Capacity Region of the Two-Way Multi-Antenna Relay Channel with Analog Tx-Rx Beamforming

Size: px
Start display at page:

Download "Capacity Region of the Two-Way Multi-Antenna Relay Channel with Analog Tx-Rx Beamforming"

Transcription

1 Capacity Region of the Two-Way Multi-Antenna Relay Channel with Analog Tx-Rx Beamforming Authors: Christian Lameiro, Alfredo Nazábal, Fouad Gholam, Javier Vía and Ignacio Santamaría University of Cantabria, Santander, SPAIN

2 Outline 1 RF-MIMO Two-Way Relay Channel (RF-TWRC) 2 Capacity Region 3 Semidefinite Relaxation 4 Numerical Examples 5 Conclusion

3 Two-way relay channel Two-phase protocol R 2 Multiple access channel (MAC) R 2 Broadcast channel (BC). Amplify-and-forward (AF) strategy with two-phase protocol. MAC phase: the nodes transmit simultaneously to the relay. BC phase: the relay retransmits the linearly processed signal. Perfect CSI: each node is able to null out the interference.

4 Overview of the state-of-the-art The capacity region of the TWRC-AF when the source nodes are single antenna terminals with fixed powers has been computed (R. Zhang et al., 2009). A suboptimal algorithm has been recently proposed for the MIMO-TWRC with AF strategy (Wang and Zhang, 2010). The capacity region of the TWRC with decode-and-forward strategy has been computed (R.F. Wyrembelski et al., 2009). In this work, we consider the multi-antenna TWRC-AF when the nodes perform analog beamforming.

5 RF-MIMO terminals based on analog beamforming Reduction of system size, hardware cost and power consumption. Multiplexing gain equal to 1, but full array and diversity gains. Point-to-point links, BC and MAC thoroughly studied.

6 System model (I) In the MAC phase, each node performs transmit beamforming with {v 1,v 2 } C NS 1, respectively; and the relay receives through the beamformer u R C NR 1. In the BC phase, the relay applies the transmit beamformer v R C NR 1 to the received signal, and the nodes perform receive beamforming with {u 1,u 2 } C NS 1, respectively. The power transmitted by the relay, assuming without loss of generality v R 2 = 1, is p R = p 1 u H R H 1 v 1 2 +p2 u H R H 2 v 2 2 +σ 2 u R 2

7 System model (II) Assuming perfect CSI, each node removes the self-interference before decoding its desired message. Rx signal: y i = u H i HT i v Ru H R H jv j pj s j + r i, i,j = 1,2,i j H 1 and H 2 are flat fading MIMO channels, and r i is AWGN with zero mean and variance σ [1+ u 2 R 2 u H i H T i v 2] R, i = 1,2. Goal Under power constraints at the nodes and the relay, obtain u 1, u 2, u R, v 1, v 2, v R and the power allocation to operate at any point of the capacity boundary.

8 Outline 1 RF-MIMO Two-Way Relay Channel (RF-TWRC) 2 Capacity Region 3 Semidefinite Relaxation 4 Numerical Examples 5 Conclusion

9 Optimal node beamformers Maximum ratio transmission (MRT): v i = HH i u R H H i u, i = 1,2 R Maximum ratio combining (MRC): u i = HT i v R H T i v R, i = 1,2 The optimal relay beamformers lie in the subspace spanned by the columns of the channel matrices, and can be expressed as u R = Ua r H 1 = UG 1 v R = U a t H 2 = UG 2 where U contain the left eigenvectors of [H 1,H 2 ].

10 The achievable bidirectional rate pairs are R log p ef1 G T a t 2 σ (1+ a 2 r 2 G T 2 a 2) t R log p ef2 G 2 1+ T 1 a 2 t ( σ 2 1+ a r 2 ) G T 1 a t 2 where p efi = p i G H i a r 2 is the effective power of node i. Capacity region C(P 1,P 2,P R ) {R 12,R 21 } p 1 P 1,p 2 P 2 a t 2 =1,p R(p 1,p 2,a r) P R

11 A WSRmax problem cannot be invoked due to its non-convexity. The rate profile method (M. Mohseni et al., 2006) can be used to efficiently characterize the boundary of the capacity region. Proposed algorithm: for a fixed 0 α 1, bisection method over γ sum, solving the following optimization problem in each step. 3 G H 2 G H 2 minimize p 1 1 a r +p2 2 a r +σ 2 a r 2 p 1,p 2,a t,a r 2.5 subject to : p 2 G H 2 a r 2 G T 1 a t 2 σ 2 ( 1+ a r 2 G T 1 at 2 ) αγsum p 1 G H 1 a r 2 G T 2 a t 2 σ 2 ( 1+ a r 2 G T 2 at 2 ) (1 α)γsum R 2 (bps/hz) Capacity region Rate profile p 1 P p 2 P 2 R 1 (bps/hz) 0

12 Outline 1 RF-MIMO Two-Way Relay Channel (RF-TWRC) 2 Capacity Region 3 Semidefinite Relaxation 4 Numerical Examples 5 Conclusion

13 The initial problem is non-convex, but a solution can be found through a relaxed semidefinite programm (SDP). New optimization variables Ar = a r a H r Equivalent problem: A t = a t a H t minimize p 1 Tr(R 1 A r )+p 2 Tr(R 2 A r )+σ 2 Tr(A r ) p 1,p 2,A t,a r subject to : p 2 Tr(R 2 A r ) (1 α)γ sum σ 2 Tr(A r ) (1 α)γ sumσ 2 p 1 Tr(R 1 A r ) αγ sum σ 2 Tr(A r ) αγ sumσ 2 Tr(A t ) = 1 A t 0, rank(a t ) = 1, p 1 P 1 A r 0, rank(a r ) = 1, p 2 P 2 where R i = G i G H i, i = 1,2. Tr(R 2 A t) Tr(R 1 A t)

14 Analysis of the equivalent problem The equivalent problem is still non-convex due to: The cross products between the powers and the beamforming matrices. The rank-one constraints. Managing the non-convexity of the equivalent problem We can avoid the cross products by optimizing the effective powers instead, and changing the power constraints accordingly. We can find a solution of the equivalent problem relaxing the rank-one constraints, what is called a relaxed SDP.

15 Final optimization problem (I) Convex problem minimize p ef1,p ef2,a t,a r p ef1 +p ef2 +σ 2 Tr(A r ) subject to : p ef2 (1 α)γ sum σ 2 Tr(A r ) (1 α)γ sumσ 2 p ef1 αγ sum σ 2 Tr(A r ) αγ sumσ 2 Tr(A t ) = 1 A t 0 A r 0 p ef1 P 1 Tr(R 1 A r ) p ef2 P 2 Tr(R 2 A r ) Tr(R 2 A t) Tr(R 1 A t)

16 Final optimization problem (II) Key observation: if the rank of the optimal beamforming matrices is greater than one, we are able to find an optimal rank-one solution through the matrix decomposition theorem for Hermitian matrices (Y. Huang and S. Zhang, 2007). Optimal powers After solving the optimization problem, the optimal powers are given by p ( ) 1 = p ( ) 2 = ( Tr ( Tr p ( ) ef 1 R 1 A ( ) r p ( ) ef 2 R 2 A ( ) r ) )

17 Outline 1 RF-MIMO Two-Way Relay Channel (RF-TWRC) 2 Capacity Region 3 Semidefinite Relaxation 4 Numerical Examples 5 Conclusion

18 Conventional MIMO vs. analog beamforming Example scenario with single-antenna nodes, i.e., N S = 1, and fixed powers. The relay has N R = 4 antennas, and the SNR is 10 db Conventional MIMO RF MIMO Conventional MIMO RF MIMO 1 1 R 2 (bps/hz) R 2 (bps/hz) ρ = ρ = R 1 (bps/hz) R 1 (bps/hz) As ρ increases, i.e., more collinear channels, the capacity gap between analog and conventional beamforming schemes goes to 0.

19 Capacity region Example scenario with N S = 2 and N R = 4. The SNR is 10 db and the channels have unit variance maximum power transmission 2 R 2 (bps/hz) RF TWRC SISO TWRC SISO TWRC without power optimization R 1 (bps/hz) Some points of the boundary are achieved when the nodes do not transmit at maximum power.

20 Sum rate vs. SNR analysis The figure shows the sum-rate capacity through Monte Carlo simulations, considering N S = 1, N R = 4 and fixed powers. 7 6 RF MIMO Conventional MIMO SISO 5 Sum Rate (bps/hz) SNR (db)

21 Outline 1 RF-MIMO Two-Way Relay Channel (RF-TWRC) 2 Capacity Region 3 Semidefinite Relaxation 4 Numerical Examples 5 Conclusion

22 Conclusion RF-MIMO wireless radios result in low-cost systems with reduced power consumption. The capacity region of the RF-TWRC has been completely characterized. The optimal beamforming vectors and the power allocation can be efficiently computed using convex optimization techniques. The capacity gap between analog and conventional beamforming schemes, when the nodes are single-antenna, goes towards 0 as the angle between the channels decreases.

Exploiting Partial Channel Knowledge at the Transmitter in MISO and MIMO Wireless

Exploiting Partial Channel Knowledge at the Transmitter in MISO and MIMO Wireless Exploiting Partial Channel Knowledge at the Transmitter in MISO and MIMO Wireless SPAWC 2003 Rome, Italy June 18, 2003 E. Yoon, M. Vu and Arogyaswami Paulraj Stanford University Page 1 Outline Introduction

More information

ELEC E7210: Communication Theory. Lecture 10: MIMO systems

ELEC E7210: Communication Theory. Lecture 10: MIMO systems ELEC E7210: Communication Theory Lecture 10: MIMO systems Matrix Definitions, Operations, and Properties (1) NxM matrix a rectangular array of elements a A. an 11 1....... a a 1M. NM B D C E ermitian transpose

More information

Single-User MIMO systems: Introduction, capacity results, and MIMO beamforming

Single-User MIMO systems: Introduction, capacity results, and MIMO beamforming Single-User MIMO systems: Introduction, capacity results, and MIMO beamforming Master Universitario en Ingeniería de Telecomunicación I. Santamaría Universidad de Cantabria Contents Introduction Multiplexing,

More information

Half-Duplex Gaussian Relay Networks with Interference Processing Relays

Half-Duplex Gaussian Relay Networks with Interference Processing Relays Half-Duplex Gaussian Relay Networks with Interference Processing Relays Bama Muthuramalingam Srikrishna Bhashyam Andrew Thangaraj Department of Electrical Engineering Indian Institute of Technology Madras

More information

Degrees-of-Freedom for the 4-User SISO Interference Channel with Improper Signaling

Degrees-of-Freedom for the 4-User SISO Interference Channel with Improper Signaling Degrees-of-Freedom for the -User SISO Interference Channel with Improper Signaling C Lameiro and I Santamaría Dept of Communications Engineering University of Cantabria 9005 Santander Cantabria Spain Email:

More information

Multi-User Gain Maximum Eigenmode Beamforming, and IDMA. Peng Wang and Li Ping City University of Hong Kong

Multi-User Gain Maximum Eigenmode Beamforming, and IDMA. Peng Wang and Li Ping City University of Hong Kong Multi-User Gain Maximum Eigenmode Beamforming, and IDMA Peng Wang and Li Ping City University of Hong Kong 1 Contents Introduction Multi-user gain (MUG) Maximum eigenmode beamforming (MEB) MEB performance

More information

Trust Degree Based Beamforming for Multi-Antenna Cooperative Communication Systems

Trust Degree Based Beamforming for Multi-Antenna Cooperative Communication Systems Introduction Main Results Simulation Conclusions Trust Degree Based Beamforming for Multi-Antenna Cooperative Communication Systems Mojtaba Vaezi joint work with H. Inaltekin, W. Shin, H. V. Poor, and

More information

Incremental Coding over MIMO Channels

Incremental Coding over MIMO Channels Model Rateless SISO MIMO Applications Summary Incremental Coding over MIMO Channels Anatoly Khina, Tel Aviv University Joint work with: Yuval Kochman, MIT Uri Erez, Tel Aviv University Gregory W. Wornell,

More information

TO exploit the benefits (e.g., diversity or multiplexing. A General Criterion for Analog Tx-Rx Beamforming under OFDM Transmissions

TO exploit the benefits (e.g., diversity or multiplexing. A General Criterion for Analog Tx-Rx Beamforming under OFDM Transmissions A General Criterion for Analog Tx-Rx Beamforming under OFDM Transmissions Javier Vía, Member, IEEE, Ignacio Santamaría, Senior Member, IEEE, Victor Elvira, Student Member, IEEE and Ralf Eickhoff, Member,

More information

12.4 Known Channel (Water-Filling Solution)

12.4 Known Channel (Water-Filling Solution) ECEn 665: Antennas and Propagation for Wireless Communications 54 2.4 Known Channel (Water-Filling Solution) The channel scenarios we have looed at above represent special cases for which the capacity

More information

Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems

Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User

More information

Lecture 5: Antenna Diversity and MIMO Capacity Theoretical Foundations of Wireless Communications 1. Overview. CommTh/EES/KTH

Lecture 5: Antenna Diversity and MIMO Capacity Theoretical Foundations of Wireless Communications 1. Overview. CommTh/EES/KTH : Antenna Diversity and Theoretical Foundations of Wireless Communications Wednesday, May 4, 206 9:00-2:00, Conference Room SIP Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication

More information

Generalized Signal Alignment: On the Achievable DoF for Multi-User MIMO Two-Way Relay Channels

Generalized Signal Alignment: On the Achievable DoF for Multi-User MIMO Two-Way Relay Channels Generalized Signal Alignment: On the Achievable DoF for Multi-User MIMO Two-Way Relay Channels 1 arxiv:14050718v1 [csit] 4 May 014 Kangqi Liu, Student Member, IEEE, and Meixia Tao, Senior Member, IEEE

More information

Physical-Layer MIMO Relaying

Physical-Layer MIMO Relaying Model Gaussian SISO MIMO Gauss.-BC General. Physical-Layer MIMO Relaying Anatoly Khina, Tel Aviv University Joint work with: Yuval Kochman, MIT Uri Erez, Tel Aviv University August 5, 2011 Model Gaussian

More information

EE 5407 Part II: Spatial Based Wireless Communications

EE 5407 Part II: Spatial Based Wireless Communications EE 5407 Part II: Spatial Based Wireless Communications Instructor: Prof. Rui Zhang E-mail: rzhang@i2r.a-star.edu.sg Website: http://www.ece.nus.edu.sg/stfpage/elezhang/ Lecture II: Receive Beamforming

More information

Optimal Beamforming for Two-Way Multi-Antenna Relay Channel with Analogue Network Coding

Optimal Beamforming for Two-Way Multi-Antenna Relay Channel with Analogue Network Coding Optimal Beamforming for Two-Way Multi-Antenna Relay Channel with Analogue Network Coding Rui Zhang, Member, IEEE, Ying-Chang Liang, Senior Member, IEEE, Chin Choy Chai, Member, IEEE, and Shuguang Cui,

More information

Optimal Transmit Strategies in MIMO Ricean Channels with MMSE Receiver

Optimal Transmit Strategies in MIMO Ricean Channels with MMSE Receiver Optimal Transmit Strategies in MIMO Ricean Channels with MMSE Receiver E. A. Jorswieck 1, A. Sezgin 1, H. Boche 1 and E. Costa 2 1 Fraunhofer Institute for Telecommunications, Heinrich-Hertz-Institut 2

More information

Novel spectrum sensing schemes for Cognitive Radio Networks

Novel spectrum sensing schemes for Cognitive Radio Networks Novel spectrum sensing schemes for Cognitive Radio Networks Cantabria University Santander, May, 2015 Supélec, SCEE Rennes, France 1 The Advanced Signal Processing Group http://gtas.unican.es The Advanced

More information

On the Optimization of Two-way AF MIMO Relay Channel with Beamforming

On the Optimization of Two-way AF MIMO Relay Channel with Beamforming On the Optimization of Two-way AF MIMO Relay Channel with Beamforming Namjeong Lee, Chan-Byoung Chae, Osvaldo Simeone, Joonhyuk Kang Information and Communications Engineering ICE, KAIST, Korea Email:

More information

Limited Feedback in Wireless Communication Systems

Limited Feedback in Wireless Communication Systems Limited Feedback in Wireless Communication Systems - Summary of An Overview of Limited Feedback in Wireless Communication Systems Gwanmo Ku May 14, 17, and 21, 2013 Outline Transmitter Ant. 1 Channel N

More information

Cooperative Communication in Spatially Modulated MIMO systems

Cooperative Communication in Spatially Modulated MIMO systems Cooperative Communication in Spatially Modulated MIMO systems Multimedia Wireless Networks (MWN) Group, Department Of Electrical Engineering, Indian Institute of Technology, Kanpur, India {neerajv,adityaj}@iitk.ac.in

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. This document is donloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title Amplify-and-forard based to-ay relay ARQ system ith relay combination Author(s) Luo, Sheng; Teh, Kah Chan

More information

DEVICE-TO-DEVICE COMMUNICATIONS: THE PHYSICAL LAYER SECURITY ADVANTAGE

DEVICE-TO-DEVICE COMMUNICATIONS: THE PHYSICAL LAYER SECURITY ADVANTAGE DEVICE-TO-DEVICE COMMUNICATIONS: THE PHYSICAL LAYER SECURITY ADVANTAGE Daohua Zhu, A. Lee Swindlehurst, S. Ali A. Fakoorian, Wei Xu, Chunming Zhao National Mobile Communications Research Lab, Southeast

More information

Anatoly Khina. Joint work with: Uri Erez, Ayal Hitron, Idan Livni TAU Yuval Kochman HUJI Gregory W. Wornell MIT

Anatoly Khina. Joint work with: Uri Erez, Ayal Hitron, Idan Livni TAU Yuval Kochman HUJI Gregory W. Wornell MIT Network Modulation: Transmission Technique for MIMO Networks Anatoly Khina Joint work with: Uri Erez, Ayal Hitron, Idan Livni TAU Yuval Kochman HUJI Gregory W. Wornell MIT ACC Workshop, Feder Family Award

More information

ABSTRACT. Cooperative Detection and Network Coding in Wireless Networks. Mohammed W. Baidas, Master of Science, 2009

ABSTRACT. Cooperative Detection and Network Coding in Wireless Networks. Mohammed W. Baidas, Master of Science, 2009 ABSTRACT Title of Thesis: Cooperative Detection and Network Coding in Wireless Networks Mohammed W. Baidas, Master of Science, 2009 Thesis directed by: Professor K. J. Ray Liu Department of Electrical

More information

Vector Channel Capacity with Quantized Feedback

Vector Channel Capacity with Quantized Feedback Vector Channel Capacity with Quantized Feedback Sudhir Srinivasa and Syed Ali Jafar Electrical Engineering and Computer Science University of California Irvine, Irvine, CA 9697-65 Email: syed@ece.uci.edu,

More information

Under sum power constraint, the capacity of MIMO channels

Under sum power constraint, the capacity of MIMO channels IEEE TRANSACTIONS ON COMMUNICATIONS, VOL 6, NO 9, SEPTEMBER 22 242 Iterative Mode-Dropping for the Sum Capacity of MIMO-MAC with Per-Antenna Power Constraint Yang Zhu and Mai Vu Abstract We propose an

More information

Degrees-of-Freedom Robust Transmission for the K-user Distributed Broadcast Channel

Degrees-of-Freedom Robust Transmission for the K-user Distributed Broadcast Channel /33 Degrees-of-Freedom Robust Transmission for the K-user Distributed Broadcast Channel Presented by Paul de Kerret Joint work with Antonio Bazco, Nicolas Gresset, and David Gesbert ESIT 2017 in Madrid,

More information

ELG7177: MIMO Comunications. Lecture 8

ELG7177: MIMO Comunications. Lecture 8 ELG7177: MIMO Comunications Lecture 8 Dr. Sergey Loyka EECS, University of Ottawa S. Loyka Lecture 8, ELG7177: MIMO Comunications 1 / 32 Multi-User Systems Can multiple antennas offer advantages for multi-user

More information

Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems

Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User

More information

POWER ALLOCATION AND OPTIMAL TX/RX STRUCTURES FOR MIMO SYSTEMS

POWER ALLOCATION AND OPTIMAL TX/RX STRUCTURES FOR MIMO SYSTEMS POWER ALLOCATION AND OPTIMAL TX/RX STRUCTURES FOR MIMO SYSTEMS R. Cendrillon, O. Rousseaux and M. Moonen SCD/ESAT, Katholiee Universiteit Leuven, Belgium {raphael.cendrillon, olivier.rousseaux, marc.moonen}@esat.uleuven.ac.be

More information

On the Optimality of Multiuser Zero-Forcing Precoding in MIMO Broadcast Channels

On the Optimality of Multiuser Zero-Forcing Precoding in MIMO Broadcast Channels On the Optimality of Multiuser Zero-Forcing Precoding in MIMO Broadcast Channels Saeed Kaviani and Witold A. Krzymień University of Alberta / TRLabs, Edmonton, Alberta, Canada T6G 2V4 E-mail: {saeed,wa}@ece.ualberta.ca

More information

Lecture 8: MIMO Architectures (II) Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH

Lecture 8: MIMO Architectures (II) Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH MIMO : MIMO Theoretical Foundations of Wireless Communications 1 Wednesday, May 25, 2016 09:15-12:00, SIP 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication 1 / 20 Overview MIMO

More information

Sum-Rate Maximization in Two-Way AF MIMO Relaying: Polynomial Time Solutions to a Class of DC Programming Problems

Sum-Rate Maximization in Two-Way AF MIMO Relaying: Polynomial Time Solutions to a Class of DC Programming Problems 5478 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 10, OCTOBER 2012 Sum-Rate Maximization in Two-Way AF MIMO Relaying: Polynomial Time Solutions to a Class of DC Programming Problems Arash Khabbazibasmenj,

More information

Lecture 7 MIMO Communica2ons

Lecture 7 MIMO Communica2ons Wireless Communications Lecture 7 MIMO Communica2ons Prof. Chun-Hung Liu Dept. of Electrical and Computer Engineering National Chiao Tung University Fall 2014 1 Outline MIMO Communications (Chapter 10

More information

The Optimality of Beamforming: A Unified View

The Optimality of Beamforming: A Unified View The Optimality of Beamforming: A Unified View Sudhir Srinivasa and Syed Ali Jafar Electrical Engineering and Computer Science University of California Irvine, Irvine, CA 92697-2625 Email: sudhirs@uciedu,

More information

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1 : Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1 Rayleigh Friday, May 25, 2018 09:00-11:30, Kansliet 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless

More information

Improper Gaussian signaling for

Improper Gaussian signaling for Improper Gaussian signaling for multiple-access channels in underlay cognitive radio Christian Lameiro, Member, IEEE, Ignacio Santamaría, Senior Member, IEEE, arxiv:7.09768v [cs.it] 27 Nov 207 and Peter

More information

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH : Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1 Rayleigh Wednesday, June 1, 2016 09:15-12:00, SIP 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication

More information

When does vectored Multiple Access Channels (MAC) optimal power allocation converge to an FDMA solution?

When does vectored Multiple Access Channels (MAC) optimal power allocation converge to an FDMA solution? When does vectored Multiple Access Channels MAC optimal power allocation converge to an FDMA solution? Vincent Le Nir, Marc Moonen, Jan Verlinden, Mamoun Guenach Abstract Vectored Multiple Access Channels

More information

The Effect of Channel State Information on Optimum Energy Allocation and Energy Efficiency of Cooperative Wireless Transmission Systems

The Effect of Channel State Information on Optimum Energy Allocation and Energy Efficiency of Cooperative Wireless Transmission Systems The Effect of Channel State Information on Optimum Energy Allocation and Energy Efficiency of Cooperative Wireless Transmission Systems Jie Yang and D.R. Brown III Worcester Polytechnic Institute Department

More information

The Effect of Spatial Correlations on MIMO Capacity: A (not so) Large N Analytical Approach: Aris Moustakas 1, Steven Simon 1 & Anirvan Sengupta 1,2

The Effect of Spatial Correlations on MIMO Capacity: A (not so) Large N Analytical Approach: Aris Moustakas 1, Steven Simon 1 & Anirvan Sengupta 1,2 The Effect of Spatial Correlations on MIMO Capacity: A (not so) Large N Analytical Approach: Aris Moustakas 1, Steven Simon 1 & Anirvan Sengupta 1, 1, Rutgers University Outline Aim: Calculate statistics

More information

ROBUST BEAMFORMING FOR OFDM MODULATED TWO-WAY MIMO RELAY NETWORK. A Thesis JIANWEI ZHOU

ROBUST BEAMFORMING FOR OFDM MODULATED TWO-WAY MIMO RELAY NETWORK. A Thesis JIANWEI ZHOU ROBUST BEAMFORMING FOR OFDM MODULATED TWO-WAY MIMO RELAY NETWORK A Thesis by JIANWEI ZHOU Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements

More information

Approximate Ergodic Capacity of a Class of Fading Networks

Approximate Ergodic Capacity of a Class of Fading Networks Approximate Ergodic Capacity of a Class of Fading Networks Sang-Woon Jeon, Chien-Yi Wang, and Michael Gastpar School of Computer and Communication Sciences EPFL Lausanne, Switzerland {sangwoon.jeon, chien-yi.wang,

More information

High SNR Analysis for MIMO Broadcast Channels: Dirty Paper Coding vs. Linear Precoding

High SNR Analysis for MIMO Broadcast Channels: Dirty Paper Coding vs. Linear Precoding High SNR Analysis for MIMO Broadcast Channels: Dirty Paper Coding vs. Linear Precoding arxiv:cs/062007v2 [cs.it] 9 Dec 2006 Juyul Lee and Nihar Jindal Department of Electrical and Computer Engineering

More information

A Systematic Approach for Interference Alignment in CSIT-less Relay-Aided X-Networks

A Systematic Approach for Interference Alignment in CSIT-less Relay-Aided X-Networks A Systematic Approach for Interference Alignment in CSIT-less Relay-Aided X-Networks Daniel Frank, Karlheinz Ochs, Aydin Sezgin Chair of Communication Systems RUB, Germany Email: {danielfrank, karlheinzochs,

More information

Signaling Design of Two-Way MIMO Full-Duplex Channel: Optimality Under Imperfect Transmit Front-End Chain

Signaling Design of Two-Way MIMO Full-Duplex Channel: Optimality Under Imperfect Transmit Front-End Chain DRAFT 1 Signaling Design of Two-Way MIMO Full-Duplex Channel: Optimality Under Imperfect Transmit Front-End Chain Shuqiao Jia and Behnaam Aazhang, arxiv:1506.00330v1 [cs.it] 1 Jun 2015 Abstract We derive

More information

Performance Analysis of MIMO Relay Networks with Beamforming. Hyunjun Kim

Performance Analysis of MIMO Relay Networks with Beamforming. Hyunjun Kim Performance Analysis of MIMO Relay Networks with Beamforming by Hyunjun Kim A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved July 2012 by

More information

Secure Degrees of Freedom of the MIMO Multiple Access Wiretap Channel

Secure Degrees of Freedom of the MIMO Multiple Access Wiretap Channel Secure Degrees of Freedom of the MIMO Multiple Access Wiretap Channel Pritam Mukherjee Sennur Ulukus Department of Electrical and Computer Engineering University of Maryland, College Park, MD 074 pritamm@umd.edu

More information

Cooperative Interference Alignment for the Multiple Access Channel

Cooperative Interference Alignment for the Multiple Access Channel 1 Cooperative Interference Alignment for the Multiple Access Channel Theodoros Tsiligkaridis, Member, IEEE Abstract Interference alignment (IA) has emerged as a promising technique for the interference

More information

Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung

Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for Telecommunications and High-Frequency Techniques Department of Communications

More information

Comparisons of Performance of Various Transmission Schemes of MIMO System Operating under Rician Channel Conditions

Comparisons of Performance of Various Transmission Schemes of MIMO System Operating under Rician Channel Conditions Comparisons of Performance of Various ransmission Schemes of MIMO System Operating under ician Channel Conditions Peerapong Uthansakul and Marek E. Bialkowski School of Information echnology and Electrical

More information

Capacity optimization for Rician correlated MIMO wireless channels

Capacity optimization for Rician correlated MIMO wireless channels Capacity optimization for Rician correlated MIMO wireless channels Mai Vu, and Arogyaswami Paulraj Information Systems Laboratory, Department of Electrical Engineering Stanford University, Stanford, CA

More information

Multiuser Downlink Beamforming: Rank-Constrained SDP

Multiuser Downlink Beamforming: Rank-Constrained SDP Multiuser Downlink Beamforming: Rank-Constrained SDP Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2018-19, HKUST, Hong Kong Outline of Lecture

More information

On the Degrees of Freedom of the Finite State Compound MISO Broadcast Channel

On the Degrees of Freedom of the Finite State Compound MISO Broadcast Channel On the Degrees of Freedom of the Finite State Compound MISO Broadcast Channel Invited Paper Chenwei Wang, Tiangao Gou, Syed A. Jafar Electrical Engineering and Computer Science University of California,

More information

Lecture 6: Modeling of MIMO Channels Theoretical Foundations of Wireless Communications 1

Lecture 6: Modeling of MIMO Channels Theoretical Foundations of Wireless Communications 1 Fading : Theoretical Foundations of Wireless Communications 1 Thursday, May 3, 2018 9:30-12:00, Conference Room SIP 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication 1 / 23 Overview

More information

Lecture 6: Modeling of MIMO Channels Theoretical Foundations of Wireless Communications 1. Overview. CommTh/EES/KTH

Lecture 6: Modeling of MIMO Channels Theoretical Foundations of Wireless Communications 1. Overview. CommTh/EES/KTH : Theoretical Foundations of Wireless Communications 1 Wednesday, May 11, 2016 9:00-12:00, Conference Room SIP 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication 1 / 1 Overview

More information

Homework 5 Solutions. Problem 1

Homework 5 Solutions. Problem 1 Homework 5 Solutions Problem 1 (a Closed form Chernoff upper-bound for the uncoded 4-QAM average symbol error rate over Rayleigh flat fading MISO channel with = 4, assuming transmit-mrc The vector channel

More information

Transmit Directions and Optimality of Beamforming in MIMO-MAC with Partial CSI at the Transmitters 1

Transmit Directions and Optimality of Beamforming in MIMO-MAC with Partial CSI at the Transmitters 1 2005 Conference on Information Sciences and Systems, The Johns Hopkins University, March 6 8, 2005 Transmit Directions and Optimality of Beamforming in MIMO-MAC with Partial CSI at the Transmitters Alkan

More information

Ergodic and Outage Capacity of Narrowband MIMO Gaussian Channels

Ergodic and Outage Capacity of Narrowband MIMO Gaussian Channels Ergodic and Outage Capacity of Narrowband MIMO Gaussian Channels Yang Wen Liang Department of Electrical and Computer Engineering The University of British Columbia April 19th, 005 Outline of Presentation

More information

Multiple Antennas in Wireless Communications

Multiple Antennas in Wireless Communications Multiple Antennas in Wireless Communications Luca Sanguinetti Department of Information Engineering Pisa University luca.sanguinetti@iet.unipi.it April, 2009 Luca Sanguinetti (IET) MIMO April, 2009 1 /

More information

Degrees of freedom of wireless interference network

Degrees of freedom of wireless interference network Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 2011 Degrees of freedom of wireless interference network Lei Ke Iowa State University Follow this and additional

More information

ELEC546 MIMO Channel Capacity

ELEC546 MIMO Channel Capacity ELEC546 MIMO Channel Capacity Vincent Lau Simplified Version.0 //2004 MIMO System Model Transmitter with t antennas & receiver with r antennas. X Transmitted Symbol, received symbol Channel Matrix (Flat

More information

Degrees of Freedom Region of the Gaussian MIMO Broadcast Channel with Common and Private Messages

Degrees of Freedom Region of the Gaussian MIMO Broadcast Channel with Common and Private Messages Degrees of Freedom Region of the Gaussian MIMO Broadcast hannel with ommon and Private Messages Ersen Ekrem Sennur Ulukus Department of Electrical and omputer Engineering University of Maryland, ollege

More information

Multiple Antennas for MIMO Communications - Basic Theory

Multiple Antennas for MIMO Communications - Basic Theory Multiple Antennas for MIMO Communications - Basic Theory 1 Introduction The multiple-input multiple-output (MIMO) technology (Fig. 1) is a breakthrough in wireless communication system design. It uses

More information

Joint FEC Encoder and Linear Precoder Design for MIMO Systems with Antenna Correlation

Joint FEC Encoder and Linear Precoder Design for MIMO Systems with Antenna Correlation Joint FEC Encoder and Linear Precoder Design for MIMO Systems with Antenna Correlation Chongbin Xu, Peng Wang, Zhonghao Zhang, and Li Ping City University of Hong Kong 1 Outline Background Mutual Information

More information

MIMO Multiway Relaying with Clustered Full Data Exchange: Signal Space Alignment and Degrees of Freedom

MIMO Multiway Relaying with Clustered Full Data Exchange: Signal Space Alignment and Degrees of Freedom 009/TWC2042323243, IEEE Transactions on Wireless Communications IO ultiway Relaying with Clustered Full Data Exchange: Signal Space Alignment and Degrees of Freedom Xiaojun Yuan, ember, IEEE Abstract Recently,

More information

Lecture 2. Capacity of the Gaussian channel

Lecture 2. Capacity of the Gaussian channel Spring, 207 5237S, Wireless Communications II 2. Lecture 2 Capacity of the Gaussian channel Review on basic concepts in inf. theory ( Cover&Thomas: Elements of Inf. Theory, Tse&Viswanath: Appendix B) AWGN

More information

SOS-BASED BLIND CHANNEL ESTIMATION IN MULTIUSER SPACE-TIME BLOCK CODED SYSTEMS

SOS-BASED BLIND CHANNEL ESTIMATION IN MULTIUSER SPACE-TIME BLOCK CODED SYSTEMS SOS-BASED BLIND CHANNEL ESTIMATION IN MULTIUSER SPACE-TIME BLOCK CODED SYSTEMS Javier Vía, Ignacio Santamaría Dept. of Communications Engineering University of Cantabria, Spain e-mail:jvia,nacho}@gtas.dicom.unican.es

More information

Performance Analysis of MIMO-OSTBC based Selective DF Cooperative Wireless System with Node Mobility and Channel Estimation Errors

Performance Analysis of MIMO-OSTBC based Selective DF Cooperative Wireless System with Node Mobility and Channel Estimation Errors System Model Performance Analysis of MIMO-OSTBC based Selective DF Cooperative Wireless System with Node Mobility and Channel Estimation Errors Multimedia Wireless Networks (MWN) Group, Indian Institute

More information

Dirty Paper Coding vs. TDMA for MIMO Broadcast Channels

Dirty Paper Coding vs. TDMA for MIMO Broadcast Channels TO APPEAR IEEE INTERNATIONAL CONFERENCE ON COUNICATIONS, JUNE 004 1 Dirty Paper Coding vs. TDA for IO Broadcast Channels Nihar Jindal & Andrea Goldsmith Dept. of Electrical Engineering, Stanford University

More information

Morning Session Capacity-based Power Control. Department of Electrical and Computer Engineering University of Maryland

Morning Session Capacity-based Power Control. Department of Electrical and Computer Engineering University of Maryland Morning Session Capacity-based Power Control Şennur Ulukuş Department of Electrical and Computer Engineering University of Maryland So Far, We Learned... Power control with SIR-based QoS guarantees Suitable

More information

Spectrum Leasing via Cooperation for Enhanced. Physical-Layer Secrecy

Spectrum Leasing via Cooperation for Enhanced. Physical-Layer Secrecy Spectrum Leasing via Cooperation for Enhanced 1 Physical-Layer Secrecy Keonkook Lee, Member, IEEE, Chan-Byoung Chae, Senior Member, IEEE, Joonhyuk Kang, Member, IEEE arxiv:1205.0085v1 [cs.it] 1 May 2012

More information

Random Access Protocols for Massive MIMO

Random Access Protocols for Massive MIMO Random Access Protocols for Massive MIMO Elisabeth de Carvalho Jesper H. Sørensen Petar Popovski Aalborg University Denmark Emil Björnson Erik G. Larsson Linköping University Sweden 2016 Tyrrhenian International

More information

Semi-Definite Programming (SDP) Relaxation Based Semi-Blind Channel Estimation for Frequency-Selective MIMO MC-CDMA Systems

Semi-Definite Programming (SDP) Relaxation Based Semi-Blind Channel Estimation for Frequency-Selective MIMO MC-CDMA Systems Semi-Definite Programming (SDP) Relaxation Based Semi-Blind Channel Estimation for Frequency-Selective MIMO MC-CDMA Systems Naveen K. D. Venkategowda Department of Electrical Engineering Indian Institute

More information

Achievable Outage Rate Regions for the MISO Interference Channel

Achievable Outage Rate Regions for the MISO Interference Channel Achievable Outage Rate Regions for the MISO Interference Channel Johannes Lindblom, Eleftherios Karipidis and Erik G. Larsson Linköping University Post Print N.B.: When citing this work, cite the original

More information

Secrecy Outage Performance of Cooperative Relay Network With Diversity Combining

Secrecy Outage Performance of Cooperative Relay Network With Diversity Combining Secrecy Outage erformance of Cooperative Relay Network With Diversity Combining Khyati Chopra Dept. of lectrical ngineering Indian Institute of Technology, Delhi New Delhi-110016, India mail: eez148071@ee.iitd.ac.in

More information

L interférence dans les réseaux non filaires

L interférence dans les réseaux non filaires L interférence dans les réseaux non filaires Du contrôle de puissance au codage et alignement Jean-Claude Belfiore Télécom ParisTech 7 mars 2013 Séminaire Comelec Parts Part 1 Part 2 Part 3 Part 4 Part

More information

Simultaneous SDR Optimality via a Joint Matrix Decomp.

Simultaneous SDR Optimality via a Joint Matrix Decomp. Simultaneous SDR Optimality via a Joint Matrix Decomposition Joint work with: Yuval Kochman, MIT Uri Erez, Tel Aviv Uni. May 26, 2011 Model: Source Multicasting over MIMO Channels z 1 H 1 y 1 Rx1 ŝ 1 s

More information

Interactive Interference Alignment

Interactive Interference Alignment Interactive Interference Alignment Quan Geng, Sreeram annan, and Pramod Viswanath Coordinated Science Laboratory and Dept. of ECE University of Illinois, Urbana-Champaign, IL 61801 Email: {geng5, kannan1,

More information

Outline - Part III: Co-Channel Interference

Outline - Part III: Co-Channel Interference General Outline Part 0: Background, Motivation, and Goals. Part I: Some Basics. Part II: Diversity Systems. Part III: Co-Channel Interference. Part IV: Multi-Hop Communication Systems. Outline - Part III:

More information

Multi-Antenna Cooperative Wireless Systems: A Diversity-Multiplexing Tradeoff Perspective

Multi-Antenna Cooperative Wireless Systems: A Diversity-Multiplexing Tradeoff Perspective IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. X, NO. X, DECEMBER 007 Multi-Antenna Cooperative Wireless Systems: A Diversity-Multiplexing Tradeoff Perspective Melda Yuksel, Student Member, IEEE, and Elza

More information

Mode Selection for Multi-Antenna Broadcast Channels

Mode Selection for Multi-Antenna Broadcast Channels Mode Selection for Multi-Antenna Broadcast Channels Gill November 22, 2011 Gill (University of Delaware) November 22, 2011 1 / 25 Part I Mode Selection for MISO BC with Perfect/Imperfect CSI [1]-[3] Gill

More information

Sub-modularity and Antenna Selection in MIMO systems

Sub-modularity and Antenna Selection in MIMO systems Sub-modularity and Antenna Selection in MIMO systems Rahul Vaze Harish Ganapathy Point-to-Point MIMO Channel 1 1 Tx H Rx N t N r Point-to-Point MIMO Channel 1 1 Tx H Rx N t N r Antenna Selection Transmit

More information

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 15, NO. 11, NOVEMBER

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 15, NO. 11, NOVEMBER IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 15, NO. 11, NOVEMBER 2016 7357 Buffer-Aided Diamond Relay Network With Block Fading and Inter-Relay Interference Renato Simoni, Vahid Jamali, Student

More information

Cooperative Transmission for Wireless Relay Networks Using Limited Feedback

Cooperative Transmission for Wireless Relay Networks Using Limited Feedback 1 Cooperative Transmission for Wireless Relay Networks Using Limited Feedback Javier M. Paredes, Babak H. Khalaj, and Alex B. Gershman arxiv:0904.1369v2 [cs.it] 29 Jul 2009 Abstract To achieve the available

More information

On the Capacity and Degrees of Freedom Regions of MIMO Interference Channels with Limited Receiver Cooperation

On the Capacity and Degrees of Freedom Regions of MIMO Interference Channels with Limited Receiver Cooperation On the Capacity and Degrees of Freedom Regions of MIMO Interference Channels with Limited Receiver Cooperation Mehdi Ashraphijuo, Vaneet Aggarwal and Xiaodong Wang 1 arxiv:1308.3310v1 [cs.it] 15 Aug 2013

More information

An Uplink-Downlink Duality for Cloud Radio Access Network

An Uplink-Downlink Duality for Cloud Radio Access Network An Uplin-Downlin Duality for Cloud Radio Access Networ Liang Liu, Prati Patil, and Wei Yu Department of Electrical and Computer Engineering University of Toronto, Toronto, ON, 5S 3G4, Canada Emails: lianguotliu@utorontoca,

More information

Pilot Optimization and Channel Estimation for Multiuser Massive MIMO Systems

Pilot Optimization and Channel Estimation for Multiuser Massive MIMO Systems 1 Pilot Optimization and Channel Estimation for Multiuser Massive MIMO Systems Tadilo Endeshaw Bogale and Long Bao Le Institute National de la Recherche Scientifique (INRS) Université de Québec, Montréal,

More information

Optimum Transmission Scheme for a MISO Wireless System with Partial Channel Knowledge and Infinite K factor

Optimum Transmission Scheme for a MISO Wireless System with Partial Channel Knowledge and Infinite K factor Optimum Transmission Scheme for a MISO Wireless System with Partial Channel Knowledge and Infinite K factor Mai Vu, Arogyaswami Paulraj Information Systems Laboratory, Department of Electrical Engineering

More information

IN this paper, we show that the scalar Gaussian multiple-access

IN this paper, we show that the scalar Gaussian multiple-access 768 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 5, MAY 2004 On the Duality of Gaussian Multiple-Access and Broadcast Channels Nihar Jindal, Student Member, IEEE, Sriram Vishwanath, and Andrea

More information

COM Optimization for Communications 8. Semidefinite Programming

COM Optimization for Communications 8. Semidefinite Programming COM524500 Optimization for Communications 8. Semidefinite Programming Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University 1 Semidefinite Programming () Inequality form: min c T x s.t.

More information

Ergodic and Outage Capacity of Narrowband MIMO Gaussian Channels

Ergodic and Outage Capacity of Narrowband MIMO Gaussian Channels Ergodic and Outage Capacity of Narrowband MIMO Gaussian Channels Yang Wen Liang Department of Electrical and Computer Engineering The University of British Columbia, Vancouver, British Columbia Email:

More information

Comparison of Full-Duplex and Half-Duplex Modes with a Fixed Amplify-and-Forward Relay

Comparison of Full-Duplex and Half-Duplex Modes with a Fixed Amplify-and-Forward Relay Comparison of Full-Duplex and Half-Duplex Modes with a Fixed Amplify-and-Forward Relay Taneli Riihonen, Stefan Werner, and Risto Wichman Helsinki University of Technology, Finland IEEE WCNC, Budapest,

More information

2318 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 6, JUNE Mai Vu, Student Member, IEEE, and Arogyaswami Paulraj, Fellow, IEEE

2318 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 6, JUNE Mai Vu, Student Member, IEEE, and Arogyaswami Paulraj, Fellow, IEEE 2318 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 6, JUNE 2006 Optimal Linear Precoders for MIMO Wireless Correlated Channels With Nonzero Mean in Space Time Coded Systems Mai Vu, Student Member,

More information

Optimized Beamforming and Backhaul Compression for Uplink MIMO Cloud Radio Access Networks

Optimized Beamforming and Backhaul Compression for Uplink MIMO Cloud Radio Access Networks Optimized Beamforming and Bachaul Compression for Uplin MIMO Cloud Radio Access Networs Yuhan Zhou and Wei Yu Department of Electrical and Computer Engineering University of Toronto, Toronto, Ontario,

More information

Optimization in Wireless Communication

Optimization in Wireless Communication Zhi-Quan (Tom) Luo Department of Electrical and Computer Engineering University of Minnesota 200 Union Street SE Minneapolis, MN 55455 2007 NSF Workshop Challenges Optimization problems from wireless applications

More information

SINR Balancing in the Downlink of Cognitive Radio Networks with Imperfect Channel Knowledge

SINR Balancing in the Downlink of Cognitive Radio Networks with Imperfect Channel Knowledge SINR Balancing in the Downlink of Cognitive Radio Networks with Imperfect Channel Knowledge Muhammad Fainan Hanif, Peter J. Smith and Mohamed-Slim Alouini Department of Electrical and Computer Engineering,

More information

Clean relaying aided cognitive radio under the coexistence constraint

Clean relaying aided cognitive radio under the coexistence constraint Clean relaying aided cognitive radio under the coexistence constraint Pin-Hsun Lin, Shih-Chun Lin, Hsuan-Jung Su and Y.-W. Peter Hong Abstract arxiv:04.3497v [cs.it] 8 Apr 0 We consider the interference-mitigation

More information

Schur-convexity of the Symbol Error Rate in Correlated MIMO Systems with Precoding and Space-time Coding

Schur-convexity of the Symbol Error Rate in Correlated MIMO Systems with Precoding and Space-time Coding Schur-convexity of the Symbol Error Rate in Correlated MIMO Systems with Precoding and Space-time Coding RadioVetenskap och Kommunikation (RVK 08) Proceedings of the twentieth Nordic Conference on Radio

More information