The McCulloch Neuron (1943)

Size: px
Start display at page:

Download "The McCulloch Neuron (1943)"

Transcription

1 The McCulloch Neuron 943 p p b a pn n n g p b g t p b a [0;] p for n p p b A g tep functon The eucldan pace R n dvded n to regon A and B B p Laboratóro de Automação e Robótca - A. Bauchpe Soft Computng - Neural Netor and Fuzz Logc 5

2 The McCulloch Neuron a pattern clafer The mage cannot be dplaed. Your computer ma not have enough memor to open the mage, or the mage ma have been corrupted. Retart our computer, and then open the fle agan. If the red tll appear, ou ma have to delete the mage and then nert t agan. o o o o o o o o o o o o Lnearl eparable collecton Lnearl dependent non-eparable collecton Some Boolean functon of to varable repreented n a bnar plan. Laboratóro de Automação e Robótca - A. Bauchpe Soft Computng - Neural Netor and Fuzz Logc 5

3 Lnear and Non-Lnear Clafer There et n m poble logcal functon connectng n nput to one bnar output. n # of bnra pattern # of logcal functon # lnearl eparable % lnearl eparable , , , , , , , 0-3 The logcal functon of one varable: A, A, 0, The logcal functon of to varable: A, B, A, B, 0, A B, A B, A B, A B, A B, A B, A B, A B, A B, A B Laboratóro de Automação e Robótca - A. Bauchpe Soft Computng - Neural Netor and Fuzz Logc 53

4 To Step Bnar Perceptron The mage cannot be dplaed. Your computer ma not have enough memor to open the mage, or the mage ma have been corrupted. Retart our computer, and then open the fle agan. If the red tll appear, ou ma have to delete the mage and then nert t agan. The neuron 6 mplement a logcal AND functon b choong b For eample: ; b6 a6 f and onl f a3 a4 a5 3 Laboratóro de Automação e Robótca - A. Bauchpe Soft Computng - Neural Netor and Fuzz Logc 54

5 Three Step Bnar Perceptron A p A B p 5 0 a p B a A B ^ p 8 Laboratóro de Automação e Robótca - A. Bauchpe Soft Computng - Neural Netor and Fuzz Logc 55

6 Neuron and Artfcal Neural Netor Mcro-tructure charactertc The mage cannot be dplaed. Your computer ma not have enough of memor to each open the mage, or the mage neuron ma have been corrupted. Retart n our computer, the and then netor open the fle agan. If the red tll appear, ou ma have to delete the mage and then nert t agan. Meo-Structure organzaton of the netor Macro-Structure aocaton of netor, eventuall th ome analtcal proceng approach for comple problem p p Ba nput b p n n Ba: th p0, output 0 tll poble! Laboratóro de Automação e Robótca - A. Bauchpe Soft Computng - Neural Netor and Fuzz Logc 56

7 Lnear Tpcal actvaton functon f Hopfeld pureln BSB f Sgnal f e e 0 < 0 Perceptron hardlm f - Step f e 0 0 e < 0 Perceptron BAM hardlm f Hopfeld/ BAM e > 0 f e < 0 unchanged f 0 Hopfeld BAM f - Laboratóro de Automação e Robótca - A. Bauchpe Soft Computng - Neural Netor and Fuzz Logc 57

8 Tpcal actvaton functon BSB or Logcal Threhold f K e K e K < < K K e K BSB atln atln K f -K Logítc f e Perceptron Hopfeld BAM, BSB logg f Hperbolc Tangent e f tanh e Perceptron Hopfeld BAM, BSB tang f - Laboratóro de Automação e Robótca - A. Bauchpe Soft Computng - Neural Netor and Fuzz Logc 58

9 Meo-Structure Netor Organzaton... # neuron per laer # netor laer # connecton tpe forard, bacard, lateral. - Multlaer Feedforard Multlaer Perceptron MLP Laboratóro de Automação e Robótca - A. Bauchpe Soft Computng - Neural Netor and Fuzz Logc 59

10 Meo-Structure Netor Organzaton... - Sngle Laer laterall connected BSB elf-feedbac, Hopfeld 3 Blaer Feedforard/Feedbacard Laboratóro de Automação e Robótca - A. Bauchpe Soft Computng - Neural Netor and Fuzz Logc 60

11 Meo-Structure Netor Organzaton 4 Multlaer Cooperatve/Comparatve Netor 5 Hbrd Netor Rede Netor Sub- Sub- Rede Netor Laboratóro de Automação e Robótca - A. Bauchpe Soft Computng - Neural Netor and Fuzz Logc 6

12 Neural Macro-Structure Rede NetW. - # netor - connecton tpe - ze of netor - degree of connectvt Rede a NetW. Rede b NetW. Rede c NetW. Rede 3 NetW. Laboratóro de Automação e Robótca - A. Bauchpe Soft Computng - Neural Netor and Fuzz Logc 6

13 Delta Rule Perceptron Superved Learnng µδ δ d µ learnng rate Wdro-Hoff delta rule LMS ADALINE, MADALINE Generalzed Delta Rule d - δ µδ Wdro-Hoff Delta Rule LMS Laboratóro de Automação e Robótca - A. Bauchpe Soft Computng - Neural Netor and Fuzz Logc 63

14 Delta rule Perceptron Perceptron Roenblatt, 957 Dnamc: f b e 0 0 e < 0 p p b d - δ p p n n δ d µ δ Delta Rule µ - learnng rate δ 0 the eght not changed. Pcholog Reaonng: - potve renforcement - negatve renforcement Laboratóro de Automação e Robótca - A. Bauchpe Soft Computng - Neural Netor and Fuzz Logc 64

15 ADALINE and MADALINE Wdro & Hoff, 960 Mult. Adaptve Lnear Element p b Tranng: ε d d p b µε Wdro-Hoff delta rule LMS Leat Mean Squared algorthm 0.< µ < tablt and convergenc peed. MatLab: NEWLIN, NEWLIND, ADAPT, LEARNWH Ob : ε δ µ δ Delta Rule Laboratóro de Automação e Robótca - A. Bauchpe Soft Computng - Neural Netor and Fuzz Logc 65

16 LMS Algorthm f : R n R Obectve: learn a functon from the ample, d { }, {d } and {e } tatonar tochatc procee e d actual tochatc error Lnear neuron n t Epected value E[e ] E[d- ] E[d- t ] E[d ] E[d] t E [ t ] t Aumng determntc. Wth E [ t ] R autocorrelaton nput matr E [d] P cro correlated vector E[e ] E[d ] P t R t 0 * R P Partal dervatve equal 0 for optmal * * PR - Optmal analtc oluton of the optmzaton olveln.m Laboratóro de Automação e Robótca - A. Bauchpe Soft Computng - Neural Netor and Fuzz Logc 66

17 Iteratve LMS Algorthm R Obectve: adaptvel learn a functon from the ample, d f : R n Knong P and R, R -, then for ome : E[e ] R P Pot-multpltng b ½ R - ½ E[e ] R - P R - * * ½ E[e ] R - * c E[e ] R - c ½ Neton method LMS Hpothe: E[e e 0, e,... e ] e Ho to, cautoul fnd ne better value for, the free parameter? Laboratóro de Automação e Robótca - A. Bauchpe Soft Computng - Neural Netor and Fuzz Logc 67

18 Laboratóro de Automação e Robótca - A. Bauchpe Soft Computng - Neural Netor and Fuzz Logc Iteratve LMS Algorthm Iteratve adaptve oluton The optmal oluton never reached! MADALINE -nput, -neuron µδ * n e e,! n d d,! n d d,! n e!, [ ], t n e e! aumng R I etmated teppet decent algorthm: c e Gradent of e th repect to e LMS algorthm reduce to c e Norma- lzaton

19 The Multlaer Perceptron - The Generalzed Delta Rule Rumelhart, Hnton e Wllam, PDP/MIT, p 0 p 0 p Neuron Dnamc: Proceng Element PE n laer nput th f actvaton functon contnuou dfferentable 0 f Turnng Pont Queton: Ho to fnd the error aocated th an nternal neuron?? Laboratóro de Automação e Robótca - A. Bauchpe Soft Computng - Neural Netor and Fuzz Logc 69

20 The generalzed delta rule Tranng ε, m d,..., o m - quadratc error - egth of PE 0 p 0 p 0 p 3 3 3,,..., n - nput vector of PE Wth Intantaneou gradent: ε ε ε 0 ε, ε,! ε m o ε ε Defnng the quadratc dervatve error a δ δ ε Gradent of the error th repect to the eght a functon of the former laer gnal!! Laboratóro de Automação e Robótca - A. Bauchpe Soft Computng - Neural Netor and Fuzz Logc 70

21 The generalzed delta rule... For the output laer, the quadratc dervatve error : δ N d N d f 0 p 0 p 0 p The partal dervatve are 0 for δ d f d f d f d f ʹ The output error aocated th PE, n the lat laer: ε d d Gvng: δ ε. f ʹ Remember, actvaton functon, f, contnuou dfferentable Laboratóro de Automação e Robótca - A. Bauchpe Soft Computng - Neural Netor and Fuzz Logc 7

22 Laboratóro de Automação e Robótca - A. Bauchpe Soft Computng - Neural Netor and Fuzz Logc The generalzed delta rule... 0 p 3 0 p p 7 For a hdden laer, the quadratc dervatve error can be calculated ung the lnear output of laer : N ε ε δ N N δ ε Chan Rule N 0 Tang nto account that 0 N N l l l f δ δ N l N l l f δ δ that and f 0 conderng l f f l f ʹ. N f ʹ!! "! $! # ε δ We have: δ. f ʹ ε δ Fnall, the quadratc dervatve errror for a hdden laer:

23 The Error Bacpropagaton algorthm. random, ntalze the netor egth. for,d, tranng par, obtan. Feedforard propagaton: ε d 3. lat laer 4. for each element n the laer do: Compute ε ung ε d d f the lat laer, m ε N δ f t a hdden laer; Compute δ ε. f ʹ 5. f > 0 go to tep 4, ele contnue. 6. n n µδ 7. For the net tranng par go to tep. Laboratóro de Automação e Robótca - A. Bauchpe Soft Computng - Neural Netor and Fuzz Logc 73

24 The Bacpropagaton Algorthm n practce In the tandard form BP ver lo. BP Pathologe: paral n regon of mall gradent. 3 Intal condton can lead to local mnma. 4 Stop condton number of epoch, < ϵ e E - Energa da rede Bad Padrão Start epúro Good Start Valor Incal 5 BP varant - tranbpm th momentum - tranbp adaptve learnng rate tranlm Levenberg-Marquard J, Jacoban Δ W J J µ J T J T e Padrõe armazenado Local Mnma Padrão recuperado Optmum e, - Illutratve quadratc error a functon of the eght Ob: the error urface, normall, unnon., Etado Steepet decent go n the oppote drecton of the local gradent donhll. Laboratóro de Automação e Robótca - A. Bauchpe Soft Computng - Neural Netor and Fuzz Logc 74

25 Computatonal Tool SNNS MatLab - Neural Netor Toolbo NeuralWor Java C Hardare Implementaton of RNA Laboratóro de Automação e Robótca - A. Bauchpe Soft Computng - Neural Netor and Fuzz Logc 75

26 SNNS - Stuttgarter Neural Netor Smulator Laboratóro de Automação e Robótca - A. Bauchpe Soft Computng - Neural Netor and Fuzz Logc 76

27 MatLab - complete envronment -Stem Smulaton -Tranng -Control pureln logg tang q Model Reference Controller Reference Plant Output Neural Netor Controller Control Sgnal model lq 4 order q h4 h4 h4 Scope radba 3 fu Fcn -C- z Unt Dela ncndun nanbun Dcrete State -Space K*u Matr Gan 4 Contant 3 Stch fu Fcn u fu Fcn -C- Contant ncndun K*u z nanbun K*u Unt Dela 5 Dcrete State -Space Matr tang Gan 3 Matr netum pureln netum Gan -C- Contant 4 Stch Stch Saturaton B_c Zero -Order Hold uhat Contant 7 r fu Fcn3 ncndun nanbun Dcrete State -Space 3 K*u Matr Gan -C- Contant 5 Stch3 B_c Contant 6 Laboratóro de Automação e Robótca - A. Bauchpe Soft Computng - Neural Netor and Fuzz Logc 77

28 Demontraton - Perceptron % Perceptron % Tranng an ANN to learn to claf a non-lnear problem % Input Pattern P[ % Target %T[ 0 0 0] % Lnear eparable ] T Y T[ ] % non eparable % Tr th Roenblat' Perceptron netnepp,t,'hardlm' % tran the netor nettrannet,p,t T Y Ymnet,P Laboratóro de Automação e Robótca - A. Bauchpe Soft Computng - Neural Netor and Fuzz Logc 78

29 Demontraton - OCR Tranng Vector p p p 63 6 N 0 % Noe ANN Laboratóro de Automação e Robótca - A. Bauchpe Soft Computng - Neural Netor and Fuzz Logc 79

30 Demontraton OCR... p % of mclafcaton Neural OCR Clafer p p 63 6 N Tranng th 0 0,0,0,30,40,50 % noe No pattern ued n tranng untl % of bt flpped * - error thout no tranng pattern * - error ung no tranng pattern Wth Some No Tranng Pattern Learn ho to treat an noe Laboratóro de Automação e Robótca - A. Bauchpe Soft Computng - Neural Netor and Fuzz Logc 80

31 Demontraton LMS, ADALINE, FIR u u u! u n 0 Y z U z 0 z z! n z n n FIR Model ala table, onl Zero Ob : IIR Model more compact, but can be untable! g ec g80 50ec Stem change at 80 ec Samplng Tme, T 0.ec 0 - TDL Tme Dela Lne ec Laboratóro de Automação e Robótca - A. Bauchpe Soft Computng - Neural Netor and Fuzz Logc 8

32 Demo LMS, ADALINE, FIR... % ADALINE - Adaptve dnamc tem dentfcaton % Frt ampled tem - untl 80 ec gtf,[. ], gdcdg,. % Stem change dramatcall - after 80 ec gtf3,[ ],gdcdg,. % Peudo Random Bnar Sgnal - good for dentfcaton udnput0*0,'prbs',[0 0.0],[- ]; % tme vector... [,t,]lmgd,u,t; [,t,]lmgd,u,t,; % Create ne adalne neor th delaed nput FIR % Learnng Rate 0.09 netnelnt,,[ ],0.09 [net,y,e]adaptnet,t, % degn an average tranfer functon netdnelndt, Laboratóro de Automação e Robótca - A. Bauchpe Soft Computng - Neural Netor and Fuzz Logc 8

33 Demo LMS, ADALINE, FIR... 4 n0, lr0. RMSE Set udnput500,'prbs',[0 0.0] 0 - ADALINE Learn Stem AND alo Change n the Dnamc!! Error n0, lr0. RMSE Set.787 Verfcaton Sgnal udnput00,'prbs',[0 0.05] But, n other frequenc range not o good... need to Adut TDL, lr, T Error Laboratóro de Automação e Robótca - A. Bauchpe Soft Computng - Neural Netor and Fuzz Logc 83

Supervised Learning NNs

Supervised Learning NNs EE788 Robot Cognton and Plannng, Prof. J.-H. Km Lecture 6 Supervsed Learnng NNs Robot Intellgence Technolog Lab. From Jang, Sun, Mzutan, Ch.9, Neuro-Fuzz and Soft Computng, Prentce Hall Contents. Introducton.

More information

Introduction to the Introduction to Artificial Neural Network

Introduction to the Introduction to Artificial Neural Network Introducton to the Introducton to Artfcal Neural Netork Vuong Le th Hao Tang s sldes Part of the content of the sldes are from the Internet (possbly th modfcatons). The lecturer does not clam any onershp

More information

Evaluation of classifiers MLPs

Evaluation of classifiers MLPs Lecture Evaluaton of classfers MLPs Mlos Hausrecht mlos@cs.ptt.edu 539 Sennott Square Evaluaton For any data set e use to test the model e can buld a confuson matrx: Counts of examples th: class label

More information

Multilayer Perceptron (MLP)

Multilayer Perceptron (MLP) Multlayer Perceptron (MLP) Seungjn Cho Department of Computer Scence and Engneerng Pohang Unversty of Scence and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjn@postech.ac.kr 1 / 20 Outlne

More information

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results. Neural Networks : Dervaton compled by Alvn Wan from Professor Jtendra Malk s lecture Ths type of computaton s called deep learnng and s the most popular method for many problems, such as computer vson

More information

Multilayer Perceptrons and Backpropagation. Perceptrons. Recap: Perceptrons. Informatics 1 CG: Lecture 6. Mirella Lapata

Multilayer Perceptrons and Backpropagation. Perceptrons. Recap: Perceptrons. Informatics 1 CG: Lecture 6. Mirella Lapata Multlayer Perceptrons and Informatcs CG: Lecture 6 Mrella Lapata School of Informatcs Unversty of Ednburgh mlap@nf.ed.ac.uk Readng: Kevn Gurney s Introducton to Neural Networks, Chapters 5 6.5 January,

More information

Neural Networks & Learning

Neural Networks & Learning Neural Netorks & Learnng. Introducton The basc prelmnares nvolved n the Artfcal Neural Netorks (ANN) are descrbed n secton. An Artfcal Neural Netorks (ANN) s an nformaton-processng paradgm that nspred

More information

MATH 567: Mathematical Techniques in Data Science Lab 8

MATH 567: Mathematical Techniques in Data Science Lab 8 1/14 MATH 567: Mathematcal Technques n Data Scence Lab 8 Domnque Gullot Departments of Mathematcal Scences Unversty of Delaware Aprl 11, 2017 Recall We have: a (2) 1 = f(w (1) 11 x 1 + W (1) 12 x 2 + W

More information

Multi-layer neural networks

Multi-layer neural networks Lecture 0 Mult-layer neural networks Mlos Hauskrecht mlos@cs.ptt.edu 5329 Sennott Square Lnear regresson w Lnear unts f () Logstc regresson T T = w = p( y =, w) = g( w ) w z f () = p ( y = ) w d w d Gradent

More information

Neural networks. Nuno Vasconcelos ECE Department, UCSD

Neural networks. Nuno Vasconcelos ECE Department, UCSD Neural networs Nuno Vasconcelos ECE Department, UCSD Classfcaton a classfcaton problem has two types of varables e.g. X - vector of observatons (features) n the world Y - state (class) of the world x X

More information

Admin NEURAL NETWORKS. Perceptron learning algorithm. Our Nervous System 10/25/16. Assignment 7. Class 11/22. Schedule for the rest of the semester

Admin NEURAL NETWORKS. Perceptron learning algorithm. Our Nervous System 10/25/16. Assignment 7. Class 11/22. Schedule for the rest of the semester 0/25/6 Admn Assgnment 7 Class /22 Schedule for the rest of the semester NEURAL NETWORKS Davd Kauchak CS58 Fall 206 Perceptron learnng algorthm Our Nervous System repeat untl convergence (or for some #

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE : Lnear Systems Summary #: Backpropagaton BACKPROPAGATION The perceptron rule as well as the Wdrow Hoff learnng were desgned to tran sngle layer networks. They suffer from the same dsadvantage: they

More information

Multi layer feed-forward NN FFNN. XOR problem. XOR problem. Neural Network for Speech. NETtalk (Sejnowski & Rosenberg, 1987) NETtalk (contd.

Multi layer feed-forward NN FFNN. XOR problem. XOR problem. Neural Network for Speech. NETtalk (Sejnowski & Rosenberg, 1987) NETtalk (contd. NN 3-00 Mult layer feed-forard NN FFNN We consder a more general netor archtecture: beteen the nput and output layers there are hdden layers, as llustrated belo. Hdden nodes do not drectly send outputs

More information

Hopfield networks and Boltzmann machines. Geoffrey Hinton et al. Presented by Tambet Matiisen

Hopfield networks and Boltzmann machines. Geoffrey Hinton et al. Presented by Tambet Matiisen Hopfeld networks and Boltzmann machnes Geoffrey Hnton et al. Presented by Tambet Matsen 18.11.2014 Hopfeld network Bnary unts Symmetrcal connectons http://www.nnwj.de/hopfeld-net.html Energy functon The

More information

Multilayer neural networks

Multilayer neural networks Lecture Multlayer neural networks Mlos Hauskrecht mlos@cs.ptt.edu 5329 Sennott Square Mdterm exam Mdterm Monday, March 2, 205 In-class (75 mnutes) closed book materal covered by February 25, 205 Multlayer

More information

Discriminative classifier: Logistic Regression. CS534-Machine Learning

Discriminative classifier: Logistic Regression. CS534-Machine Learning Dscrmnatve classfer: Logstc Regresson CS534-Machne Learnng robablstc Classfer Gven an nstance, hat does a probablstc classfer do dfferentl compared to, sa, perceptron? It does not drectl predct Instead,

More information

Discriminative classifier: Logistic Regression. CS534-Machine Learning

Discriminative classifier: Logistic Regression. CS534-Machine Learning Dscrmnatve classfer: Logstc Regresson CS534-Machne Learnng 2 Logstc Regresson Gven tranng set D stc regresson learns the condtonal dstrbuton We ll assume onl to classes and a parametrc form for here s

More information

Specification -- Assumptions of the Simple Classical Linear Regression Model (CLRM) 1. Introduction

Specification -- Assumptions of the Simple Classical Linear Regression Model (CLRM) 1. Introduction ECONOMICS 35* -- NOTE ECON 35* -- NOTE Specfcaton -- Aumpton of the Smple Clacal Lnear Regreon Model (CLRM). Introducton CLRM tand for the Clacal Lnear Regreon Model. The CLRM alo known a the tandard lnear

More information

Pattern Classification

Pattern Classification Pattern Classfcaton All materals n these sldes ere taken from Pattern Classfcaton (nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wley & Sons, 000 th the permsson of the authors and the publsher

More information

Week 5: Neural Networks

Week 5: Neural Networks Week 5: Neural Networks Instructor: Sergey Levne Neural Networks Summary In the prevous lecture, we saw how we can construct neural networks by extendng logstc regresson. Neural networks consst of multple

More information

Root Locus Techniques

Root Locus Techniques Root Locu Technque ELEC 32 Cloed-Loop Control The control nput u t ynthezed baed on the a pror knowledge of the ytem plant, the reference nput r t, and the error gnal, e t The control ytem meaure the output,

More information

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming OPTIMIATION Introducton ngle Varable Unconstraned Optmsaton Multvarable Unconstraned Optmsaton Lnear Programmng Chapter Optmsaton /. Introducton In an engneerng analss, sometmes etremtes, ether mnmum or

More information

Supervised Learning. Neural Networks and Back-Propagation Learning. Credit Assignment Problem. Feedforward Network. Adaptive System.

Supervised Learning. Neural Networks and Back-Propagation Learning. Credit Assignment Problem. Feedforward Network. Adaptive System. Part 7: Neura Networ & earnng /2/05 Superved earnng Neura Networ and Bac-Propagaton earnng Produce dered output for tranng nput Generaze reaonaby & appropratey to other nput Good exampe: pattern recognton

More information

Support Vector Machines

Support Vector Machines CS 2750: Machne Learnng Support Vector Machnes Prof. Adrana Kovashka Unversty of Pttsburgh February 17, 2016 Announcement Homework 2 deadlne s now 2/29 We ll have covered everythng you need today or at

More information

Neural Networks. Class 22: MLSP, Fall 2016 Instructor: Bhiksha Raj

Neural Networks. Class 22: MLSP, Fall 2016 Instructor: Bhiksha Raj Neural Networs Class 22: MLSP, Fall 2016 Instructor: Bhsha Raj IMPORTANT ADMINSTRIVIA Fnal wee. Project presentatons on 6th 18797/11755 2 Neural Networs are tang over! Neural networs have become one of

More information

Other NN Models. Reinforcement learning (RL) Probabilistic neural networks

Other NN Models. Reinforcement learning (RL) Probabilistic neural networks Other NN Models Renforcement learnng (RL) Probablstc neural networks Support vector machne (SVM) Renforcement learnng g( (RL) Basc deas: Supervsed dlearnng: (delta rule, BP) Samples (x, f(x)) to learn

More information

Chapter Newton s Method

Chapter Newton s Method Chapter 9. Newton s Method After readng ths chapter, you should be able to:. Understand how Newton s method s dfferent from the Golden Secton Search method. Understand how Newton s method works 3. Solve

More information

Typical Neuron Error Back-Propagation

Typical Neuron Error Back-Propagation x Mutayer Notaton 1 2 2 2 y Notaton ayer of neuron abeed 1,, N neuron n ayer = vector of output from neuron n ayer nput ayer = x (the nput pattern) output ayer = y (the actua output) = weght between ayer

More information

Chapter 12. Ordinary Differential Equation Boundary Value (BV) Problems

Chapter 12. Ordinary Differential Equation Boundary Value (BV) Problems Chapter. Ordnar Dfferental Equaton Boundar Value (BV) Problems In ths chapter we wll learn how to solve ODE boundar value problem. BV ODE s usuall gven wth x beng the ndependent space varable. p( x) q(

More information

Adaptive RFID Indoor Positioning Technology for Wheelchair Home Health Care Robot. T. C. Kuo

Adaptive RFID Indoor Positioning Technology for Wheelchair Home Health Care Robot. T. C. Kuo Adaptve RFID Indoor Postonng Technology for Wheelchar Home Health Care Robot Contents Abstract Introducton RFID Indoor Postonng Method Fuzzy Neural Netor System Expermental Result Concluson -- Abstract

More information

Image classification. Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing i them?

Image classification. Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing i them? Image classfcaton Gven te bag-of-features representatons of mages from dfferent classes ow do we learn a model for dstngusng tem? Classfers Learn a decson rule assgnng bag-offeatures representatons of

More information

Internet Engineering. Jacek Mazurkiewicz, PhD Softcomputing. Part 3: Recurrent Artificial Neural Networks Self-Organising Artificial Neural Networks

Internet Engineering. Jacek Mazurkiewicz, PhD Softcomputing. Part 3: Recurrent Artificial Neural Networks Self-Organising Artificial Neural Networks Internet Engneerng Jacek Mazurkewcz, PhD Softcomputng Part 3: Recurrent Artfcal Neural Networks Self-Organsng Artfcal Neural Networks Recurrent Artfcal Neural Networks Feedback sgnals between neurons Dynamc

More information

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI Logstc Regresson CAP 561: achne Learnng Instructor: Guo-Jun QI Bayes Classfer: A Generatve model odel the posteror dstrbuton P(Y X) Estmate class-condtonal dstrbuton P(X Y) for each Y Estmate pror dstrbuton

More information

CS 3710: Visual Recognition Classification and Detection. Adriana Kovashka Department of Computer Science January 13, 2015

CS 3710: Visual Recognition Classification and Detection. Adriana Kovashka Department of Computer Science January 13, 2015 CS 3710: Vsual Recognton Classfcaton and Detecton Adrana Kovashka Department of Computer Scence January 13, 2015 Plan for Today Vsual recognton bascs part 2: Classfcaton and detecton Adrana s research

More information

1 Convex Optimization

1 Convex Optimization Convex Optmzaton We wll consder convex optmzaton problems. Namely, mnmzaton problems where the objectve s convex (we assume no constrants for now). Such problems often arse n machne learnng. For example,

More information

The Study of Teaching-learning-based Optimization Algorithm

The Study of Teaching-learning-based Optimization Algorithm Advanced Scence and Technology Letters Vol. (AST 06), pp.05- http://dx.do.org/0.57/astl.06. The Study of Teachng-learnng-based Optmzaton Algorthm u Sun, Yan fu, Lele Kong, Haolang Q,, Helongang Insttute

More information

Model of Neurons. CS 416 Artificial Intelligence. Early History of Neural Nets. Cybernetics. McCulloch-Pitts Neurons. Hebbian Modification.

Model of Neurons. CS 416 Artificial Intelligence. Early History of Neural Nets. Cybernetics. McCulloch-Pitts Neurons. Hebbian Modification. Page 1 Model of Neurons CS 416 Artfcal Intellgence Lecture 18 Neural Nets Chapter 20 Multple nputs/dendrtes (~10,000!!!) Cell body/soma performs computaton Sngle output/axon Computaton s typcally modeled

More information

Multigradient for Neural Networks for Equalizers 1

Multigradient for Neural Networks for Equalizers 1 Multgradent for Neural Netorks for Equalzers 1 Chulhee ee, Jnook Go and Heeyoung Km Department of Electrcal and Electronc Engneerng Yonse Unversty 134 Shnchon-Dong, Seodaemun-Ku, Seoul 1-749, Korea ABSTRACT

More information

MULTIPLE REGRESSION ANALYSIS For the Case of Two Regressors

MULTIPLE REGRESSION ANALYSIS For the Case of Two Regressors MULTIPLE REGRESSION ANALYSIS For the Cae of Two Regreor In the followng note, leat-quare etmaton developed for multple regreon problem wth two eplanator varable, here called regreor (uch a n the Fat Food

More information

Finite Difference Method

Finite Difference Method 7/0/07 Instructor r. Ramond Rump (9) 747 698 rcrump@utep.edu EE 337 Computatonal Electromagnetcs (CEM) Lecture #0 Fnte erence Method Lecture 0 These notes ma contan coprghted materal obtaned under ar use

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Why feed-forward networks are in a bad shape

Why feed-forward networks are in a bad shape Why feed-forward networks are n a bad shape Patrck van der Smagt, Gerd Hrznger Insttute of Robotcs and System Dynamcs German Aerospace Center (DLR Oberpfaffenhofen) 82230 Wesslng, GERMANY emal smagt@dlr.de

More information

Video Data Analysis. Video Data Analysis, B-IT

Video Data Analysis. Video Data Analysis, B-IT Lecture Vdeo Data Analyss Deformable Snakes Segmentaton Neural networks Lecture plan:. Segmentaton by morphologcal watershed. Deformable snakes 3. Segmentaton va classfcaton of patterns 4. Concept of a

More information

CSC321 Tutorial 9: Review of Boltzmann machines and simulated annealing

CSC321 Tutorial 9: Review of Boltzmann machines and simulated annealing CSC321 Tutoral 9: Revew of Boltzmann machnes and smulated annealng (Sldes based on Lecture 16-18 and selected readngs) Yue L Emal: yuel@cs.toronto.edu Wed 11-12 March 19 Fr 10-11 March 21 Outlne Boltzmann

More information

Classification (klasifikácia) Feedforward Multi-Layer Perceptron (Dopredná viacvrstvová sieť) 14/11/2016. Perceptron (Frank Rosenblatt, 1957)

Classification (klasifikácia) Feedforward Multi-Layer Perceptron (Dopredná viacvrstvová sieť) 14/11/2016. Perceptron (Frank Rosenblatt, 1957) 4//06 IAI: Lecture 09 Feedforard Mult-Layer Percetron (Doredná vacvrstvová seť) Lubca Benuskova AIMA 3rd ed. Ch. 8.6.4 8.7.5 Classfcaton (klasfkáca) In machne learnng and statstcs, classfcaton s the roblem

More information

Using Immune Genetic Algorithm to Optimize BP Neural Network and Its Application Peng-fei LIU1,Qun-tai SHEN1 and Jun ZHI2,*

Using Immune Genetic Algorithm to Optimize BP Neural Network and Its Application Peng-fei LIU1,Qun-tai SHEN1 and Jun ZHI2,* Advances n Computer Scence Research (ACRS), volume 54 Internatonal Conference on Computer Networks and Communcaton Technology (CNCT206) Usng Immune Genetc Algorthm to Optmze BP Neural Network and Its Applcaton

More information

Probabilistic Classification: Bayes Classifiers 2

Probabilistic Classification: Bayes Classifiers 2 CSC Machne Learnng Lecture : Classfcaton II September, Sam Rowes Probablstc Classfcaton: Baes Classfers Generatve model: p(, ) = p()p( ). p() are called class prors. p( ) are called class-condtonal feature

More information

Neural Networks. Perceptrons and Backpropagation. Silke Bussen-Heyen. 5th of Novemeber Universität Bremen Fachbereich 3. Neural Networks 1 / 17

Neural Networks. Perceptrons and Backpropagation. Silke Bussen-Heyen. 5th of Novemeber Universität Bremen Fachbereich 3. Neural Networks 1 / 17 Neural Networks Perceptrons and Backpropagaton Slke Bussen-Heyen Unverstät Bremen Fachberech 3 5th of Novemeber 2012 Neural Networks 1 / 17 Contents 1 Introducton 2 Unts 3 Network structure 4 Snglelayer

More information

1 Input-Output Mappings. 2 Hebbian Failure. 3 Delta Rule Success.

1 Input-Output Mappings. 2 Hebbian Failure. 3 Delta Rule Success. Task Learnng 1 / 27 1 Input-Output Mappngs. 2 Hebban Falure. 3 Delta Rule Success. Input-Output Mappngs 2 / 27 0 1 2 3 4 5 6 7 8 9 Output 3 8 2 7 Input 5 6 0 9 1 4 Make approprate: Response gven stmulus.

More information

6 Supplementary Materials

6 Supplementary Materials 6 Supplementar Materals 61 Proof of Theorem 31 Proof Let m Xt z 1:T : l m Xt X,z 1:t Wethenhave mxt z1:t ˆm HX Xt z 1:T mxt z1:t m HX Xt z 1:T + mxt z 1:T HX We consder each of the two terms n equaton

More information

CHAPTER-5 INFORMATION MEASURE OF FUZZY MATRIX AND FUZZY BINARY RELATION

CHAPTER-5 INFORMATION MEASURE OF FUZZY MATRIX AND FUZZY BINARY RELATION CAPTER- INFORMATION MEASURE OF FUZZY MATRI AN FUZZY BINARY RELATION Introducton The basc concept of the fuzz matr theor s ver smple and can be appled to socal and natural stuatons A branch of fuzz matr

More information

Gradient Descent Learning and Backpropagation

Gradient Descent Learning and Backpropagation Artfcal Neural Networks (art 2) Chrstan Jacob Gradent Descent Learnng and Backpropagaton CSC 533 Wnter 200 Learnng by Gradent Descent Defnton of the Learnng roble Let us start wth the sple case of lnear

More information

The multivariate Gaussian probability density function for random vector X (X 1,,X ) T. diagonal term of, denoted

The multivariate Gaussian probability density function for random vector X (X 1,,X ) T. diagonal term of, denoted Appendx Proof of heorem he multvarate Gauan probablty denty functon for random vector X (X,,X ) px exp / / x x mean and varance equal to the th dagonal term of, denoted he margnal dtrbuton of X Gauan wth

More information

Deep Learning: A Quick Overview

Deep Learning: A Quick Overview Deep Learnng: A Quck Overvew Seungjn Cho Department of Computer Scence and Engneerng Pohang Unversty of Scence and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjn@postech.ac.kr http://mlg.postech.ac.kr/

More information

System identifications by SIRMs models with linear transformation of input variables

System identifications by SIRMs models with linear transformation of input variables ORIGINAL RESEARCH System dentfcatons by SIRMs models wth lnear transformaton of nput varables Hrofum Myama, Nortaka Shge, Hrom Myama Graduate School of Scence and Engneerng, Kagoshma Unversty, Japan Receved:

More information

Hopfield Network Recurrent Netorks

Hopfield Network Recurrent Netorks Hopfield Network Recurrent Netorks w 2 w n E.P. P.E. y (k) Auto-Associative Memory: Given an initial n bit pattern returns the closest stored (associated) pattern. No P.E. self-feedback! w 2 w n2 E.P.2

More information

IV. Performance Optimization

IV. Performance Optimization IV. Performance Optmzaton A. Steepest descent algorthm defnton how to set up bounds on learnng rate mnmzaton n a lne (varyng learnng rate) momentum learnng examples B. Newton s method defnton Gauss-Newton

More information

AP Statistics Ch 3 Examining Relationships

AP Statistics Ch 3 Examining Relationships Introducton To tud relatonhp between varable, we mut meaure the varable on the ame group of ndvdual. If we thnk a varable ma eplan or even caue change n another varable, then the eplanator varable and

More information

Classification learning II

Classification learning II Lecture 8 Classfcaton learnng II Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square Logstc regresson model Defnes a lnear decson boundar Dscrmnant functons: g g g g here g z / e z f, g g - s a logstc functon

More information

A New Algorithm Using Hopfield Neural Network with CHN for N-Queens Problem

A New Algorithm Using Hopfield Neural Network with CHN for N-Queens Problem 36 IJCSS Internatonal Journal of Computer Scence and etwork Securt, VOL9 o4, Aprl 009 A ew Algorthm Usng Hopfeld eural etwork wth CH for -Queens Problem We Zhang and Zheng Tang, Facult of Engneerng, Toama

More information

Linear discriminants. Nuno Vasconcelos ECE Department, UCSD

Linear discriminants. Nuno Vasconcelos ECE Department, UCSD Lnear dscrmnants Nuno Vasconcelos ECE Department UCSD Classfcaton a classfcaton problem as to tpes of varables e.g. X - vector of observatons features n te orld Y - state class of te orld X R 2 fever blood

More information

Introduction to Artificial Neural Networks EE /09/2015. Who am I. Associate Prof. Dr. Turgay IBRIKCI. What you learn from the course

Introduction to Artificial Neural Networks EE /09/2015. Who am I. Associate Prof. Dr. Turgay IBRIKCI. What you learn from the course Introducton to Artfcal Neural Netorks EE-589 Who am I Assocate Prof Dr Turga IBRIKCI Room # 305 Tuesdas 3:30-6:00 2 (322) 338 6868 / 39 eembderslerordpresscom What ou learn from the course Course Outlne

More information

Geometrical Optics Mirrors and Prisms

Geometrical Optics Mirrors and Prisms Phy 322 Lecture 4 Chapter 5 Geometrcal Optc Mrror and Prm Optcal bench http://webphyc.davdon.edu/applet/optc4/default.html Mrror Ancent bronze mrror Hubble telecope mrror Lqud mercury mrror Planar mrror

More information

Introduction. Modeling Data. Approach. Quality of Fit. Likelihood. Probabilistic Approach

Introduction. Modeling Data. Approach. Quality of Fit. Likelihood. Probabilistic Approach Introducton Modelng Data Gven a et of obervaton, we wh to ft a mathematcal model Model deend on adutable arameter traght lne: m + c n Polnomal: a + a + a + L+ a n Choce of model deend uon roblem Aroach

More information

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression 11 MACHINE APPLIED MACHINE LEARNING LEARNING MACHINE LEARNING Gaussan Mture Regresson 22 MACHINE APPLIED MACHINE LEARNING LEARNING Bref summary of last week s lecture 33 MACHINE APPLIED MACHINE LEARNING

More information

Associative Memories

Associative Memories Assocatve Memores We consder now modes for unsupervsed earnng probems, caed auto-assocaton probems. Assocaton s the task of mappng patterns to patterns. In an assocatve memory the stmuus of an ncompete

More information

Unsupervised Learning

Unsupervised Learning Unsupervsed Learnng Kevn Swngler What s Unsupervsed Learnng? Most smply, t can be thought of as learnng to recognse and recall thngs Recognton I ve seen that before Recall I ve seen that before and I can

More information

Machine Learning CS-527A ANN ANN. ANN Short History ANN. Artificial Neural Networks (ANN) Artificial Neural Networks

Machine Learning CS-527A ANN ANN. ANN Short History ANN. Artificial Neural Networks (ANN) Artificial Neural Networks Machne Learnng CS-57A Artfcal Neural Networks Burchan (bourch-khan) Bayazt http://www.cse.wustl.edu/~bayazt/courses/cs57a/ Malng lst: cs-57a@cse.wustl.edu Artfcal Neural Networks (ANN) Neural network nspred

More information

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M CIS56: achne Learnng Lecture 3 (Sept 6, 003) Preparaton help: Xaoyng Huang Lnear Regresson Lnear regresson can be represented by a functonal form: f(; θ) = θ 0 0 +θ + + θ = θ = 0 ote: 0 s a dummy attrbute

More information

Ensemble Methods: Boosting

Ensemble Methods: Boosting Ensemble Methods: Boostng Ncholas Ruozz Unversty of Texas at Dallas Based on the sldes of Vbhav Gogate and Rob Schapre Last Tme Varance reducton va baggng Generate new tranng data sets by samplng wth replacement

More information

Kernels in Support Vector Machines. Based on lectures of Martin Law, University of Michigan

Kernels in Support Vector Machines. Based on lectures of Martin Law, University of Michigan Kernels n Support Vector Machnes Based on lectures of Martn Law, Unversty of Mchgan Non Lnear separable problems AND OR NOT() The XOR problem cannot be solved wth a perceptron. XOR Per Lug Martell - Systems

More information

Solving Nonlinear Differential Equations by a Neural Network Method

Solving Nonlinear Differential Equations by a Neural Network Method Solvng Nonlnear Dfferental Equatons by a Neural Network Method Luce P. Aarts and Peter Van der Veer Delft Unversty of Technology, Faculty of Cvlengneerng and Geoscences, Secton of Cvlengneerng Informatcs,

More information

Start Point and Trajectory Analysis for the Minimal Time System Design Algorithm

Start Point and Trajectory Analysis for the Minimal Time System Design Algorithm Start Pont and Trajectory Analy for the Mnmal Tme Sytem Degn Algorthm ALEXANDER ZEMLIAK, PEDRO MIRANDA Department of Phyc and Mathematc Puebla Autonomou Unverty Av San Claudo /n, Puebla, 757 MEXICO Abtract:

More information

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012 MLE and Bayesan Estmaton Je Tang Department of Computer Scence & Technology Tsnghua Unversty 01 1 Lnear Regresson? As the frst step, we need to decde how we re gong to represent the functon f. One example:

More information

Lecture 23: Artificial neural networks

Lecture 23: Artificial neural networks Lecture 23: Artfcal neural networks Broad feld that has developed over the past 20 to 30 years Confluence of statstcal mechancs, appled math, bology and computers Orgnal motvaton: mathematcal modelng of

More information

Curve Fitting with the Least Square Method

Curve Fitting with the Least Square Method WIKI Document Number 5 Interpolaton wth Least Squares Curve Fttng wth the Least Square Method Mattheu Bultelle Department of Bo-Engneerng Imperal College, London Context We wsh to model the postve feedback

More information

Variable Structure Control ~ Basics

Variable Structure Control ~ Basics Varable Structure Control ~ Bac Harry G. Kwatny Department of Mechancal Engneerng & Mechanc Drexel Unverty Outlne A prelmnary example VS ytem, ldng mode, reachng Bac of dcontnuou ytem Example: underea

More information

A neural network with localized receptive fields for visual pattern classification

A neural network with localized receptive fields for visual pattern classification Unversty of Wollongong Research Onlne Faculty of Informatcs - Papers (Archve) Faculty of Engneerng and Informaton Scences 2005 A neural network wth localzed receptve felds for vsual pattern classfcaton

More information

Neural Networks. Neural Network Motivation. Why Neural Networks? Comments on Blue Gene. More Comments on Blue Gene

Neural Networks. Neural Network Motivation. Why Neural Networks? Comments on Blue Gene. More Comments on Blue Gene Motvaton for non-lnear Classfers Neural Networs CPS 27 Ron Parr Lnear methods are wea Mae strong assumptons Can only express relatvely smple functons of nputs Comng up wth good features can be hard Why

More information

Atmospheric Environmental Quality Assessment RBF Model Based on the MATLAB

Atmospheric Environmental Quality Assessment RBF Model Based on the MATLAB Journal of Envronmental Protecton, 01, 3, 689-693 http://dxdoorg/10436/jep0137081 Publshed Onlne July 01 (http://wwwscrporg/journal/jep) 689 Atmospherc Envronmental Qualty Assessment RBF Model Based on

More information

A Complexity-Based Approach in Image Compression using Neural Networks

A Complexity-Based Approach in Image Compression using Neural Networks Internatonal Journal of Sgnal Proceng 5; www.waet.org Sprng 009 A Complexty-Baed Approach n Image Compreon ung eural etwork Had Ve, Manour Jamzad Abtract In th paper we preent an adaptve method for mage

More information

Linear Regression Introduction to Machine Learning. Matt Gormley Lecture 5 September 14, Readings: Bishop, 3.1

Linear Regression Introduction to Machine Learning. Matt Gormley Lecture 5 September 14, Readings: Bishop, 3.1 School of Computer Scence 10-601 Introducton to Machne Learnng Lnear Regresson Readngs: Bshop, 3.1 Matt Gormle Lecture 5 September 14, 016 1 Homework : Remnders Extenson: due Frda (9/16) at 5:30pm Rectaton

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

Parameter estimation class 5

Parameter estimation class 5 Parameter estmaton class 5 Multple Ve Geometr Comp 9-89 Marc Pollefes Content Background: Projectve geometr (D, 3D), Parameter estmaton, Algortm evaluaton. Sngle Ve: Camera model, Calbraton, Sngle Ve Geometr.

More information

Body Models I-2. Gerard Pons-Moll and Bernt Schiele Max Planck Institute for Informatics

Body Models I-2. Gerard Pons-Moll and Bernt Schiele Max Planck Institute for Informatics Body Models I-2 Gerard Pons-Moll and Bernt Schele Max Planck Insttute for Informatcs December 18, 2017 What s mssng Gven correspondences, we can fnd the optmal rgd algnment wth Procrustes. PROBLEMS: How

More information

Which Separator? Spring 1

Which Separator? Spring 1 Whch Separator? 6.034 - Sprng 1 Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng 3 Margn of a pont " # y (w $ + b) proportonal

More information

Supporting Information

Supporting Information Supportng Informaton The neural network f n Eq. 1 s gven by: f x l = ReLU W atom x l + b atom, 2 where ReLU s the element-wse rectfed lnear unt, 21.e., ReLUx = max0, x, W atom R d d s the weght matrx to

More information

Statistical Machine Learning Methods for Bioinformatics III. Neural Network & Deep Learning Theory

Statistical Machine Learning Methods for Bioinformatics III. Neural Network & Deep Learning Theory Statstcal Machne Learnng Methods for Bonformatcs III. Neural Network & Deep Learnng Theory Janln Cheng, PhD Department of Computer Scence Unversty of Mssour 2016 Free for Academc Use. Copyrght @ Janln

More information

Estimating Delays. Gate Delay Model. Gate Delay. Effort Delay. Computing Logical Effort. Logical Effort

Estimating Delays. Gate Delay Model. Gate Delay. Effort Delay. Computing Logical Effort. Logical Effort Estmatng Delas Would be nce to have a back of the envelope method for szng gates for speed Logcal Effort ook b Sutherland, Sproull, Harrs Chapter s on our web page Gate Dela Model Frst, normalze a model

More information

Wavelet chaotic neural networks and their application to continuous function optimization

Wavelet chaotic neural networks and their application to continuous function optimization Vol., No.3, 04-09 (009) do:0.436/ns.009.307 Natural Scence Wavelet chaotc neural networks and ther applcaton to contnuous functon optmzaton Ja-Ha Zhang, Yao-Qun Xu College of Electrcal and Automatc Engneerng,

More information

Using collocation neural network to solve nonlinear singular differential equations

Using collocation neural network to solve nonlinear singular differential equations 216; 2(1): 5-56 ISSN: 2456-1452 Maths 217; 2(1): 5-56 217 Stats & Maths www.mathsjournal.com Receved: 17-11-216 Accepted: 18-12-216 Luma. N.M Tawfq Department of Mathematcs, College of Educaton Ibn Al-

More information

CHAPTER III Neural Networks as Associative Memory

CHAPTER III Neural Networks as Associative Memory CHAPTER III Neural Networs as Assocatve Memory Introducton One of the prmary functons of the bran s assocatve memory. We assocate the faces wth names, letters wth sounds, or we can recognze the people

More information

CHALMERS, GÖTEBORGS UNIVERSITET. SOLUTIONS to RE-EXAM for ARTIFICIAL NEURAL NETWORKS. COURSE CODES: FFR 135, FIM 720 GU, PhD

CHALMERS, GÖTEBORGS UNIVERSITET. SOLUTIONS to RE-EXAM for ARTIFICIAL NEURAL NETWORKS. COURSE CODES: FFR 135, FIM 720 GU, PhD CHALMERS, GÖTEBORGS UNIVERSITET SOLUTIONS to RE-EXAM for ARTIFICIAL NEURAL NETWORKS COURSE CODES: FFR 35, FIM 72 GU, PhD Tme: Place: Teachers: Allowed materal: Not allowed: January 2, 28, at 8 3 2 3 SB

More information

VQ widely used in coding speech, image, and video

VQ widely used in coding speech, image, and video at Scalar quantzers are specal cases of vector quantzers (VQ): they are constraned to look at one sample at a tme (memoryless) VQ does not have such constrant better RD perfomance expected Source codng

More information

Training Convolutional Neural Networks

Training Convolutional Neural Networks Tranng Convolutonal Neural Networks Carlo Tomas November 26, 208 The Soft-Max Smplex Neural networks are typcally desgned to compute real-valued functons y = h(x) : R d R e of ther nput x When a classfer

More information

Numerical Simulation of Wave Propagation Using the Shallow Water Equations

Numerical Simulation of Wave Propagation Using the Shallow Water Equations umercal Smulaton of Wave Propagaton Usng the Shallow Water Equatons Junbo Par Harve udd College 6th Aprl 007 Abstract The shallow water equatons SWE were used to model water wave propagaton n one dmenson

More information

The Fundamental Theorem of Algebra. Objective To use the Fundamental Theorem of Algebra to solve polynomial equations with complex solutions

The Fundamental Theorem of Algebra. Objective To use the Fundamental Theorem of Algebra to solve polynomial equations with complex solutions 5-6 The Fundamental Theorem of Algebra Content Standards N.CN.7 Solve quadratc equatons wth real coeffcents that have comple solutons. N.CN.8 Etend polnomal denttes to the comple numbers. Also N.CN.9,

More information

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14 APPROXIMAE PRICES OF BASKE AND ASIAN OPIONS DUPON OLIVIER Prema 14 Contents Introducton 1 1. Framewor 1 1.1. Baset optons 1.. Asan optons. Computng the prce 3. Lower bound 3.1. Closed formula for the prce

More information

Generative classification models

Generative classification models CS 675 Intro to Machne Learnng Lecture Generatve classfcaton models Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square Data: D { d, d,.., dn} d, Classfcaton represents a dscrete class value Goal: learn

More information

Additional File 1 - Detailed explanation of the expression level CPD

Additional File 1 - Detailed explanation of the expression level CPD Addtonal Fle - Detaled explanaton of the expreon level CPD A mentoned n the man text, the man CPD for the uterng model cont of two ndvdual factor: P( level gen P( level gen P ( level gen 2 (.).. CPD factor

More information