / 32

14 SEP approximation in Nakagami-m channels (1/3) The exact average SEP (M-PSK, M-QAM) can be written as [Shin04] : psk s (E γ s ) = x (γ s ) m k 1 2F 1 m, 1 «1 2 ; m + 1; x (γ s ) + k 2 F 1 2, m, 1 2 m; 3 2 ; y (γ s ), 1 g psk qam s (E γ s ) = x 1 (γ s ) m k 3 2F 1 m, 1 2 ; m + 1; x 1 (γ s ) «x 2 (γ s ) m k 4 F 1 1, m, 1; m ; x 2 (γ s ) x 1 (γ s ), 1 «2 ««Philippe Mary 14 / 32

15 SEP approximation in Nakagami-m channels (2/3) The Gauss hypergeometric function can be expressed as ( 2F 1 m, 1 ) 1 2 ; m + 1; x = B(m, 1) 1 t m 1 (1 tx) 1/2 dt, Laplace approximation by choosing [Wood03] : h(t) = B (m, 1) t 1, g(t) = {m ln t 12 } ln(1 xt) 0 Philippe Mary 15 / 32

16 SEP approximation in Nakagami-m channels (3/3) Theorem (SEP approximation) In a flat Nakagami-m fading channel, the average SEP of M-PSK/M-QAM signals is well approached by : x m P s (E γ s ) k mod ; γ s 1 x t with t = m/(m + 1), x = 1/ (1 + g mod γ s /m), g mod and k mod are modulation dependent constants. Philippe Mary 16 / 32

17 Accuracy of the approximation Philippe Mary 17 / 32

18 SEP inversion Theorem (SEP inversion) Under the same conditions as in the previous proposition, the average SNR is : ( ) γ s (Ps (E)) = c 0 (P s (E) 1 m 1 c 1 Ps (E) 1 1 ) 2m m k 1 m mod Sketch of proof. Solving in [0, 1] : (k mod ) 2 x 2m + (P s (E))2 tx (P s (E))2 = 0 Constructing the series : 8 >< >: x 0 = 0, x n+1 P = s (E) k mod «1 m `1 tx n 1 2m We can show that {x n} n N is converging towards x s Philippe Mary 18 / 32

19 SEO with shadowing Philippe Mary 19 / 32

20 SEP approximation in Rice channel Propagation with a specular component No closed-form solutions : Ps psk (E γ s ) = 1 (M 1)π/M π P qam s (E γ s ) = 4g π 0 π/2 0 ( M γs g psk sin 2 θ M γs ( g qam sin 2 θ ( avec M γs g mod ) ( sin 2 θ = (1+K)sin 2 (θ) (1+K)sin 2 (θ)+g mod γ exp s ) dθ ) dθ 4g 2 π π/4 0 ) g mod Kγ s (1+K)sin 2 (θ)+g mod γ s ( M γs g ) qam sin 2 dθ θ Philippe Mary 20 / 32

21 SEO Estimation We can show that : γ s (Ps K+K (E)) = 2 g mod W 0( πps (E)Ke K ) 1+K g mod P s = 10 2 Philippe Mary 21 / 32

22 Systems with channel coding Goal : Considering the PEO PEP inversion w.r.t. SNR Assumptions : Hard decision decoding Philippe Mary 22 / 32

23 Block codes Hamming and Golay codes Philippe Mary 23 / 32

24 PEO estimation Nakagami-m fading Packets 4600 bits, 8-PSK signal PER target of 10 1 P b = and P p (E) = 1 (1 P m (E)) N/k P m (E)(t+1)B(t+1,J t) 1 [Pm (E)(t+1)B(t+1,J t)] 1 t+1 ỹ 1 t+1 «J t 1 Philippe Mary 24 / 32

25 STBC MIMO systems The output SNR is : γ STBC = H 2 F n t R γ s γ s = E 0 /N 0 The MGF of SNR can be shown to be (without correlation) : M γstbc = (M γs ) ntnr Philippe Mary 25 / 32

26 V-BLAST MIMO systems ZF linear receiver. The substream SNR is [Gore02] : γ k = γ s [H H H] 1 kk In Rayleigh channel : Z = H H H CW nt (n r, 0, Σ nt ) We can shown that : M γk = (M γs ) nr nt+1 Philippe Mary 26 / 32

27 SEP approximation with one co-channel interference The exact SEP is obtained by averaging the conditional SEP w.r.t. the INR P s (E) = 0 P s (E γ i ) p γi (γ i ) dγ i The average SEP (M-PSK, M-QAM) with one co-channel interference in Rayleigh channel is bounded by : P s (E γ d, γ i ) 2k mod 1 + g mod γ d g mod γ d 1 + γ i γ i + 2 (1 + g mod γ d ) Philippe Mary 27 / 32

28 Accuracy of the approximation QPSK Philippe Mary 28 / 32

29 Outage probability with shadowing and co-channel interference Shadowing both SNR γ d and INR γ i are random variables We can show the average result : Theorem γ d et γ i are two random variables i.i.d. and log-normally distributed. The SEO of the desired signal with one co-channel interference is : Z P (P s (E) > Ps ) = 0 10/ log (10) σ i 2πγi e (10 log 10 γ i µ i ) 2 2σ 2 i Q µd 10 log 10 γ th (P s, γ i ) σ d «dγ i where γ th (Ps, γ i ) is the needed average SNR to reach the QoS target Ps average INR γ i. knowing the Philippe Mary 29 / 32

30 Conclusions Tools to study the performance of wireless communications in a realistic environment (Fading + Shadowing) When shadowing is considered the channel is non-ergodic The PEO is a measure of the reliability that a wireless network can offer under constraint of QoS (average PEP) Applications Resource allocation considering a target PEP with a certain outage probability Roll out prediction (WLAN, ) Philippe Mary 30 / 32

31 Further works With coding Soft decision decoding (the problem statement is different) Quantify the tradeoff Energy consumption/peo reduction Connectivity study in access network Active links : average PEP < PEP target Defined the connectivity in function of the PEP target Extension to multi-hop and cooperative networks Philippe Mary 31 / 32

32 Publications [1] P. Mary, M. Dohler, J.-M. Gorce, G. Villemaud, Packet Error Outage for Coded Systems Experiencing Fading Channels and Interference in Shadowing Environment, In preparation [2] P. Mary, M. Dohler, J.-M. Gorce, G. Villemaud, M. Arndt, M-ary Symbol Error Outage over Nakagami-m Fading Channels in Shadowing Environments, to appear in IEEE Transactions on Communications [3] P. Mary, M. Dohler, J.-M. Gorce, G. Villemaud, M. Arndt, BPSK Bit Error Outage over Nakagami-m Fading Channels in Lognormal Shadowing Environments, IEEE Communications Letters, vol. 11, no. 7, 2007, July, pp : [4] P. Mary, M. Dohler, J.-M. Gorce, G. Villemaud, M. Arndt. Estimation du taux de coupure d une liaison radio MIMO dans un canal de Nakagami avec effet de masque, GRETSI 07, Troyes, Philippe Mary 32 / 32

Weibull-Gamma composite distribution: An alternative multipath/shadowing fading model

Weibull-Gamma composite distribution: An alternative multipath/shadowing fading model Weibull-Gamma composite distribution: An alternative multipath/shadowing fading model Petros S. Bithas Institute for Space Applications and Remote Sensing, National Observatory of Athens, Metaxa & Vas.

More information

Approximations of the packet error rate under slow fading in direct and relayed links

Approximations of the packet error rate under slow fading in direct and relayed links Approximations of the packet error rate under slow fading in direct and relayed links Paul Ferrand, Jean-Marie Gorce, Claire Goursaud To cite this version: Paul Ferrand, Jean-Marie Gorce, Claire Goursaud.

More information

The Gamma Variate with Random Shape Parameter and Some Applications

The Gamma Variate with Random Shape Parameter and Some Applications ITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com The Gamma Variate with Random Shape Parameter and Some Applications aaref, A.: Annavajjala, R. TR211-7 December 21 Abstract This letter provides

More information

WIRELESS COMMUNICATIONS AND COGNITIVE RADIO TRANSMISSIONS UNDER QUALITY OF SERVICE CONSTRAINTS AND CHANNEL UNCERTAINTY

WIRELESS COMMUNICATIONS AND COGNITIVE RADIO TRANSMISSIONS UNDER QUALITY OF SERVICE CONSTRAINTS AND CHANNEL UNCERTAINTY University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Theses, Dissertations, and Student Research from Electrical & Computer Engineering Electrical & Computer Engineering, Department

More information

Wireless Communications Lecture 10

Wireless Communications Lecture 10 Wireless Communications Lecture 1 [SNR per symbol and SNR per bit] SNR = P R N B = E s N BT s = E b N BT b For BPSK: T b = T s, E b = E s, and T s = 1/B. Raised cosine pulse shaper for other pulses. T

More information

Performance Analysis of BPSK over Joint Fading and Two-Path Shadowing Channels

Performance Analysis of BPSK over Joint Fading and Two-Path Shadowing Channels IEEE VTC-Fall 2014, Vancouver, Sept. 14-17, 2014 IqIq Performance of BPSK over Joint Fading and Two-Path Shadowing Channels I. Dey and G. G. Messier Electrical and Computer Engineering University of Calgary,

More information

Cooperative Communication in Spatially Modulated MIMO systems

Cooperative Communication in Spatially Modulated MIMO systems Cooperative Communication in Spatially Modulated MIMO systems Multimedia Wireless Networks (MWN) Group, Department Of Electrical Engineering, Indian Institute of Technology, Kanpur, India {neerajv,adityaj}@iitk.ac.in

More information

Outline - Part III: Co-Channel Interference

Outline - Part III: Co-Channel Interference General Outline Part 0: Background, Motivation, and Goals. Part I: Some Basics. Part II: Diversity Systems. Part III: Co-Channel Interference. Part IV: Multi-Hop Communication Systems. Outline - Part III:

More information

Optimization of relay placement and power allocation for decode-and-forward cooperative relaying over correlated shadowed fading channels

Optimization of relay placement and power allocation for decode-and-forward cooperative relaying over correlated shadowed fading channels Han et al. EURASIP Journal on Wireless Communications and Networking 4, 4:4 RESEARCH Open Access Optimization of relay placement and power allocation for decode-and-forwa cooperative relaying over correlated

More information

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH : Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1 Rayleigh Wednesday, June 1, 2016 09:15-12:00, SIP 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication

More information

Nearest Neighbor Decoding in MIMO Block-Fading Channels With Imperfect CSIR

Nearest Neighbor Decoding in MIMO Block-Fading Channels With Imperfect CSIR IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 3, MARCH 2012 1483 Nearest Neighbor Decoding in MIMO Block-Fading Channels With Imperfect CSIR A. Taufiq Asyhari, Student Member, IEEE, Albert Guillén

More information

CHAPTER 14. Based on the info about the scattering function we know that the multipath spread is T m =1ms, and the Doppler spread is B d =0.2 Hz.

CHAPTER 14. Based on the info about the scattering function we know that the multipath spread is T m =1ms, and the Doppler spread is B d =0.2 Hz. CHAPTER 4 Problem 4. : Based on the info about the scattering function we know that the multipath spread is T m =ms, and the Doppler spread is B d =. Hz. (a) (i) T m = 3 sec (ii) B d =. Hz (iii) ( t) c

More information

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1 : Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1 Rayleigh Friday, May 25, 2018 09:00-11:30, Kansliet 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless

More information

Fading Statistical description of the wireless channel

Fading Statistical description of the wireless channel Channel Modelling ETIM10 Lecture no: 3 Fading Statistical description of the wireless channel Fredrik Tufvesson Department of Electrical and Information Technology Lund University, Sweden Fredrik.Tufvesson@eit.lth.se

More information

Improved Multiple Feedback Successive Interference Cancellation Algorithm for Near-Optimal MIMO Detection

Improved Multiple Feedback Successive Interference Cancellation Algorithm for Near-Optimal MIMO Detection Improved Multiple Feedback Successive Interference Cancellation Algorithm for Near-Optimal MIMO Detection Manish Mandloi, Mohammed Azahar Hussain and Vimal Bhatia Discipline of Electrical Engineering,

More information

Effective Rate Analysis of MISO Systems over α-µ Fading Channels

Effective Rate Analysis of MISO Systems over α-µ Fading Channels Effective Rate Analysis of MISO Systems over α-µ Fading Channels Jiayi Zhang 1,2, Linglong Dai 1, Zhaocheng Wang 1 Derrick Wing Kwan Ng 2,3 and Wolfgang H. Gerstacker 2 1 Tsinghua National Laboratory for

More information

Lecture 7: Wireless Channels and Diversity Advanced Digital Communications (EQ2410) 1

Lecture 7: Wireless Channels and Diversity Advanced Digital Communications (EQ2410) 1 Wireless : Wireless Advanced Digital Communications (EQ2410) 1 Thursday, Feb. 11, 2016 10:00-12:00, B24 1 Textbook: U. Madhow, Fundamentals of Digital Communications, 2008 1 / 15 Wireless Lecture 1-6 Equalization

More information

Lecture 8: MIMO Architectures (II) Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH

Lecture 8: MIMO Architectures (II) Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH MIMO : MIMO Theoretical Foundations of Wireless Communications 1 Wednesday, May 25, 2016 09:15-12:00, SIP 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication 1 / 20 Overview MIMO

More information

On the Performance of. Golden Space-Time Trellis Coded Modulation over MIMO Block Fading Channels

On the Performance of. Golden Space-Time Trellis Coded Modulation over MIMO Block Fading Channels On the Performance of 1 Golden Space-Time Trellis Coded Modulation over MIMO Block Fading Channels arxiv:0711.1295v1 [cs.it] 8 Nov 2007 Emanuele Viterbo and Yi Hong Abstract The Golden space-time trellis

More information

Performance Analysis of MIMO-OSTBC based Selective DF Cooperative Wireless System with Node Mobility and Channel Estimation Errors

Performance Analysis of MIMO-OSTBC based Selective DF Cooperative Wireless System with Node Mobility and Channel Estimation Errors System Model Performance Analysis of MIMO-OSTBC based Selective DF Cooperative Wireless System with Node Mobility and Channel Estimation Errors Multimedia Wireless Networks (MWN) Group, Indian Institute

More information

A new analytic approach to evaluation of Packet Error Rate in Wireless Networks

A new analytic approach to evaluation of Packet Error Rate in Wireless Networks A new analytic approach to evaluation of Packet Error Rate in Wireless Networks Ramin Khalili Université Pierre et Marie Curie LIP6-CNRS, Paris, France ramin.khalili@lip6.fr Kavé Salamatian Université

More information

Comparison of DPSK and MSK bit error rates for K and Rayleigh-lognormal fading distributions

Comparison of DPSK and MSK bit error rates for K and Rayleigh-lognormal fading distributions Comparison of DPSK and MSK bit error rates for K and Rayleigh-lognormal fading distributions Ali Abdi and Mostafa Kaveh ABSTRACT The composite Rayleigh-lognormal distribution is mathematically intractable

More information

The Impact of Fading and Interference Cancelation On Node Density Outage Probability Tradeoff in Wireless Networks

The Impact of Fading and Interference Cancelation On Node Density Outage Probability Tradeoff in Wireless Networks The Impact of Fading and Interference Cancelation On Node Density Outage Probability Tradeoff in Wireless Networks Vladimir Mordachev Electromagnetic Compatibility Laboratory Belorussian State University

More information

Error Probability Analysis of TAS/MRC-Based Scheme for Wireless Networks

Error Probability Analysis of TAS/MRC-Based Scheme for Wireless Networks Error Probability Analysis of TAS/RC-Based Scheme for Wireless Networks Jia Tang and Xi Zhang Networking and Information Systems Laboratory Department of Electrical Engineering Texas A& University, College

More information

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10 Digital Band-pass Modulation PROF. MICHAEL TSAI 211/11/1 Band-pass Signal Representation a t g t General form: 2πf c t + φ t g t = a t cos 2πf c t + φ t Envelope Phase Envelope is always non-negative,

More information

Lecture 5: Antenna Diversity and MIMO Capacity Theoretical Foundations of Wireless Communications 1. Overview. CommTh/EES/KTH

Lecture 5: Antenna Diversity and MIMO Capacity Theoretical Foundations of Wireless Communications 1. Overview. CommTh/EES/KTH : Antenna Diversity and Theoretical Foundations of Wireless Communications Wednesday, May 4, 206 9:00-2:00, Conference Room SIP Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication

More information

Cooperative Diversity in CDMA over Nakagami m Fading Channels

Cooperative Diversity in CDMA over Nakagami m Fading Channels Cooperative Diversity in CDMA over Nakagami m Fading Channels Ali Moftah Ali Mehemed A Thesis in The Department of Electrical and Computer Engineering Presented in Partial Fulfillment of the Requirements

More information

Maximum Achievable Diversity for MIMO-OFDM Systems with Arbitrary. Spatial Correlation

Maximum Achievable Diversity for MIMO-OFDM Systems with Arbitrary. Spatial Correlation Maximum Achievable Diversity for MIMO-OFDM Systems with Arbitrary Spatial Correlation Ahmed K Sadek, Weifeng Su, and K J Ray Liu Department of Electrical and Computer Engineering, and Institute for Systems

More information

Advanced Spatial Modulation Techniques for MIMO Systems

Advanced Spatial Modulation Techniques for MIMO Systems Advanced Spatial Modulation Techniques for MIMO Systems Ertugrul Basar Princeton University, Department of Electrical Engineering, Princeton, NJ, USA November 2011 Outline 1 Introduction 2 Spatial Modulation

More information

A Simple and General Parameterization Quantifying Performance in Fading Channels

A Simple and General Parameterization Quantifying Performance in Fading Channels IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. XXX, NO. XXX, MONTH 23 A Simple and General Parameterization Quantifying Performance in Fading Channels Zhengdao Wang, Member, IEEE, and Georgios. Giannakis Fellow,

More information

Diversity-Multiplexing Tradeoff in MIMO Channels with Partial CSIT. ECE 559 Presentation Hoa Pham Dec 3, 2007

Diversity-Multiplexing Tradeoff in MIMO Channels with Partial CSIT. ECE 559 Presentation Hoa Pham Dec 3, 2007 Diversity-Multiplexing Tradeoff in MIMO Channels with Partial CSIT ECE 559 Presentation Hoa Pham Dec 3, 2007 Introduction MIMO systems provide two types of gains Diversity Gain: each path from a transmitter

More information

EE6604 Personal & Mobile Communications. Week 13. Multi-antenna Techniques

EE6604 Personal & Mobile Communications. Week 13. Multi-antenna Techniques EE6604 Personal & Mobile Communications Week 13 Multi-antenna Techniques 1 Diversity Methods Diversity combats fading by providing the receiver with multiple uncorrelated replicas of the same information

More information

Multiple Antennas in Wireless Communications

Multiple Antennas in Wireless Communications Multiple Antennas in Wireless Communications Luca Sanguinetti Department of Information Engineering Pisa University luca.sanguinetti@iet.unipi.it April, 2009 Luca Sanguinetti (IET) MIMO April, 2009 1 /

More information

NEW RESULTS ON DIFFERENTIAL AND NON COHERENT TRANSMISSION: MSDD FOR CORRELATED MIMO FADING CHANNELS AND PERFORMANCE ANALYSIS FOR GENERALIZED K FADING

NEW RESULTS ON DIFFERENTIAL AND NON COHERENT TRANSMISSION: MSDD FOR CORRELATED MIMO FADING CHANNELS AND PERFORMANCE ANALYSIS FOR GENERALIZED K FADING NEW RESULTS ON DIFFERENTIAL AND NON COHERENT TRANSMISSION: MSDD FOR CORRELATED MIMO FADING CHANNELS AND PERFORMANCE ANALYSIS FOR GENERALIZED K FADING by CINDY YUE ZHU B.ASc., The University of British

More information

Free Space Optical (FSO) Communications. Towards the Speeds of Wireline Networks

Free Space Optical (FSO) Communications. Towards the Speeds of Wireline Networks Free Space Optical (FSO) Communications Towards the Speeds of Wireline Networks FSO Basic Principle Connects using narrow beams two optical wireless transceivers in line-of-sight. Light is transmitted

More information

672 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 2, FEBRUARY We only include here some relevant references that focus on the complex

672 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 2, FEBRUARY We only include here some relevant references that focus on the complex 672 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 2, FEBRUARY 2009 Ordered Eigenvalues of a General Class of Hermitian Rom Matrices With Application to the Performance Analysis of MIMO Systems Luis

More information

Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung

Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for Telecommunications and High-Frequency Techniques Department of Communications

More information

Performance Analysis of MIMO Relay Networks with Beamforming. Hyunjun Kim

Performance Analysis of MIMO Relay Networks with Beamforming. Hyunjun Kim Performance Analysis of MIMO Relay Networks with Beamforming by Hyunjun Kim A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved July 2012 by

More information

ELEC546 Review of Information Theory

ELEC546 Review of Information Theory ELEC546 Review of Information Theory Vincent Lau 1/1/004 1 Review of Information Theory Entropy: Measure of uncertainty of a random variable X. The entropy of X, H(X), is given by: If X is a discrete random

More information

BER Performance Analysis of Cooperative DaF Relay Networks and a New Optimal DaF Strategy

BER Performance Analysis of Cooperative DaF Relay Networks and a New Optimal DaF Strategy 144 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 1, NO. 4, APRIL 11 BER Performance Analysis of Cooperative DaF Relay Networks and a New Optimal DaF Strategy George A. Ropokis, Athanasios A. Rontogiannis,

More information

EVALUATION OF PACKET ERROR RATE IN WIRELESS NETWORKS

EVALUATION OF PACKET ERROR RATE IN WIRELESS NETWORKS EVALUATION OF PACKET ERROR RATE IN WIRELESS NETWORKS Ramin Khalili, Kavé Salamatian LIP6-CNRS, Université Pierre et Marie Curie. Paris, France. Ramin.khalili, kave.salamatian@lip6.fr Abstract Bit Error

More information

Versatile, Accurate and Analytically Tractable Approximation for the Gaussian Q-function. Miguel López-Benítez and Fernando Casadevall

Versatile, Accurate and Analytically Tractable Approximation for the Gaussian Q-function. Miguel López-Benítez and Fernando Casadevall Versatile, Accurate and Analytically Tractable Approximation for the Gaussian Q-function Miguel López-Benítez and Fernando Casadevall Department of Signal Theory and Communications Universitat Politècnica

More information

MGF Approach to the Analysis of Generalized Two-Ray Fading Models

MGF Approach to the Analysis of Generalized Two-Ray Fading Models MGF Approach to the Analysis of Generalized Two-Ray Fading Models Milind Rao, Student Member, IEEE, F. Javier Lopez-Martinez, Member, IEEE, Mohamed-Slim Alouini, Fellow, IEEE and Andrea Goldsmith, Fellow,

More information

Title. Author(s)Tsai, Shang-Ho. Issue Date Doc URL. Type. Note. File Information. Equal Gain Beamforming in Rayleigh Fading Channels

Title. Author(s)Tsai, Shang-Ho. Issue Date Doc URL. Type. Note. File Information. Equal Gain Beamforming in Rayleigh Fading Channels Title Equal Gain Beamforming in Rayleigh Fading Channels Author(s)Tsai, Shang-Ho Proceedings : APSIPA ASC 29 : Asia-Pacific Signal Citationand Conference: 688-691 Issue Date 29-1-4 Doc URL http://hdl.handle.net/2115/39789

More information

Throughput Enhancements on Cellular Downlink Channels using Rateless Codes

Throughput Enhancements on Cellular Downlink Channels using Rateless Codes Throughput Enhancements on Cellular ownlink Channels using Rateless Codes Amogh Rajanna and Martin Haenggi Wireless Institute, University of Notre ame, USA. {arajanna,mhaenggi}@nd.edu Abstract Rateless

More information

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Channel characterization and modeling 1 September 8, Signal KTH Research Focus

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Channel characterization and modeling 1 September 8, Signal KTH Research Focus Multiple Antennas Channel Characterization and Modeling Mats Bengtsson, Björn Ottersten Channel characterization and modeling 1 September 8, 2005 Signal Processing @ KTH Research Focus Channel modeling

More information

Capacity of multiple-input multiple-output (MIMO) systems in wireless communications

Capacity of multiple-input multiple-output (MIMO) systems in wireless communications 15/11/02 Capacity of multiple-input multiple-output (MIMO) systems in wireless communications Bengt Holter Department of Telecommunications Norwegian University of Science and Technology 1 Outline 15/11/02

More information

SPACE-TIME CODING FOR MIMO RAYLEIGH FADING SYSTEMS MAO TIANYU

SPACE-TIME CODING FOR MIMO RAYLEIGH FADING SYSTEMS MAO TIANYU SPACE-TIME CODING FOR MIMO RAYLEIGH FADING SYSTEMS MAO TIANYU (M. Eng.) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING NATIONAL UNIVERSITY OF

More information

Analysis of Receiver Quantization in Wireless Communication Systems

Analysis of Receiver Quantization in Wireless Communication Systems Analysis of Receiver Quantization in Wireless Communication Systems Theory and Implementation Gareth B. Middleton Committee: Dr. Behnaam Aazhang Dr. Ashutosh Sabharwal Dr. Joseph Cavallaro 18 April 2007

More information

DETERMINING the information theoretic capacity of

DETERMINING the information theoretic capacity of IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 7, JULY 007 369 Transactions Letters Outage Capacity and Optimal Power Allocation for Multiple Time-Scale Parallel Fading Channels Subhrakanti

More information

A Design of High-Rate Space-Frequency Codes for MIMO-OFDM Systems

A Design of High-Rate Space-Frequency Codes for MIMO-OFDM Systems A Design of High-Rate Space-Frequency Codes for MIMO-OFDM Systems Wei Zhang, Xiang-Gen Xia and P. C. Ching xxia@ee.udel.edu EE Dept., The Chinese University of Hong Kong ECE Dept., University of Delaware

More information

Performance Analysis of Fisher-Snedecor F Composite Fading Channels

Performance Analysis of Fisher-Snedecor F Composite Fading Channels Performance Analysis of Fisher-Snedecor F Composite Fading Channels Taimour Aldalgamouni ehmet Cagri Ilter Osamah S. Badarneh Halim Yanikomeroglu Dept. of Electrical Engineering, Dept. of Systems and Computer

More information

Ergodic and Outage Capacity of Narrowband MIMO Gaussian Channels

Ergodic and Outage Capacity of Narrowband MIMO Gaussian Channels Ergodic and Outage Capacity of Narrowband MIMO Gaussian Channels Yang Wen Liang Department of Electrical and Computer Engineering The University of British Columbia April 19th, 005 Outline of Presentation

More information

Chapter 4: Continuous channel and its capacity

Chapter 4: Continuous channel and its capacity meghdadi@ensil.unilim.fr Reference : Elements of Information Theory by Cover and Thomas Continuous random variable Gaussian multivariate random variable AWGN Band limited channel Parallel channels Flat

More information

ML Detection with Blind Linear Prediction for Differential Space-Time Block Code Systems

ML Detection with Blind Linear Prediction for Differential Space-Time Block Code Systems ML Detection with Blind Prediction for Differential SpaceTime Block Code Systems Seree Wanichpakdeedecha, Kazuhiko Fukawa, Hiroshi Suzuki, Satoshi Suyama Tokyo Institute of Technology 11, Ookayama, Meguroku,

More information

Performance Analysis of Multi-User Massive MIMO Systems Subject to Composite Shadowing-Fading Environment

Performance Analysis of Multi-User Massive MIMO Systems Subject to Composite Shadowing-Fading Environment Performance Analysis of Multi-User Massive MIMO Systems Subject to Composite Shadowing-Fading Environment By Muhammad Saad Zia NUST201260920MSEECS61212F Supervisor Dr. Syed Ali Hassan Department of Electrical

More information

Mobile Communications (KECE425) Lecture Note Prof. Young-Chai Ko

Mobile Communications (KECE425) Lecture Note Prof. Young-Chai Ko Mobile Communications (KECE425) Lecture Note 20 5-19-2014 Prof Young-Chai Ko Summary Complexity issues of diversity systems ADC and Nyquist sampling theorem Transmit diversity Channel is known at the transmitter

More information

Quantifying the Performance Gain of Direction Feedback in a MISO System

Quantifying the Performance Gain of Direction Feedback in a MISO System Quantifying the Performance Gain of Direction Feedback in a ISO System Shengli Zhou, Jinhong Wu, Zhengdao Wang 3, and ilos Doroslovacki Dept. of Electrical and Computer Engineering, University of Connecticut

More information

Low-High SNR Transition in Multiuser MIMO

Low-High SNR Transition in Multiuser MIMO Low-High SNR Transition in Multiuser MIMO Malcolm Egan 1 1 Agent Technology Center, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic. 1 Abstract arxiv:1409.4393v1

More information

Entropy, Inference, and Channel Coding

Entropy, Inference, and Channel Coding Entropy, Inference, and Channel Coding Sean Meyn Department of Electrical and Computer Engineering University of Illinois and the Coordinated Science Laboratory NSF support: ECS 02-17836, ITR 00-85929

More information

2336 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 6, JUNE Minimum BER Linear MIMO Transceivers With Adaptive Number of Substreams

2336 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 6, JUNE Minimum BER Linear MIMO Transceivers With Adaptive Number of Substreams 2336 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 6, JUNE 2009 Minimum BER Linear MIMO Transceivers With Adaptive Number of Substreams Luis G. Ordóñez, Student Member, IEEE, Daniel P. Palomar,

More information

Non Orthogonal Multiple Access for 5G and beyond

Non Orthogonal Multiple Access for 5G and beyond Non Orthogonal Multiple Access for 5G and beyond DIET- Sapienza University of Rome mai.le.it@ieee.org November 23, 2018 Outline 1 5G Era Concept of NOMA Classification of NOMA CDM-NOMA in 5G-NR Low-density

More information

Optimal Receiver for MPSK Signaling with Imperfect Channel Estimation

Optimal Receiver for MPSK Signaling with Imperfect Channel Estimation This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 27 proceedings. Optimal Receiver for PSK Signaling with Imperfect

More information

On the Performance of Random Vector Quantization Limited Feedback Beamforming in a MISO System

On the Performance of Random Vector Quantization Limited Feedback Beamforming in a MISO System 1 On the Performance of Random Vector Quantization Limited Feedback Beamforming in a MISO System Chun Kin Au-Yeung, Student Member, IEEE, and David J. Love, Member, IEEE Abstract In multiple antenna wireless

More information

Impact of channel-state information on coded transmission over fading channels with diversity reception

Impact of channel-state information on coded transmission over fading channels with diversity reception Impact of channel-state information on coded transmission over fading channels with diversity reception Giorgio Taricco Ezio Biglieri Giuseppe Caire September 4, 1998 Abstract We study the synergy between

More information

Renewal-Theoretic Packet Collision Modeling under Long-Tailed Heterogeneous Traffic

Renewal-Theoretic Packet Collision Modeling under Long-Tailed Heterogeneous Traffic Renewal-Theoretic Packet Collision Modeling under Long-Tailed Heterogeneous Traffic Aamir Mahmood and Mikael Gidlund Department of Information Systems and Technology Mid Sweden University, Sundsvall, Sweden

More information

Outline. Digital Communications. Lecture 12 Performance over Fading Channels and Diversity Techniques. Flat-Flat Fading. Intuition

Outline. Digital Communications. Lecture 12 Performance over Fading Channels and Diversity Techniques. Flat-Flat Fading. Intuition Digital Counications Lecture 2 Perforance over Fading Channels and Diversity Techniques Pierluigi SALVO ROSSI Outline Noncoherent/Coherent Detection 2 Channel Estiation Departent of Industrial and Inforation

More information

Lecture 2. Fading Channel

Lecture 2. Fading Channel 1 Lecture 2. Fading Channel Characteristics of Fading Channels Modeling of Fading Channels Discrete-time Input/Output Model 2 Radio Propagation in Free Space Speed: c = 299,792,458 m/s Isotropic Received

More information

Random Matrices and Wireless Communications

Random Matrices and Wireless Communications Random Matrices and Wireless Communications Jamie Evans Centre for Ultra-Broadband Information Networks (CUBIN) Department of Electrical and Electronic Engineering University of Melbourne 3.5 1 3 0.8 2.5

More information

Upper Bounds for the Average Error Probability of a Time-Hopping Wideband System

Upper Bounds for the Average Error Probability of a Time-Hopping Wideband System Upper Bounds for the Average Error Probability of a Time-Hopping Wideband System Aravind Kailas UMTS Systems Performance Team QUALCOMM Inc San Diego, CA 911 Email: akailas@qualcommcom John A Gubner Department

More information

Performance Analysis of Wireless Single Input Multiple Output Systems (SIMO) in Correlated Weibull Fading Channels

Performance Analysis of Wireless Single Input Multiple Output Systems (SIMO) in Correlated Weibull Fading Channels Performance Analysis of Wireless Single Input Multiple Output Systems (SIMO) in Correlated Weibull Fading Channels Zafeiro G. Papadimitriou National and Kapodistrian University of Athens Department of

More information

Adaptive Space-Time Shift Keying Based Multiple-Input Multiple-Output Systems

Adaptive Space-Time Shift Keying Based Multiple-Input Multiple-Output Systems ACSTSK Adaptive Space-Time Shift Keying Based Multiple-Input Multiple-Output Systems Professor Sheng Chen Electronics and Computer Science University of Southampton Southampton SO7 BJ, UK E-mail: sqc@ecs.soton.ac.uk

More information

Optimal Diversity Combining Based on Linear Estimation of Rician Fading Channels

Optimal Diversity Combining Based on Linear Estimation of Rician Fading Channels This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter erts for publication in the ICC 27 proceedings. Optimal Diversity Combining Based on Linear Estimation

More information

arxiv: v1 [cs.it] 12 Jul 2016

arxiv: v1 [cs.it] 12 Jul 2016 Analytical and Simulation Performance of a Typical User in Random Cellular Network Sinh Cong Lam Kumbesan Sandrasegaran Centre for Real-Time Information Networks, Faculty of Engineering and Information

More information

Achievable Performance Improvements. Provided by Route Diversity in Multihop. Wireless Networks

Achievable Performance Improvements. Provided by Route Diversity in Multihop. Wireless Networks Achievable Performance Improvements 1 Provided by Route Diversity in Multihop Wireless Networks Stephan Bohacek University of Delaware Department of Electrical and Computer Engineering Newark, DE 19716

More information

ELEC546 MIMO Channel Capacity

ELEC546 MIMO Channel Capacity ELEC546 MIMO Channel Capacity Vincent Lau Simplified Version.0 //2004 MIMO System Model Transmitter with t antennas & receiver with r antennas. X Transmitted Symbol, received symbol Channel Matrix (Flat

More information

Distributed Space-Frequency Coding over Amplify-and-Forward Relay Channels

Distributed Space-Frequency Coding over Amplify-and-Forward Relay Channels Distributed Space-Frequency Coding over Amplify-and-Forward Relay Channels Karim G. Seddik and K. J. Ray Liu Department of Electrical and Computer Engineering, and Institute for Systems Research University

More information

12.4 Known Channel (Water-Filling Solution)

12.4 Known Channel (Water-Filling Solution) ECEn 665: Antennas and Propagation for Wireless Communications 54 2.4 Known Channel (Water-Filling Solution) The channel scenarios we have looed at above represent special cases for which the capacity

More information

Estimation of the Capacity of Multipath Infrared Channels

Estimation of the Capacity of Multipath Infrared Channels Estimation of the Capacity of Multipath Infrared Channels Jeffrey B. Carruthers Department of Electrical and Computer Engineering Boston University jbc@bu.edu Sachin Padma Department of Electrical and

More information

Approximately achieving the feedback interference channel capacity with point-to-point codes

Approximately achieving the feedback interference channel capacity with point-to-point codes Approximately achieving the feedback interference channel capacity with point-to-point codes Joyson Sebastian*, Can Karakus*, Suhas Diggavi* Abstract Superposition codes with rate-splitting have been used

More information

Cognitive MIMO Relaying with Multiple Primary Transceivers

Cognitive MIMO Relaying with Multiple Primary Transceivers MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Cognitive MIMO Relaying with Multiple Primary Transceivers Yeoh P.L.; Elkashlan M.; Kim K.J.; Duong T..; Karagiannidis G.K. TR23-8 December

More information

Closed-form Distribution and Analysis of a Combined Nakagami-lognormal Shadowing and Unshadowing Fading Channel

Closed-form Distribution and Analysis of a Combined Nakagami-lognormal Shadowing and Unshadowing Fading Channel Paper losed-form Distribution and Analysis of a ombined Nakagami-lognormal Shadowing and Unshadowing Fading hannel Rupender Singh and Meenakshi Rawat Indian Institute of Technology, Roorkee, India Abstract

More information

Asymptotic SER and Outage Probability of MIMO MRC in Correlated Fading

Asymptotic SER and Outage Probability of MIMO MRC in Correlated Fading Asymptotic SER and Outage Probability of MIMO MRC in Correlated Fading Shi Jin, Student Member, IEEE, Matthew R. McKay, Student Member, IEEE, Xiqi Gao, Member, IEEE, and Iain B. Collings, Senior Member,

More information

Transmitter-Receiver Cooperative Sensing in MIMO Cognitive Network with Limited Feedback

Transmitter-Receiver Cooperative Sensing in MIMO Cognitive Network with Limited Feedback IEEE INFOCOM Workshop On Cognitive & Cooperative Networks Transmitter-Receiver Cooperative Sensing in MIMO Cognitive Network with Limited Feedback Chao Wang, Zhaoyang Zhang, Xiaoming Chen, Yuen Chau. Dept.of

More information

2.3. Large Scale Channel Modeling Shadowing

2.3. Large Scale Channel Modeling Shadowing c B. Chen 2.3. Large Scale Channel Modeling Shadowing Reading assignment 4.9. Multipath Channel Because of the mobility and complex environment, there are two types of channel variations: small scale variation

More information

On the Low-SNR Capacity of Phase-Shift Keying with Hard-Decision Detection

On the Low-SNR Capacity of Phase-Shift Keying with Hard-Decision Detection On the Low-SNR Capacity of Phase-Shift Keying with Hard-Decision Detection ustafa Cenk Gursoy Department of Electrical Engineering University of Nebraska-Lincoln, Lincoln, NE 68588 Email: gursoy@engr.unl.edu

More information

Diversity Performance of a Practical Non-Coherent Detect-and-Forward Receiver

Diversity Performance of a Practical Non-Coherent Detect-and-Forward Receiver Diversity Performance of a Practical Non-Coherent Detect-and-Forward Receiver Michael R. Souryal and Huiqing You National Institute of Standards and Technology Advanced Network Technologies Division Gaithersburg,

More information

Chernoff-Type Bounds for the Gaussian Error Function

Chernoff-Type Bounds for the Gaussian Error Function IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 59, NO., NOVEMBER 0 939 Chernoff-Type Bounds for the Gaussian Error Function Seok-Ho Chang, Member, IEEE, Pamela C. Cosman, Fellow, IEEE, and Laurence B. Milstein,

More information

COHERENT M-ary quadrature amplitude modulation

COHERENT M-ary quadrature amplitude modulation 1994 IEEE TRANSACTIONS ON WIRELESS COUNICATIONS, VOL. 4, NO. 5, SEPTEBER 2005 Invertible Bounds for -QA in Rayleigh Fading Andrea Conti, ember, IEEE, oe Z. Win, Fellow, IEEE, and arco Chiani, Senior ember,

More information

Ergodic and Outage Capacity of Narrowband MIMO Gaussian Channels

Ergodic and Outage Capacity of Narrowband MIMO Gaussian Channels Ergodic and Outage Capacity of Narrowband MIMO Gaussian Channels Yang Wen Liang Department of Electrical and Computer Engineering The University of British Columbia, Vancouver, British Columbia Email:

More information

Agenda. Background. System model. Optimal Design of Adaptive Coded Modulation Schemes for Maximum Average Spectral E$ciency

Agenda. Background. System model. Optimal Design of Adaptive Coded Modulation Schemes for Maximum Average Spectral E$ciency Optimal Design of Adaptive Coded Modulation Schemes for Maximum Average Spectral E$ciency Henrik Holm Mohamed#Slim Alouini David Gesbert Geir E. %ien Frode B&hagen Kjell J. Hole Norwegian University of

More information

MGF Approach to the Analysis of Generalized Two-Ray Fading Models

MGF Approach to the Analysis of Generalized Two-Ray Fading Models MGF Approach to the Analysis of Generalized Two-Ray Fading Models Milind Rao, Student Member, IEEE, F. Javier Lopez-Martinez, Member, IEEE, Mohamed-Slim Alouini, Fellow, IEEE and Andrea Goldsmith, Fellow,

More information

Performance Analysis of a Threshold-Based Relay Selection Algorithm in Wireless Networks

Performance Analysis of a Threshold-Based Relay Selection Algorithm in Wireless Networks Communications and Networ, 2010, 2, 87-92 doi:10.4236/cn.2010.22014 Published Online May 2010 (http://www.scirp.org/journal/cn Performance Analysis of a Threshold-Based Relay Selection Algorithm in Wireless

More information

Trust Degree Based Beamforming for Multi-Antenna Cooperative Communication Systems

Trust Degree Based Beamforming for Multi-Antenna Cooperative Communication Systems Introduction Main Results Simulation Conclusions Trust Degree Based Beamforming for Multi-Antenna Cooperative Communication Systems Mojtaba Vaezi joint work with H. Inaltekin, W. Shin, H. V. Poor, and

More information

Approximate Capacity of Fast Fading Interference Channels with no CSIT

Approximate Capacity of Fast Fading Interference Channels with no CSIT Approximate Capacity of Fast Fading Interference Channels with no CSIT Joyson Sebastian, Can Karakus, Suhas Diggavi Abstract We develop a characterization of fading models, which assigns a number called

More information

PERFORMANCE ANALYSIS OF DPSK SYSTEMS WITH MIMO EMPLOYING EGC OVER WIRELESS FADING CHANNELS

PERFORMANCE ANALYSIS OF DPSK SYSTEMS WITH MIMO EMPLOYING EGC OVER WIRELESS FADING CHANNELS PERFORMANCE ANALYSIS OF DPSK SYSTEMS WITH MIMO EMPLOYING EGC OVER WIRELESS FADING CHANNELS by IYAD ABDELRAZZAQE AL FALUJAH A Dissertation Presented to the Faculty of the Graduate School of The University

More information

Performance of Multi Binary Turbo-Codes on Nakagami Flat Fading Channels

Performance of Multi Binary Turbo-Codes on Nakagami Flat Fading Channels Buletinul Ştiinţific al Universităţii "Politehnica" din Timişoara Seria ELECTRONICĂ şi TELECOMUNICAŢII TRANSACTIONS on ELECTRONICS and COMMUNICATIONS Tom 5(65), Fascicola -2, 26 Performance of Multi Binary

More information

arxiv:cs/ v1 [cs.it] 11 Sep 2006

arxiv:cs/ v1 [cs.it] 11 Sep 2006 0 High Date-Rate Single-Symbol ML Decodable Distributed STBCs for Cooperative Networks arxiv:cs/0609054v1 [cs.it] 11 Sep 2006 Zhihang Yi and Il-Min Kim Department of Electrical and Computer Engineering

More information