16 Sampling. Solutions to Recommended Problems. a WYE~k. P(co) 2r =o -2rk S16.1

Size: px
Start display at page:

Download "16 Sampling. Solutions to Recommended Problems. a WYE~k. P(co) 2r =o -2rk S16.1"

Transcription

1 16 Sampling Solutions to Recommended Problems S16.1 If wo = 7r X 10', then cos(won X 10-3) = cos(irn) = Similarly, for wo = 31 X 10-3 and wo = 57 X 10-3, cos((on X 10-3) = (-1)" S16. he sampling function p(t) = (t - n), = 13, has a spectrum given by P(co) r =o -rk a WYE~k = 67r ( (w - 61rk), shown in Figure S P(W) 67] -17r -67r r Figure S16.-1 cos(wot) has a spectrum given by rb(o - wo) + rb(o + wo), shown in Figure S16.-. cos (CO 0 t) F r S 1. Figure S16.- S16-1

2 Signals and Systems S16- From the convolution theorem 1 = P(w) * [irb(w wr Hence, it is straightforward to find X,(x). (a) (i) For wo = 7r: wo) + gr(w + wo)] 37r -7n -6n -5r - n Figure S (ii) For wo = r: 37r -81r r -In 7 4 1r 67r 87r Figure S16.-4 (iii) For wo = 31r:

3 Sampling / Solutions S16-3 (iv) For wo = 5r: Figure S16.-6 (b) From part (a), it is clear that (i) and (iv) are identical. S16.3 he signal x(t) = cos(wet + 0), where wo = wfo, can be written as and the spectrum of x(t) is given by he spectrum of p(t) is given by x(t) = lei'eiot + le -' 0 e -jwot X(w) = rej'"(w - wo) + re ~j' 0 (w + wo) rk) P(W)= k -0, herefore, the spectrum of x,(t) is X,(W) = / L e 6 e k - Wo+ e -job (W - rk + ) and the spectrum of X,(W) is given by X,(w) = H(w)X,(w) wr (a) wo = r X 50, 0 =-) = 10-, 4, X,,(w) = r [e'b(w - w X 10'k - 1 X 50) k= - + e -j"s(w - 1 X 103k + 7 X 50)] Hence, only the k = 0 term is passed by the filter: and X,(w) = w[ej'5(w - w X 50) + e -i"s(w + 1 X 50)] X,(t) = 1 ei'ei x 5 ot + 1 e -'e -rx5o = cos (w X 50t + 0) = cos (1 X 50t +

4 Signals and Systems S16-4 (b) wo = w X 750 Hz, = 10-, X,(w) = >" [eb(w - w X 10 3 k - r X 750) Only the k = + e -j'b(w - r X 10 3 k + x X 750)] 1 term has nonzero contribution: X,(w) = r [ej"b(w + 7 X 50) + e ~ib(w - r X 50)] Hence, X,(t) = cos (w X 50t - 0) = cos (7 X 50t - (c) wo 7 X X,(w) =~ 500, =, = 10-, [ej 0 b(w - r X 10 3 k - r X 500) + e -j"b(w - 7 X 10 3 k + r X 500)] Since H(w) = 0 at w = r X 500, the output is zero: x,(t) = 0. S16.4 (a) x,(t) = x(t) 6(t - An) - x(t) 6(t - A - An) = x(t) :b(t - An) - Ln =- o n -o t - A - An)I By the convolution theorem, 1 wr X,(w) = X(w) 6 ( 1 * X(w) * - 7 An _o = X(W)* - -n ) e w,, 1(An)fl) - n7 X,(w) is sketched in Figure S and Y(w) is sketched in Figure S16.4-.

5 Sampling / Solutions S16-5 X,(w) _3ff -r 7r 3L7r 3nn n +, n 3n Figure S Y(W) (b) Fi S1.4ff Figure S16.4- xp(t) X x(t) -WM CJM cos("f) Figure S (c) yt X x(t) A -CJM lim cos(z) Figure S (d) A is maximum when ir/a is minimum. From part (a) we see that aliasing is avoided in X,(w) if wm zr/a. Hence, Amax = */Wu.

6 Signals and Systems S16-6 S16.5 (a) he transform of the sampled function appears as in Figure S Passband -- IW n n_ 0 x1 Figure S (b) Hence, (a) matches (i). Passband " "- "- 0 I 1r Figure S16.5- (c) (d) Hence, (b) does not match any. Matches (ii). M MKY7 M Hence, (d) does not match any. Figure S S16.6 Since the input x,(t) cannot be distinguished for certain values of w,the output also should not be distinguishable for certain values of w. Hence, Q(w) must be periodic in w. herefore, Figure P is a possible candidate, but Figure P16.6- is not.

7 Sampling / Solutions S16-7 Solutions to Optional Problems S16.7 P(w) A _ 1 0 w 4r NA NA Xp(w) NA NAa N A W n W Figure S Note that as increases, (1r/) - W approaches w = 0. Also, there is aliasing when xo - C < (r/) - w < C. If w 1 - W >---0 (as given in the problem), then it is easy to see that there is no aliasing when 0! (1r/) - W! oi - C. For maximum, we choose a minimum allowable value of 1r/: - = x max = 1, ax W which is sampling at half the Nyquist rate. X,(w) for this case is given in Figure S XP(W) _ 0 - Figure S16.7- Hence, A =, wb = 7r/, Wa = WI

8 Signals and Systems S16-8 S16.8 We are given the system shown in Figure S x(t) - )(- xix(t) H, (c) X (t) X, (t) eiwot p(t) Figure S (a) X(o) and Xi(o) are as shown in Figure S X (w) is as S16.8-3, and X,(o) is therefore as given in Figure S shown in Figure X(W) I W- W, X1(Go) Wl w (W 1 - W) (W - 1 ) Figure S16.8- X (o) 1W 0) (W -- W1) Figure S Xp(w) 1 ' Figure

9 Sampling / Solutions S16-9 (b) x/max equals the Nyquist rate for X ((o): (c) Hence, (W - Wi = W - max 7 (W - wi) WI xp(t) x Re g xh1(o) X(t) e -'Ot Figure S S16.9 he composite waveform spectrum is given in Figure S We can alias the noise region to get maximum. his corresponds to the aliased spectrum, shown in Figure S W -W 0 W W 3W 4W 5W Figure S16.9- he value of is given by he value of A is max for y(t) = x(t). w-= 3W- ax = "'' 3W

10 Signals and Systems S16-10 S16.10 he spectra of x, (t), where = have generated x,(t): ir/w, given in Figures S and S16.10-, could X 1 (O) - -w W W W 6 6 W 6w 6 Figure S X (O) Figure S S16.11 (a) From the sampling theorem, 7r/ >_W. Hence, Since 7r 7r W max W X,(W) = k X k, we require A = for x,(t) = x(t). he minimum value of We is W so that we do not lose any information, and the maximum value of W is (7r/) - W to avoid periodic spectral contribution. (b) (i) X(w) = 0 for IwI > W Hence, (ii) m.ax = I, W X(w) = 0 for coi > W. Hence, A =, W< W < - W. =, A =, W< W < - W W

11 Sampling / Solutions S16-11 (iii) (iv) X(w) = 0 for coi > 3W Hence, max =, 3W' X(w) = 0 for w I > W/10. Hence, ax - "W A =, 3W< We < A=, W - '10 7r - 3W W -1

12 MI OpenCourseWare Resource: Signals and Systems Professor Alan V. Oppenheim he following may not correspond to a particular course on MI OpenCourseWare, but has been provided by the author as an individual learning resource. For information about citing these materials or our erms of Use, visit:

8 Continuous-Time Fourier Transform

8 Continuous-Time Fourier Transform 8 Continuous-Time Fourier Transform Recommended Problems P8. Consider the signal x(t), which consists of a single rectangular pulse of unit height, is symmetric about the origin, and has a total width

More information

12 Filtering. Solutions to Recommended Problems. H(-w)e' t. (a) The impulse response is real because. h*(t) = f H*(w)e ~i"' dw = - H(w)e -i-t dw

12 Filtering. Solutions to Recommended Problems. H(-w)e' t. (a) The impulse response is real because. h*(t) = f H*(w)e ~i' dw = - H(w)e -i-t dw 1 Filtering Solutions to Recommended Problems S1.1 (a) The impulse response is real because h(t) = - 1 H(w)ew' dw, h*(t) = f H*(w)e ~i"' dw = - H(w)e -i-t dw 1 H(-w)e-' do = --- H(w)eij' dw = h(t) where

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.011: Introduction to Communication, Control and Signal Processing QUIZ 1, March 16, 2010 ANSWER BOOKLET

More information

24 Butterworth Filters

24 Butterworth Filters 24 Butterworth Filters Recommended Problems P24.1 Do the following for a fifth-order Butterworth filter with cutoff frequency of 1 khz and transfer function B(s). (a) Write the expression for the magnitude

More information

2A1H Time-Frequency Analysis II Bugs/queries to HT 2011 For hints and answers visit dwm/courses/2tf

2A1H Time-Frequency Analysis II Bugs/queries to HT 2011 For hints and answers visit   dwm/courses/2tf Time-Frequency Analysis II (HT 20) 2AH 2AH Time-Frequency Analysis II Bugs/queries to david.murray@eng.ox.ac.uk HT 20 For hints and answers visit www.robots.ox.ac.uk/ dwm/courses/2tf David Murray. A periodic

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.11: Introduction to Communication, Control and Signal Processing QUIZ 1, March 16, 21 QUESTION BOOKLET

More information

x / 24 Butterworth Filters Solutions to Recommended Problems IB(jw)1 2 = 10 S24.1 (a) For N = 5 and w = ( 2 7)1 khz, IB(jw)1 2 is given by

x / 24 Butterworth Filters Solutions to Recommended Problems IB(jw)1 2 = 10 S24.1 (a) For N = 5 and w = ( 2 7)1 khz, IB(jw)1 2 is given by 24 Butterworth Filters Solutions to Recommended Problems S24. (a) For N = 5 and w = ( 2 7) khz, IB(jw) 2 is given by IB(jw) 2 = 0 + (2000 r) (b) The denominator of B(s)B(-s) is set to zero. Thus 0 = +

More information

2A1H Time-Frequency Analysis II

2A1H Time-Frequency Analysis II 2AH Time-Frequency Analysis II Bugs/queries to david.murray@eng.ox.ac.uk HT 209 For any corrections see the course page DW Murray at www.robots.ox.ac.uk/ dwm/courses/2tf. (a) A signal g(t) with period

More information

ECE 301 Fall 2011 Division 1 Homework 10 Solutions. { 1, for 0.5 t 0.5 x(t) = 0, for 0.5 < t 1

ECE 301 Fall 2011 Division 1 Homework 10 Solutions. { 1, for 0.5 t 0.5 x(t) = 0, for 0.5 < t 1 ECE 3 Fall Division Homework Solutions Problem. Reconstruction of a continuous-time signal from its samples. Let x be a periodic continuous-time signal with period, such that {, for.5 t.5 x(t) =, for.5

More information

Tutorial Sheet #2 discrete vs. continuous functions, periodicity, sampling

Tutorial Sheet #2 discrete vs. continuous functions, periodicity, sampling 2.39 utorial Sheet #2 discrete vs. continuous functions, periodicity, sampling We will encounter two classes of signals in this class, continuous-signals and discrete-signals. he distinct mathematical

More information

Down-Sampling (4B) Young Won Lim 11/15/12

Down-Sampling (4B) Young Won Lim 11/15/12 Down-Sampling (B) /5/ Copyright (c) 9,, Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version. or any later

More information

Up-Sampling (5B) Young Won Lim 11/15/12

Up-Sampling (5B) Young Won Lim 11/15/12 Up-Sampling (5B) Copyright (c) 9,, Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version. or any later version

More information

EE422G Homework #9 Solution

EE422G Homework #9 Solution EE4G Homework #9 Solution. (3 points) Sampling and Reconstruction a) Given the following discrete-time input x(n), sketch the outputs reconstructed continuous signal y(t) using Sample-And-Hold and Linear

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MI OpenCourseWare http://ocw.mit.edu.6 Signal Processing: Continuous and Discrete Fall 008 For information about citing these materials or our erms of Use, visit: http://ocw.mit.edu/terms. Massachusetts

More information

6 Systems Represented by Differential and Difference Equations

6 Systems Represented by Differential and Difference Equations 6 Systems Represented by Differential and Difference Equations Recommended Problems P6.1 Suppose that y 1 (t) and y 2 (t) both satisfy the homogeneous linear constant-coefficient differential equation

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.161 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. I Reading:

More information

Grades will be determined by the correctness of your answers (explanations are not required).

Grades will be determined by the correctness of your answers (explanations are not required). 6.00 (Fall 2011) Final Examination December 19, 2011 Name: Kerberos Username: Please circle your section number: Section Time 2 11 am 1 pm 4 2 pm Grades will be determined by the correctness of your answers

More information

EXAM 3 MAT 167 Calculus I Spring is a composite function of two functions y = e u and u = 4 x + x 2. By the. dy dx = dy du = e u x + 2x.

EXAM 3 MAT 167 Calculus I Spring is a composite function of two functions y = e u and u = 4 x + x 2. By the. dy dx = dy du = e u x + 2x. EXAM MAT 67 Calculus I Spring 20 Name: Section: I Each answer must include either supporting work or an explanation of your reasoning. These elements are considered to be the main part of each answer and

More information

26 Feedback Example: The Inverted Pendulum

26 Feedback Example: The Inverted Pendulum 6 Feedback Example: The Inverted Pendulum Solutions to Recommended Problems S6. Ld 0(t) (a) Ldz6(t) = g0(t) a(t) + Lx(t), Ld (t) dt - ga(t) = Lx(t) Taking the Laplace transform of both sides yields szlo(s)

More information

Grades will be determined by the correctness of your answers (explanations are not required).

Grades will be determined by the correctness of your answers (explanations are not required). 6.00 (Fall 20) Final Examination December 9, 20 Name: Kerberos Username: Please circle your section number: Section Time 2 am pm 4 2 pm Grades will be determined by the correctness of your answers (explanations

More information

TIME SERIES ANALYSIS

TIME SERIES ANALYSIS 2 WE ARE DEALING WITH THE TOUGHEST CASES: TIME SERIES OF UNEQUALLY SPACED AND GAPPED ASTRONOMICAL DATA 3 A PERIODIC SIGNAL Dots: periodic signal with frequency f = 0.123456789 d -1. Dotted line: fit for

More information

ECE 301 Fall 2010 Division 2 Homework 10 Solutions. { 1, if 2n t < 2n + 1, for any integer n, x(t) = 0, if 2n 1 t < 2n, for any integer n.

ECE 301 Fall 2010 Division 2 Homework 10 Solutions. { 1, if 2n t < 2n + 1, for any integer n, x(t) = 0, if 2n 1 t < 2n, for any integer n. ECE 3 Fall Division Homework Solutions Problem. Reconstruction of a continuous-time signal from its samples. Consider the following periodic signal, depicted below: {, if n t < n +, for any integer n,

More information

ECE 350 Signals and Systems Spring 2011 Final Exam - Solutions. Three 8 ½ x 11 sheets of notes, and a calculator are allowed during the exam.

ECE 350 Signals and Systems Spring 2011 Final Exam - Solutions. Three 8 ½ x 11 sheets of notes, and a calculator are allowed during the exam. ECE 35 Spring - Final Exam 9 May ECE 35 Signals and Systems Spring Final Exam - Solutions Three 8 ½ x sheets of notes, and a calculator are allowed during the exam Write all answers neatly and show your

More information

Fourier Series Representation of

Fourier Series Representation of Fourier Series Representation of Periodic Signals Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Outline The response of LIT system

More information

EEL3135: Homework #3 Solutions

EEL3135: Homework #3 Solutions EEL335: Homework #3 Solutions Problem : (a) Compute the CTFT for the following signal: xt () cos( πt) cos( 3t) + cos( 4πt). First, we use the trigonometric identity (easy to show by using the inverse Euler

More information

Question Paper Code : AEC11T02

Question Paper Code : AEC11T02 Hall Ticket No Question Paper Code : AEC11T02 VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Affiliated to JNTUH, Hyderabad Four Year B. Tech III Semester Tutorial Question Bank 2013-14 (Regulations: VCE-R11)

More information

Chapter 2: Problem Solutions

Chapter 2: Problem Solutions Chapter 2: Problem Solutions Discrete Time Processing of Continuous Time Signals Sampling à Problem 2.1. Problem: Consider a sinusoidal signal and let us sample it at a frequency F s 2kHz. xt 3cos1000t

More information

Lecture 15: Thu Feb 28, 2019

Lecture 15: Thu Feb 28, 2019 Lecture 15: Thu Feb 28, 2019 Announce: HW5 posted Lecture: The AWGN waveform channel Projecting temporally AWGN leads to spatially AWGN sufficiency of projection: irrelevancy theorem in waveform AWGN:

More information

Subject: Combining data from separate regions to improve the detection probability

Subject: Combining data from separate regions to improve the detection probability DEUTERIUM ARRAY MEMO #6 MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS 886 November, 4 Telephone: 978-69-4764 Fax: 78-98-59 To: From: Deuterium Array Group Alan E.E.

More information

Problem Sheet 1 Examples of Random Processes

Problem Sheet 1 Examples of Random Processes RANDOM'PROCESSES'AND'TIME'SERIES'ANALYSIS.'PART'II:'RANDOM'PROCESSES' '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''Problem'Sheets' Problem Sheet 1 Examples of Random Processes 1. Give

More information

11.10a Taylor and Maclaurin Series

11.10a Taylor and Maclaurin Series 11.10a 1 11.10a Taylor and Maclaurin Series Let y = f(x) be a differentiable function at x = a. In first semester calculus we saw that (1) f(x) f(a)+f (a)(x a), for all x near a The right-hand side of

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

INTRODUCTION TO DELTA-SIGMA ADCS

INTRODUCTION TO DELTA-SIGMA ADCS ECE37 Advanced Analog Circuits INTRODUCTION TO DELTA-SIGMA ADCS Richard Schreier richard.schreier@analog.com NLCOTD: Level Translator VDD > VDD2, e.g. 3-V logic? -V logic VDD < VDD2, e.g. -V logic? 3-V

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010 [E2.5] IMPERIAL COLLEGE LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010 EEE/ISE PART II MEng. BEng and ACGI SIGNALS AND LINEAR SYSTEMS Time allowed: 2:00 hours There are FOUR

More information

Lecture 27 Frequency Response 2

Lecture 27 Frequency Response 2 Lecture 27 Frequency Response 2 Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/6/12 1 Application of Ideal Filters Suppose we can generate a square wave with a fundamental period

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science : Discrete-Time Signal Processing

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science : Discrete-Time Signal Processing Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.34: Discrete-Time Signal Processing OpenCourseWare 006 ecture 8 Periodogram Reading: Sections 0.6 and 0.7

More information

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals 1. Sampling and Reconstruction 2. Quantization 1 1. Sampling & Reconstruction DSP must interact with an analog world: A to D D to A x(t)

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.6 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts

More information

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3.0 INTRODUCTION The purpose of this chapter is to introduce estimators shortly. More elaborated courses on System Identification, which are given

More information

6.003 (Fall 2007) 17 December Final exam. Name: Please circle your section number:

6.003 (Fall 2007) 17 December Final exam. Name: Please circle your section number: 6.3 (Fall 27) Final exam 7 December 27 Name: Please circle your section number: Section Instructor Time Jeffrey Lang 2 Jeffrey Lang 3 Karen Livescu 4 Sanjoy Mahajan 2 5 Antonio Torralba 6 Qing Hu 2 Partial

More information

EEM 409. Random Signals. Problem Set-2: (Power Spectral Density, LTI Systems with Random Inputs) Problem 1: Problem 2:

EEM 409. Random Signals. Problem Set-2: (Power Spectral Density, LTI Systems with Random Inputs) Problem 1: Problem 2: EEM 409 Random Signals Problem Set-2: (Power Spectral Density, LTI Systems with Random Inputs) Problem 1: Consider a random process of the form = + Problem 2: X(t) = b cos(2π t + ), where b is a constant,

More information

6 Systems Represented by Differential and Difference Equations

6 Systems Represented by Differential and Difference Equations 6 Systems Represented by Differential and Difference Equations Solutions to Recommended Problems S6.1 We substitute ya(t) = ay 1 (t) + Oy 2 (t) into the homogeneous differential equation dya(t) + ay 3

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.161 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

NAME: ht () 1 2π. Hj0 ( ) dω Find the value of BW for the system having the following impulse response.

NAME: ht () 1 2π. Hj0 ( ) dω Find the value of BW for the system having the following impulse response. University of California at Berkeley Department of Electrical Engineering and Computer Sciences Professor J. M. Kahn, EECS 120, Fall 1998 Final Examination, Wednesday, December 16, 1998, 5-8 pm NAME: 1.

More information

23 Mapping Continuous-Time Filters to Discrete-Time Filters

23 Mapping Continuous-Time Filters to Discrete-Time Filters 23 Mapping Continuous-Time Filters to Discrete-Time Filters Solutions to Recommended Problems S23.1 (a) X,(z) = - 1-2z 2 Z i. (b) X 2 (z) = 0 (-3)"z = (-3)-"z" 1 z 3-'z < 1, n=o

More information

2.161 Signal Processing: Continuous and Discrete

2.161 Signal Processing: Continuous and Discrete MIT OpenCourseWare http://ocw.mit.edu.6 Signal Processing: Continuous and Discrete Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. M MASSACHUSETTS

More information

EE538 Final Exam Fall :20 pm -5:20 pm PHYS 223 Dec. 17, Cover Sheet

EE538 Final Exam Fall :20 pm -5:20 pm PHYS 223 Dec. 17, Cover Sheet EE538 Final Exam Fall 005 3:0 pm -5:0 pm PHYS 3 Dec. 17, 005 Cover Sheet Test Duration: 10 minutes. Open Book but Closed Notes. Calculators ARE allowed!! This test contains five problems. Each of the five

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science : Dynamic Systems Spring 2011

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science : Dynamic Systems Spring 2011 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.4: Dynamic Systems Spring Homework Solutions Exercise 3. a) We are given the single input LTI system: [

More information

Homework 4. May An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt

Homework 4. May An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt Homework 4 May 2017 1. An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt Determine the impulse response of the system. Rewriting as y(t) = t e (t

More information

1. (Optional) Read Thomas, Section (See Preface to ~xercise for an explanation.)

1. (Optional) Read Thomas, Section (See Preface to ~xercise for an explanation.) 1. (Optional) Read Thomas, Section 15.1. (See Preface to ~xercise 3.6. for an explanation.). Exercises: 3.6.1(L) Suppose w = f(x,y) where f is a continuously differentiable function of x and y. Assume

More information

An overview of key ideas

An overview of key ideas An overview of key ideas This is an overview of linear algebra given at the start of a course on the mathematics of engineering. Linear algebra progresses from vectors to matrices to subspaces. Vectors

More information

D(f/g)(P ) = D(f)(P )g(p ) f(p )D(g)(P ). g 2 (P )

D(f/g)(P ) = D(f)(P )g(p ) f(p )D(g)(P ). g 2 (P ) We first record a very useful: 11. Higher derivatives Theorem 11.1. Let A R n be an open subset. Let f : A R m and g : A R m be two functions and suppose that P A. Let λ A be a scalar. If f and g are differentiable

More information

FROM ANALOGUE TO DIGITAL

FROM ANALOGUE TO DIGITAL SIGNALS AND SYSTEMS: PAPER 3C1 HANDOUT 7. Dr David Corrigan 1. Electronic and Electrical Engineering Dept. corrigad@tcd.ie www.mee.tcd.ie/ corrigad FROM ANALOGUE TO DIGITAL To digitize signals it is necessary

More information

5.62 Physical Chemistry II Spring 2008

5.62 Physical Chemistry II Spring 2008 MI OpenCourseWare http://ocw.mit.edu 5.6 Physical Chemistry II Spring 008 For information about citing these materials or our erms of Use, visit: http://ocw.mit.edu/terms. 5.6 Spring 008 Lecture Summary

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING Final Examination - Fall 2015 EE 4601: Communication Systems

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING Final Examination - Fall 2015 EE 4601: Communication Systems GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING Final Examination - Fall 2015 EE 4601: Communication Systems Aids Allowed: 2 8 1/2 X11 crib sheets, calculator DATE: Tuesday

More information

Iterative methods to compute center and center-stable manifolds with application to the optimal output regulation problem

Iterative methods to compute center and center-stable manifolds with application to the optimal output regulation problem Iterative methods to compute center and center-stable manifolds with application to the optimal output regulation problem Noboru Sakamoto, Branislav Rehak N.S.: Nagoya University, Department of Aerospace

More information

SECTION FOR DIGITAL SIGNAL PROCESSING DEPARTMENT OF MATHEMATICAL MODELLING TECHNICAL UNIVERSITY OF DENMARK Course 04362 Digital Signal Processing: Solutions to Problems in Proakis and Manolakis, Digital

More information

6.003 (Fall 2011) Quiz #3 November 16, 2011

6.003 (Fall 2011) Quiz #3 November 16, 2011 6.003 (Fall 2011) Quiz #3 November 16, 2011 Name: Kerberos Username: Please circle your section number: Section Time 2 11 am 3 1 pm 4 2 pm Grades will be determined by the correctness of your answers (explanations

More information

Review: Continuous Fourier Transform

Review: Continuous Fourier Transform Review: Continuous Fourier Transform Review: convolution x t h t = x τ h(t τ)dτ Convolution in time domain Derivation Convolution Property Interchange the order of integrals Let Convolution Property By

More information

Therefore the new Fourier coefficients are. Module 2 : Signals in Frequency Domain Problem Set 2. Problem 1

Therefore the new Fourier coefficients are. Module 2 : Signals in Frequency Domain Problem Set 2. Problem 1 Module 2 : Signals in Frequency Domain Problem Set 2 Problem 1 Let be a periodic signal with fundamental period T and Fourier series coefficients. Derive the Fourier series coefficients of each of the

More information

Representation of Signals & Systems

Representation of Signals & Systems Representation of Signals & Systems Reference: Chapter 2,Communication Systems, Simon Haykin. Hilbert Transform Fourier transform frequency content of a signal (frequency selectivity designing frequency-selective

More information

Fourier Analysis and Power Spectral Density

Fourier Analysis and Power Spectral Density Chapter 4 Fourier Analysis and Power Spectral Density 4. Fourier Series and ransforms Recall Fourier series for periodic functions for x(t + ) = x(t), where x(t) = 2 a + a = 2 a n = 2 b n = 2 n= a n cos

More information

PART 1. Review of DSP. f (t)e iωt dt. F(ω) = f (t) = 1 2π. F(ω)e iωt dω. f (t) F (ω) The Fourier Transform. Fourier Transform.

PART 1. Review of DSP. f (t)e iωt dt. F(ω) = f (t) = 1 2π. F(ω)e iωt dω. f (t) F (ω) The Fourier Transform. Fourier Transform. PART 1 Review of DSP Mauricio Sacchi University of Alberta, Edmonton, AB, Canada The Fourier Transform F() = f (t) = 1 2π f (t)e it dt F()e it d Fourier Transform Inverse Transform f (t) F () Part 1 Review

More information

E2.5 Signals & Linear Systems. Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & 2)

E2.5 Signals & Linear Systems. Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & 2) E.5 Signals & Linear Systems Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & ) 1. Sketch each of the following continuous-time signals, specify if the signal is periodic/non-periodic,

More information

Principles of Communications Lecture 8: Baseband Communication Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University

Principles of Communications Lecture 8: Baseband Communication Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University Principles of Communications Lecture 8: Baseband Communication Systems Chih-Wei Liu 劉志尉 National Chiao Tung University cwliu@twins.ee.nctu.edu.tw Outlines Introduction Line codes Effects of filtering Pulse

More information

Principles of Communications

Principles of Communications Principles of Communications Weiyao Lin, PhD Shanghai Jiao Tong University Chapter 4: Analog-to-Digital Conversion Textbook: 7.1 7.4 2010/2011 Meixia Tao @ SJTU 1 Outline Analog signal Sampling Quantization

More information

Introduction to Systems with Dynamics

Introduction to Systems with Dynamics S 0 L U T I 0 N S Introduction to Systems with Dynamics I- 3 Note: All references to Figures and Equations whose numbers are not preceded by an "S"refer to the textbook. From Figure 3.6 on page 79 of the

More information

2.161 Signal Processing: Continuous and Discrete

2.161 Signal Processing: Continuous and Discrete MI OpenCourseWare http://ocw.mit.edu.6 Signal Processing: Continuous and Discrete Fall 8 For information about citing these materials or our erms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSES INSIUE

More information

2.004 Dynamics and Control II Spring 2008

2.004 Dynamics and Control II Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.004 Dynamics and Control II Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8 I * * Massachusetts

More information

Sampling اهمتسیس و اهلانگیس یرهطم لضفلاوبا دیس فیرش یتعنص هاگشناد رتویپماک هدکشناد

Sampling اهمتسیس و اهلانگیس یرهطم لضفلاوبا دیس فیرش یتعنص هاگشناد رتویپماک هدکشناد Sampling سیگنالها و سیستمها سید ابوالفضل مطهری دانشکده کامپیوتر دانشگاه صنعتی شریف Sampling Conversion of a continuous-time signal to discrete time. x(t) x[n] 0 2 4 6 8 10 t 0 2 4 6 8 10 n Sampling Applications

More information

15 n=0. zz = re jθ re jθ = r 2. (b) For division and multiplication, it is handy to use the polar representation: z = rejθ. = z 1z 2.

15 n=0. zz = re jθ re jθ = r 2. (b) For division and multiplication, it is handy to use the polar representation: z = rejθ. = z 1z 2. Professor Fearing EECS0/Problem Set v.0 Fall 06 Due at 4 pm, Fri. Sep. in HW box under stairs (st floor Cory) Reading: EE6AB notes. This problem set should be review of material from EE6AB. (Please note,

More information

Capacity Penalty due to Ideal Zero-Forcing Decision-Feedback Equalization

Capacity Penalty due to Ideal Zero-Forcing Decision-Feedback Equalization Capacity Penalty due to Ideal Zero-Forcing Decision-Feedback Equalization John R. Barry, Edward A. Lee, and David. Messerschmitt John R. Barry, School of Electrical Engineering, eorgia Institute of Technology,

More information

Signal Processing COS 323

Signal Processing COS 323 Signal Processing COS 323 Digital Signals D: functions of space or time e.g., sound 2D: often functions of 2 spatial dimensions e.g. images 3D: functions of 3 spatial dimensions CAT, MRI scans or 2 space,

More information

P a g e 3 6 of R e p o r t P B 4 / 0 9

P a g e 3 6 of R e p o r t P B 4 / 0 9 P a g e 3 6 of R e p o r t P B 4 / 0 9 p r o t e c t h um a n h e a l t h a n d p r o p e r t y fr om t h e d a n g e rs i n h e r e n t i n m i n i n g o p e r a t i o n s s u c h a s a q u a r r y. J

More information

MINNEAPOLIS-ST. PAUL MARKET OVERVIEW. The Twin Cities is one of the top-performing markets in the nation to work, shop, and live. cushmanwakefield.

MINNEAPOLIS-ST. PAUL MARKET OVERVIEW. The Twin Cities is one of the top-performing markets in the nation to work, shop, and live. cushmanwakefield. II-. U K VVI wi ii i f -fi i i w,, i. uwfi. VVI wi ii f ii. u i wi ib i wi i i b, i b bu f uu i uii i f i i i Ui. wi ii i i fii, ufui, iibui i bw i, wi i iu f i ui i i xiii. ix ffbii, ui, w w. i, i f ii

More information

The Discrete Fourier transform

The Discrete Fourier transform 453.70 Linear Systems, S.M. Tan, The University of uckland 9- Chapter 9 The Discrete Fourier transform 9. DeÞnition When computing spectra on a computer it is not possible to carry out the integrals involved

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

Poles and Zeros in z-plane

Poles and Zeros in z-plane M58 Mixed Signal Processors page of 6 Poles and Zeros in z-plane z-plane Response of discrete-time system (i.e. digital filter at a particular frequency ω is determined by the distance between its poles

More information

6.003 Homework #1. Problems. Due at the beginning of recitation on September 14, 2011.

6.003 Homework #1. Problems. Due at the beginning of recitation on September 14, 2011. 6.003 Homework #1 Due at the beginning of recitation on September 14, 2011. Problems 1. Solving differential equations Solve the following differential equation y(t) + 3 dy(t) + 2 d2 y(t) = 1 dt dt 2 for

More information

I Chen Lin, Assistant Professor Dept. of CS, National Chiao Tung University. Computer Vision: 4. Filtering

I Chen Lin, Assistant Professor Dept. of CS, National Chiao Tung University. Computer Vision: 4. Filtering I Chen Lin, Assistant Professor Dept. of CS, National Chiao Tung University Computer Vision: 4. Filtering Outline Impulse response and convolution. Linear filter and image pyramid. Textbook: David A. Forsyth

More information

Wideband Spectrum Sensing for Cognitive Radios

Wideband Spectrum Sensing for Cognitive Radios Wideband Spectrum Sensing for Cognitive Radios Zhi (Gerry) Tian ECE Department Michigan Tech University ztian@mtu.edu February 18, 2011 Spectrum Scarcity Problem Scarcity vs. Underutilization Dilemma US

More information

Probability and Statistics for Final Year Engineering Students

Probability and Statistics for Final Year Engineering Students Probability and Statistics for Final Year Engineering Students By Yoni Nazarathy, Last Updated: May 24, 2011. Lecture 6p: Spectral Density, Passing Random Processes through LTI Systems, Filtering Terms

More information

6.02 Fall 2012 Lecture #10

6.02 Fall 2012 Lecture #10 6.02 Fall 2012 Lecture #10 Linear time-invariant (LTI) models Convolution 6.02 Fall 2012 Lecture 10, Slide #1 Modeling Channel Behavior codeword bits in generate x[n] 1001110101 digitized modulate DAC

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 IT OpenCourseWare http://ocw.mit.edu 2.161 Signal Processing: Continuous and Discrete all 2008 or information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. assachusetts

More information

M408 C Fall 2011 Dr. Jeffrey Danciger Exam 2 November 3, Section time (circle one): 11:00am 1:00pm 2:00pm

M408 C Fall 2011 Dr. Jeffrey Danciger Exam 2 November 3, Section time (circle one): 11:00am 1:00pm 2:00pm M408 C Fall 2011 Dr. Jeffrey Danciger Exam 2 November 3, 2011 NAME EID Section time (circle one): 11:00am 1:00pm 2:00pm No books, notes, or calculators. Show all your work. Do NOT open this exam booklet

More information

x (2) k even h n=(n) + (n+% x(6) X(3), x (5) 4 x(4)- x(), x (2), Decomposition of an N-point DFT into 2 N/2-point DFT's.

x (2) k even h n=(n) + (n+% x(6) X(3), x (5) 4 x(4)- x(), x (2), Decomposition of an N-point DFT into 2 N/2-point DFT's. COMPUTATION OF DISCRETE FOURIER TRANSFORM - PART 2 1. Lecture 19-49 minutes k even n.o h n=(n) + (n+% x (2), x (2) x(4)- x(6) Decomposition of an N-point DFT into 2 N/2-point DFT's. X(3), x (5) 4 x(),

More information

Applied Calculus. Review Problems for the Final Exam

Applied Calculus. Review Problems for the Final Exam Math135 Study Guide 1 Math 131/135/194, Fall 2004 Applied Calculus Daniel Kaplan, Macalester College Review Problems for the Final Exam Problem 1../DE/102b.tex Problem 3../DE/107.tex Consider the pair

More information

Linear Regression. Machine Learning CSE546 Kevin Jamieson University of Washington. Oct 2, Kevin Jamieson 1

Linear Regression. Machine Learning CSE546 Kevin Jamieson University of Washington. Oct 2, Kevin Jamieson 1 Linear Regression Machine Learning CSE546 Kevin Jamieson University of Washington Oct 2, 2018 1 The regression problem Given past sales data on zillow.com, predict: y = House sale price from x = {# sq.

More information

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

More information

Problem Value

Problem Value GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 30-Apr-04 COURSE: ECE-2025 NAME: GT #: LAST, FIRST Recitation Section: Circle the date & time when your Recitation

More information

BASIC DATA PROCESSING METHODS FOR OILFIELD GEOPHYSICS AND PETROPHYSICS

BASIC DATA PROCESSING METHODS FOR OILFIELD GEOPHYSICS AND PETROPHYSICS BASIC DATA PROCESSING METHODS FOR OILFIELD GEOPHYSICS AND PETROPHYSICS Petroleum Geoengineering MSc course 2018/19 1. Semester COURSE COMMUNICATION FOLDER University of Miskolc Faculty of Earth Science

More information

1 Solution to Homework 4

1 Solution to Homework 4 Solution to Homework Section. 5. The characteristic equation is r r + = (r )(r ) = 0 r = or r =. y(t) = c e t + c e t y = c e t + c e t. y(0) =, y (0) = c + c =, c + c = c =, c =. To find the maximum value

More information

Pulse Shaping and ISI (Proakis: chapter 10.1, 10.3) EEE3012 Spring 2018

Pulse Shaping and ISI (Proakis: chapter 10.1, 10.3) EEE3012 Spring 2018 Pulse Shaping and ISI (Proakis: chapter 10.1, 10.3) EEE3012 Spring 2018 Digital Communication System Introduction Bandlimited channels distort signals the result is smeared pulses intersymol interference

More information

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATIONS

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATIONS page 1 of 5 (+ appendix) NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATIONS Contact during examination: Name: Magne H. Johnsen Tel.: 73 59 26 78/930 25 534

More information

Discrete-Time Signals and Systems. Efficient Computation of the DFT: FFT Algorithms. Analog-to-Digital Conversion. Sampling Process.

Discrete-Time Signals and Systems. Efficient Computation of the DFT: FFT Algorithms. Analog-to-Digital Conversion. Sampling Process. iscrete-time Signals and Systems Efficient Computation of the FT: FFT Algorithms r. eepa Kundur University of Toronto Reference: Sections 6.1, 6., 6.4, 6.5 of John G. Proakis and imitris G. Manolakis,

More information

ECE-700 Review. Phil Schniter. January 5, x c (t)e jωt dt, x[n]z n, Denoting a transform pair by x[n] X(z), some useful properties are

ECE-700 Review. Phil Schniter. January 5, x c (t)e jωt dt, x[n]z n, Denoting a transform pair by x[n] X(z), some useful properties are ECE-7 Review Phil Schniter January 5, 7 ransforms Using x c (t) to denote a continuous-time signal at time t R, Laplace ransform: X c (s) x c (t)e st dt, s C Continuous-ime Fourier ransform (CF): ote that:

More information

EE3210 Lab 3: Periodic Signal Representation by Fourier Series

EE3210 Lab 3: Periodic Signal Representation by Fourier Series City University of Hong Kong Department of Electronic Engineering EE321 Lab 3: Periodic Signal Representation by Fourier Series Prelab: Read the Background section. Complete Section 2.2(b), which asks

More information

System Modeling and Identification CHBE 702 Korea University Prof. Dae Ryook Yang

System Modeling and Identification CHBE 702 Korea University Prof. Dae Ryook Yang System Modeling and Identification CHBE 702 Korea University Prof. Dae Ryook Yang 1-1 Course Description Emphases Delivering concepts and Practice Programming Identification Methods using Matlab Class

More information

Solution to EE 617 Mid-Term Exam, Fall November 2, 2017

Solution to EE 617 Mid-Term Exam, Fall November 2, 2017 Solution to EE 67 Mid-erm Exam, Fall 207 November 2, 207 EE 67 Solution to Mid-erm Exam - Page 2 of 2 November 2, 207 (4 points) Convex sets (a) (2 points) Consider the set { } a R k p(0) =, p(t) for t

More information