D(f/g)(P ) = D(f)(P )g(p ) f(p )D(g)(P ). g 2 (P )

Size: px
Start display at page:

Download "D(f/g)(P ) = D(f)(P )g(p ) f(p )D(g)(P ). g 2 (P )"

Transcription

1 We first record a very useful: 11. Higher derivatives Theorem Let A R n be an open subset. Let f : A R m and g : A R m be two functions and suppose that P A. Let λ A be a scalar. If f and g are differentiable at P, then (1) f +g is differentiable at P and D(f +g)(p ) = Df(P )+Dg(P ). () λ f is differentiable at P and D(λf)(P ) = λd(f)(p ). Now suppose that m = 1. (3) fg is differentiable at P and D(fg)(P ) = D(f)(P )g(p )+f(p )D(g)(P ). (4) If g(p ) = 0, then fg is differentiable at P and D(f/g)(P ) = D(f)(P )g(p ) f(p )D(g)(P ). g (P ) If the partial derivatives of f and g exist and are continuous, then (11.1) follows from the well-known single variable case. One can prove the general case of (11.1), by hand (basically lots of ɛ s and δ s). However, perhaps the best way to prove (11.1) is to use the chain rule, proved in the next section. What about higher derivatives? Definition 11.. Let A R n be an open set and let f : A R be a function. The kth order partial derivative of f, with respect to the variables x i1, x i,... x ik is the iterated derivative k f f (P ) = ( (... ( )... ))(P ). x ik x ik 1... x i x i1 x ik x ik 1 x i x i1 We will also use the notation f xik x ik 1...x i x i1 (P ). Example Let f : R R be the function f(x, t) = e at cos x. Then f xx (x, t) = ( (e at cos x)) x x = ( e at sin x) x = e at cos x. 1

2 On the other hand, Similarly, f xt (x, t) = ( (e at cos x)) x t = ( ae at cos x) x = ae at sin x. f tx (x, t) = ( (e at cos x)) t x = ( e at sin x) t = ae at sin x. Note that f t (x, t) = ae at cos x. It follows that f(x, t) is a solution to the Heat equation: f f a =. x t Definition Let A R n be an open subset and let f : A R m be a function. We say that f is of class C k if all kth partial derivatives exist and are continuous. We say that f is of class C (aka smooth) if f is of class C k for all k. In lecture 10 we saw that if f is C 1, then it is differentiable. Theorem Let A R n be an open subset and let f : A R m be a function. If f is C, then f f =, x i x j x j x i for all 1 i, j n. The proof uses the Mean Value Theorem. Suppose we are given A R an open subset and a function f : A R of class C 1. The objective is to find a solution to the equation f(x) = 0. Newton s method proceeds as follows. Start with some x 0 A. The best linear approximation to f(x) in a neighbourhood of x 0 is given by f(x 0 ) + f (x 0 )(x x 0 ).

3 If f (x 0 ) = 0, then the linear equation has the unique solution, f(x 0 ) + f (x 0 )(x x 0 ) = 0, f(x 0 ) x 1 = x 0. f (x 0 ) Now just keep going (assuming that f (x i ) is never zero), f(x 0 ) x 1 = x 0 f (x 0 ) f(x 1 ) x = x 1 f (x 1 )..... =. x n = x f f Claim Suppose that x = lim n x n exists and f (x ) == 0. Then f(x ) = 0. Proof of (11.6). Indeed, we have x n = x f f Take the limit as n goes to of both sides: ) ). ) ). f(x ) x = x, f (x ) we we used the fact that f and f are continuous and f (x ) = 0. But then f(x ) = 0, as claimed. Suppose that A R n is open and f : A R n is a function. Suppose that f is C 1 (that is, suppose each of the coordinate functions f 1, f,..., f n is C 1 ). The objective is to find a solution to the equation f(p ) = 0. Start with any point P 0 A. The best linear approximation to f at P 0 is given by f(p 0 ) + Df(P 0 ) P P 0. 3

4 Assume that Df(P 0 ) is an invertible matrix, that is, assume that det Df(P 0 ) 0. Then the inverse matrix Df(P 0 ) 1 exists and the unique solution to the linear equation f(p 0 ) + Df(P 0 ) P P 0 = 0, is given by P 1 = P 0 Df(P 0 ) 1 f(p 0 ). Notice that matrix multiplication is not commutative, so that there is a difference between Df(P 0 ) 1 f(p 0 ) and f(p 0 )Df(P 0 ) 1. If possible, we get a sequence of solutions, P 1 = P 0 Df(P 0 ) 1 f(p 0 ) P = P 1 Df(P 1 ) 1 f(p 1 ). =. P n = P Df(P ) 1 f(p ). Suppose that the limit P = lim n P n exists and that Df(P ) is invertible. As before, if we take the limit of both sides, this implies that f(p ) = 0. Let us try a concrete example. Example Solve x + y = 1 3 y = x. First we write down an appropriate function, f : R R, given by f(x, y) = (x + y 1, y x 3 ). Then we are looking for a point P such that f(p ) = (0, 0). Then ( ) x y Df(P ) =. 3x y The determinant of this matrix is 4xy + 6x y = xy( + 3x). Now if we are given a matrix ( ) a b c d, 4

5 then we may write down the inverse by hand, ( ) 1 d b. ad bc c a So ( ) 1 y y Df(P ) 1 = xy( + 3x) 3x x So, ( ) ( ) Df(P ) 1 1 y y x f(p ) = + y 1 3 xy( + 3x) 3x x y x ( ) 1 x y y + x 3 y = xy( + 3x) x 4 + 3x y 3x + xy One nice thing about this method is that it is quite easy to implement on a computer. Here is what happens if we start with (x 0, y 0 ) = (5, ), (x 0, y 0 ) = ( , ) (x 1, y 1 ) = ( , ) (x, y ) = ( , ) (x 3, y 3 ) = ( , ) (x 4, y 4 ) = ( , ) (x 5, y 5 ) = ( , ) (x 6, y 6 ) = ( , ), and if we start with (x 0, y 0 ) = (5, 5), (x 0, y 0 ) = ( , ) (x 1, y 1 ) = ( , ) (x, y ) = ( , ) (x 3, y 3 ) = ( , ) (x 4, y 4 ) = ( , ) (x 5, y 5 ) = ( , ) (x 6, y 6 ) = ( , ). One can sketch the two curves and check that these give reasonable solutions. One can also check that (x 6, y 6 ) lie close to the two given curves, by computing x 6 + y 6 1 and y 6 x

6 MIT OpenCourseWare Calculus of Several Variables Fall 010 For information about citing these materials or our Terms of Use, visit:

B ɛ (P ) B. n N } R. Q P

B ɛ (P ) B. n N } R. Q P 8. Limits Definition 8.1. Let P R n be a point. The open ball of radius ɛ > 0 about P is the set B ɛ (P ) = { Q R n P Q < ɛ }. The closed ball of radius ɛ > 0 about P is the set { Q R n P Q ɛ }. Definition

More information

Dr. Allen Back. Sep. 8, 2014

Dr. Allen Back. Sep. 8, 2014 in R 3 Dr. Allen Back Sep. 8, 2014 in R 3 in R 3 Def: For f (x, y), the partial derivative with respect to x at p 0 = (x 0, y 0 ) is f x = lim f (x 0 + h, y 0 ) f (x 0, y 0 ) h 0 h or f x = lim f (p 0

More information

Remark 3.2. The cross product only makes sense in R 3.

Remark 3.2. The cross product only makes sense in R 3. 3. Cross product Definition 3.1. Let v and w be two vectors in R 3. The cross product of v and w, denoted v w, is the vector defined as follows: the length of v w is the area of the parallelogram with

More information

MATH Max-min Theory Fall 2016

MATH Max-min Theory Fall 2016 MATH 20550 Max-min Theory Fall 2016 1. Definitions and main theorems Max-min theory starts with a function f of a vector variable x and a subset D of the domain of f. So far when we have worked with functions

More information

Key Point. The nth order linear homogeneous equation with constant coefficients

Key Point. The nth order linear homogeneous equation with constant coefficients General Solutions of Higher-Order Linear Equations In section 3.1, we saw the following fact: Key Point. The nth order linear homogeneous equation with constant coefficients a n y (n) +... + a 2 y + a

More information

2.3. VECTOR SPACES 25

2.3. VECTOR SPACES 25 2.3. VECTOR SPACES 25 2.3 Vector Spaces MATH 294 FALL 982 PRELIM # 3a 2.3. Let C[, ] denote the space of continuous functions defined on the interval [,] (i.e. f(x) is a member of C[, ] if f(x) is continuous

More information

LB 220 Homework 4 Solutions

LB 220 Homework 4 Solutions LB 220 Homework 4 Solutions Section 11.4, # 40: This problem was solved in class on Feb. 03. Section 11.4, # 42: This problem was also solved in class on Feb. 03. Section 11.4, # 43: Also solved in class

More information

An overview of key ideas

An overview of key ideas An overview of key ideas This is an overview of linear algebra given at the start of a course on the mathematics of engineering. Linear algebra progresses from vectors to matrices to subspaces. Vectors

More information

Section 2.8: The Power Chain Rule

Section 2.8: The Power Chain Rule calculus sin frontera Section 2.8: The Power Chain Rule I want to see what happens when I take a function I know, like g(x) = x 2, and raise it to a power, f (x) = ( x 2 ) a : f (x) = ( x 2 ) a = ( x 2

More information

February 11, 2019 LECTURE 5: THE RULES OF DIFFERENTIATION.

February 11, 2019 LECTURE 5: THE RULES OF DIFFERENTIATION. February 11, 2019 LECTURE 5: THE RULES OF DIFFERENTIATION 110211 HONORS MULTIVARIABLE CALCULUS PROFESSOR RICHARD BROWN Synopsis Here, we bring back the rules for differentiation used to derive new functions

More information

Multivariable Calculus Notes. Faraad Armwood. Fall: Chapter 1: Vectors, Dot Product, Cross Product, Planes, Cylindrical & Spherical Coordinates

Multivariable Calculus Notes. Faraad Armwood. Fall: Chapter 1: Vectors, Dot Product, Cross Product, Planes, Cylindrical & Spherical Coordinates Multivariable Calculus Notes Faraad Armwood Fall: 2017 Chapter 1: Vectors, Dot Product, Cross Product, Planes, Cylindrical & Spherical Coordinates Chapter 2: Vector-Valued Functions, Tangent Vectors, Arc

More information

1 Lagrange Multiplier Method

1 Lagrange Multiplier Method 1 Lagrange Multiplier Method Near a maximum the decrements on both sides are in the beginning only imperceptible. J. Kepler When a quantity is greatest or least, at that moment its flow neither increases

More information

A matrix times a column vector is the linear combination of the columns of the matrix weighted by the entries in the column vector.

A matrix times a column vector is the linear combination of the columns of the matrix weighted by the entries in the column vector. 18.03 Class 33, Apr 28, 2010 Eigenvalues and eigenvectors 1. Linear algebra 2. Ray solutions 3. Eigenvalues 4. Eigenvectors 5. Initial values [1] Prologue on Linear Algebra. Recall [a b ; c d] [x ; y]

More information

Differentiation - Quick Review From Calculus

Differentiation - Quick Review From Calculus Differentiation - Quick Review From Calculus Philippe B. Laval KSU Current Semester Philippe B. Laval (KSU) Differentiation - Quick Review From Calculus Current Semester 1 / 13 Introduction In this section,

More information

Principles of Optimal Control Spring 2008

Principles of Optimal Control Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 16.323 Principles of Optimal Control Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 16.323 Lecture

More information

Section 14.1 Vector Functions and Space Curves

Section 14.1 Vector Functions and Space Curves Section 14.1 Vector Functions and Space Curves Functions whose range does not consists of numbers A bulk of elementary mathematics involves the study of functions - rules that assign to a given input a

More information

The theory of manifolds Lecture 2

The theory of manifolds Lecture 2 The theory of manifolds Lecture 2 Let X be a subset of R N, Y a subset of R n and f : X Y a continuous map. We recall Definition 1. f is a C map if for every p X, there exists a neighborhood, U p, of p

More information

Math 111, Introduction to the Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions

Math 111, Introduction to the Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions Math 111, Introduction to the Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions For each question, there is a model solution (showing you the level of detail I expect on the exam) and then below

More information

ALGEBRAIC STRUCTURE AND DEGREE REDUCTION

ALGEBRAIC STRUCTURE AND DEGREE REDUCTION ALGEBRAIC STRUCTURE AND DEGREE REDUCTION Let S F n. We define deg(s) to be the minimal degree of a non-zero polynomial that vanishes on S. We have seen that for a finite set S, deg(s) n S 1/n. In fact,

More information

SMSTC (2017/18) Geometry and Topology 2.

SMSTC (2017/18) Geometry and Topology 2. SMSTC (2017/18) Geometry and Topology 2 Lecture 1: Differentiable Functions and Manifolds in R n Lecturer: Diletta Martinelli (Notes by Bernd Schroers) a wwwsmstcacuk 11 General remarks In this lecture

More information

Analytic Geometry and Calculus I Exam 1 Practice Problems Solutions 2/19/7

Analytic Geometry and Calculus I Exam 1 Practice Problems Solutions 2/19/7 Analytic Geometry and Calculus I Exam 1 Practice Problems Solutions /19/7 Question 1 Write the following as an integer: log 4 (9)+log (5) We have: log 4 (9)+log (5) = ( log 4 (9)) ( log (5)) = 5 ( log

More information

10.34: Numerical Methods Applied to Chemical Engineering. Lecture 2: More basics of linear algebra Matrix norms, Condition number

10.34: Numerical Methods Applied to Chemical Engineering. Lecture 2: More basics of linear algebra Matrix norms, Condition number 10.34: Numerical Methods Applied to Chemical Engineering Lecture 2: More basics of linear algebra Matrix norms, Condition number 1 Recap Numerical error Operations Properties Scalars, vectors, and matrices

More information

B553 Lecture 1: Calculus Review

B553 Lecture 1: Calculus Review B553 Lecture 1: Calculus Review Kris Hauser January 10, 2012 This course requires a familiarity with basic calculus, some multivariate calculus, linear algebra, and some basic notions of metric topology.

More information

Math 361: Homework 1 Solutions

Math 361: Homework 1 Solutions January 3, 4 Math 36: Homework Solutions. We say that two norms and on a vector space V are equivalent or comparable if the topology they define on V are the same, i.e., for any sequence of vectors {x

More information

LECTURE 10: REVIEW OF POWER SERIES. 1. Motivation

LECTURE 10: REVIEW OF POWER SERIES. 1. Motivation LECTURE 10: REVIEW OF POWER SERIES By definition, a power series centered at x 0 is a series of the form where a 0, a 1,... and x 0 are constants. For convenience, we shall mostly be concerned with the

More information

Lecture 13 - Wednesday April 29th

Lecture 13 - Wednesday April 29th Lecture 13 - Wednesday April 29th jacques@ucsdedu Key words: Systems of equations, Implicit differentiation Know how to do implicit differentiation, how to use implicit and inverse function theorems 131

More information

18.01 Single Variable Calculus Fall 2006

18.01 Single Variable Calculus Fall 2006 MIT OpenCourseWare http://ocw.mit.edu 8.0 Single Variable Calculus Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Lecture 0 8.0 Fall 2006 Lecture

More information

1. Method 1: bisection. The bisection methods starts from two points a 0 and b 0 such that

1. Method 1: bisection. The bisection methods starts from two points a 0 and b 0 such that Chapter 4 Nonlinear equations 4.1 Root finding Consider the problem of solving any nonlinear relation g(x) = h(x) in the real variable x. We rephrase this problem as one of finding the zero (root) of a

More information

Lecture 15: Algebraic Geometry II

Lecture 15: Algebraic Geometry II 6.859/15.083 Integer Programming and Combinatorial Optimization Fall 009 Today... Ideals in k[x] Properties of Gröbner bases Buchberger s algorithm Elimination theory The Weak Nullstellensatz 0/1-Integer

More information

Problem Set 1 Solutions

Problem Set 1 Solutions 18.014 Problem Set 1 Solutions Total: 4 points Problem 1: If ab = 0, then a = 0 or b = 0. Suppose ab = 0 and b = 0. By axiom 6, there exists a real number y such that by = 1. Hence, we have a = 1 a = a

More information

10.8 Further Applications of the Divergence Theorem

10.8 Further Applications of the Divergence Theorem 10.8 Further Applications of the Divergence Theorem Let D be an open subset of R 3, and let f : D R. Recall that the Laplacian of f, denoted by 2 f, is defined by We say that f is harmonic on D provided

More information

Problem Set 9 Solutions

Problem Set 9 Solutions 8.4 Problem Set 9 Solutions Total: 4 points Problem : Integrate (a) (b) d. ( 4 + 4)( 4 + 5) d 4. Solution (4 points) (a) We use the method of partial fractions to write A B (C + D) = + +. ( ) ( 4 + 5)

More information

Lecture notes for Math Multivariable Calculus

Lecture notes for Math Multivariable Calculus Lecture notes for Math 417-517 Multivariable alculus J. Dimock Dept. of Mathematics SUNY at Buffalo Buffalo, NY 14260 December 4, 2012 ontents 1 multivariable calculus 3 1.1 vectors....................................

More information

(z 0 ) = lim. = lim. = f. Similarly along a vertical line, we fix x = x 0 and vary y. Setting z = x 0 + iy, we get. = lim. = i f

(z 0 ) = lim. = lim. = f. Similarly along a vertical line, we fix x = x 0 and vary y. Setting z = x 0 + iy, we get. = lim. = i f . Holomorphic Harmonic Functions Basic notation. Considering C as R, with coordinates x y, z = x + iy denotes the stard complex coordinate, in the usual way. Definition.1. Let f : U C be a complex valued

More information

Section 4.2. Types of Differentiation

Section 4.2. Types of Differentiation 42 Types of Differentiation 1 Section 42 Types of Differentiation Note In this section we define differentiation of various structures with respect to a scalar, a vector, and a matrix Definition Let vector

More information

Math 40510, Algebraic Geometry

Math 40510, Algebraic Geometry Math 40510, Algebraic Geometry Problem Set 1, due February 10, 2016 1. Let k = Z p, the field with p elements, where p is a prime. Find a polynomial f k[x, y] that vanishes at every point of k 2. [Hint:

More information

Polynomials and Polynomial Equations

Polynomials and Polynomial Equations Polynomials and Polynomial Equations A Polynomial is any expression that has constants, variables and exponents, and can be combined using addition, subtraction, multiplication and division, but: no division

More information

25. Chain Rule. Now, f is a function of t only. Expand by multiplication:

25. Chain Rule. Now, f is a function of t only. Expand by multiplication: 25. Chain Rule The Chain Rule is present in all differentiation. If z = f(x, y) represents a two-variable function, then it is plausible to consider the cases when x and y may be functions of other variable(s).

More information

Lecture 10: Powers of Matrices, Difference Equations

Lecture 10: Powers of Matrices, Difference Equations Lecture 10: Powers of Matrices, Difference Equations Difference Equations A difference equation, also sometimes called a recurrence equation is an equation that defines a sequence recursively, i.e. each

More information

Quasi-Newton Methods

Quasi-Newton Methods Newton s Method Pros and Cons Quasi-Newton Methods MA 348 Kurt Bryan Newton s method has some very nice properties: It s extremely fast, at least once it gets near the minimum, and with the simple modifications

More information

SARD S THEOREM ALEX WRIGHT

SARD S THEOREM ALEX WRIGHT SARD S THEOREM ALEX WRIGHT Abstract. A proof of Sard s Theorem is presented, and applications to the Whitney Embedding and Immersion Theorems, the existence of Morse functions, and the General Position

More information

Math 320-2: Final Exam Practice Solutions Northwestern University, Winter 2015

Math 320-2: Final Exam Practice Solutions Northwestern University, Winter 2015 Math 30-: Final Exam Practice Solutions Northwestern University, Winter 015 1. Give an example of each of the following. No justification is needed. (a) A closed and bounded subset of C[0, 1] which is

More information

Math Advanced Calculus II

Math Advanced Calculus II Math 452 - Advanced Calculus II Manifolds and Lagrange Multipliers In this section, we will investigate the structure of critical points of differentiable functions. In practice, one often is trying to

More information

Econ Slides from Lecture 10

Econ Slides from Lecture 10 Econ 205 Sobel Econ 205 - Slides from Lecture 10 Joel Sobel September 2, 2010 Example Find the tangent plane to {x x 1 x 2 x 2 3 = 6} R3 at x = (2, 5, 2). If you let f (x) = x 1 x 2 x3 2, then this is

More information

Course 224: Geometry - Continuity and Differentiability

Course 224: Geometry - Continuity and Differentiability Course 224: Geometry - Continuity and Differentiability Lecture Notes by Prof. David Simms L A TEXed by Chris Blair 1 Continuity Consider M, N finite dimensional real or complex vector spaces. What does

More information

Math 1060 Linear Algebra Homework Exercises 1 1. Find the complete solutions (if any!) to each of the following systems of simultaneous equations:

Math 1060 Linear Algebra Homework Exercises 1 1. Find the complete solutions (if any!) to each of the following systems of simultaneous equations: Homework Exercises 1 1 Find the complete solutions (if any!) to each of the following systems of simultaneous equations: (i) x 4y + 3z = 2 3x 11y + 13z = 3 2x 9y + 2z = 7 x 2y + 6z = 2 (ii) x 4y + 3z =

More information

Lecture Notes 8

Lecture Notes 8 14.451 Lecture Notes 8 Guido Lorenzoni Fall 29 1 Stochastic dynamic programming: an example We no turn to analyze problems ith uncertainty, in discrete time. We begin ith an example that illustrates the

More information

15. Polynomial rings Definition-Lemma Let R be a ring and let x be an indeterminate.

15. Polynomial rings Definition-Lemma Let R be a ring and let x be an indeterminate. 15. Polynomial rings Definition-Lemma 15.1. Let R be a ring and let x be an indeterminate. The polynomial ring R[x] is defined to be the set of all formal sums a n x n + a n 1 x n +... a 1 x + a 0 = a

More information

THE INVERSE FUNCTION THEOREM

THE INVERSE FUNCTION THEOREM THE INVERSE FUNCTION THEOREM W. PATRICK HOOPER The implicit function theorem is the following result: Theorem 1. Let f be a C 1 function from a neighborhood of a point a R n into R n. Suppose A = Df(a)

More information

THE EULER CHARACTERISTIC OF A LIE GROUP

THE EULER CHARACTERISTIC OF A LIE GROUP THE EULER CHARACTERISTIC OF A LIE GROUP JAY TAYLOR 1 Examples of Lie Groups The following is adapted from [2] We begin with the basic definition and some core examples Definition A Lie group is a smooth

More information

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. Math 241, Exam 1 Information. 2/13/13, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.2. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241sp13/241.html)

More information

Math 127C, Spring 2006 Final Exam Solutions. x 2 ), g(y 1, y 2 ) = ( y 1 y 2, y1 2 + y2) 2. (g f) (0) = g (f(0))f (0).

Math 127C, Spring 2006 Final Exam Solutions. x 2 ), g(y 1, y 2 ) = ( y 1 y 2, y1 2 + y2) 2. (g f) (0) = g (f(0))f (0). Math 27C, Spring 26 Final Exam Solutions. Define f : R 2 R 2 and g : R 2 R 2 by f(x, x 2 (sin x 2 x, e x x 2, g(y, y 2 ( y y 2, y 2 + y2 2. Use the chain rule to compute the matrix of (g f (,. By the chain

More information

HOW TO LOOK AT MINKOWSKI S THEOREM

HOW TO LOOK AT MINKOWSKI S THEOREM HOW TO LOOK AT MINKOWSKI S THEOREM COSMIN POHOATA Abstract. In this paper we will discuss a few ways of thinking about Minkowski s lattice point theorem. The Minkowski s Lattice Point Theorem essentially

More information

z x = f x (x, y, a, b), z y = f y (x, y, a, b). F(x, y, z, z x, z y ) = 0. This is a PDE for the unknown function of two independent variables.

z x = f x (x, y, a, b), z y = f y (x, y, a, b). F(x, y, z, z x, z y ) = 0. This is a PDE for the unknown function of two independent variables. Chapter 2 First order PDE 2.1 How and Why First order PDE appear? 2.1.1 Physical origins Conservation laws form one of the two fundamental parts of any mathematical model of Continuum Mechanics. These

More information

MATH 1910 Limits Numerically and Graphically Introduction to Limits does not exist DNE DOES does not Finding Limits Numerically

MATH 1910 Limits Numerically and Graphically Introduction to Limits does not exist DNE DOES does not Finding Limits Numerically MATH 90 - Limits Numerically and Graphically Introduction to Limits The concept of a limit is our doorway to calculus. This lecture will explain what the limit of a function is and how we can find such

More information

Exercises for Multivariable Differential Calculus XM521

Exercises for Multivariable Differential Calculus XM521 This document lists all the exercises for XM521. The Type I (True/False) exercises will be given, and should be answered, online immediately following each lecture. The Type III exercises are to be done

More information

MATH 423/ Note that the algebraic operations on the right hand side are vector subtraction and scalar multiplication.

MATH 423/ Note that the algebraic operations on the right hand side are vector subtraction and scalar multiplication. MATH 423/673 1 Curves Definition: The velocity vector of a curve α : I R 3 at time t is the tangent vector to R 3 at α(t), defined by α (t) T α(t) R 3 α α(t + h) α(t) (t) := lim h 0 h Note that the algebraic

More information

Several variables. x 1 x 2. x n

Several variables. x 1 x 2. x n Several variables Often we have not only one, but several variables in a problem The issues that come up are somewhat more complex than for one variable Let us first start with vector spaces and linear

More information

1 Newton s Method. Suppose we want to solve: x R. At x = x, f (x) can be approximated by:

1 Newton s Method. Suppose we want to solve: x R. At x = x, f (x) can be approximated by: Newton s Method Suppose we want to solve: (P:) min f (x) At x = x, f (x) can be approximated by: n x R. f (x) h(x) := f ( x)+ f ( x) T (x x)+ (x x) t H ( x)(x x), 2 which is the quadratic Taylor expansion

More information

Solutions of Spring 2008 Final Exam

Solutions of Spring 2008 Final Exam Solutions of Spring 008 Final Exam 1. (a) The isocline for slope 0 is the pair of straight lines y = ±x. The direction field along these lines is flat. The isocline for slope is the hyperbola on the left

More information

Solutions to Problem Sheet for Week 8

Solutions to Problem Sheet for Week 8 THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS Solutions to Problem Sheet for Wee 8 MATH1901: Differential Calculus (Advanced) Semester 1, 017 Web Page: sydney.edu.au/science/maths/u/ug/jm/math1901/

More information

i = f iα : φ i (U i ) ψ α (V α ) which satisfy 1 ) Df iα = Df jβ D(φ j φ 1 i ). (39)

i = f iα : φ i (U i ) ψ α (V α ) which satisfy 1 ) Df iα = Df jβ D(φ j φ 1 i ). (39) 2.3 The derivative A description of the tangent bundle is not complete without defining the derivative of a general smooth map of manifolds f : M N. Such a map may be defined locally in charts (U i, φ

More information

cse547, math547 DISCRETE MATHEMATICS Professor Anita Wasilewska

cse547, math547 DISCRETE MATHEMATICS Professor Anita Wasilewska cse547, math547 DISCRETE MATHEMATICS Professor Anita Wasilewska LECTURE 9a CHAPTER 2 SUMS Part 1: Introduction - Lecture 5 Part 2: Sums and Recurrences (1) - Lecture 5 Part 2: Sums and Recurrences (2)

More information

fy (X(g)) Y (f)x(g) gy (X(f)) Y (g)x(f)) = fx(y (g)) + gx(y (f)) fy (X(g)) gy (X(f))

fy (X(g)) Y (f)x(g) gy (X(f)) Y (g)x(f)) = fx(y (g)) + gx(y (f)) fy (X(g)) gy (X(f)) 1. Basic algebra of vector fields Let V be a finite dimensional vector space over R. Recall that V = {L : V R} is defined to be the set of all linear maps to R. V is isomorphic to V, but there is no canonical

More information

Section 21. The Metric Topology (Continued)

Section 21. The Metric Topology (Continued) 21. The Metric Topology (cont.) 1 Section 21. The Metric Topology (Continued) Note. In this section we give a number of results for metric spaces which are familar from calculus and real analysis. We also

More information

AP Calculus Chapter 3 Testbank (Mr. Surowski)

AP Calculus Chapter 3 Testbank (Mr. Surowski) AP Calculus Chapter 3 Testbank (Mr. Surowski) Part I. Multiple-Choice Questions (5 points each; please circle the correct answer.). If f(x) = 0x 4 3 + x, then f (8) = (A) (B) 4 3 (C) 83 3 (D) 2 3 (E) 2

More information

18.03SC Practice Problems 2

18.03SC Practice Problems 2 8.03SC Practice Problems 2 Direction fields, integral curves, isoclines, separatrices, funnels Solution Suggestions As an example, take the ODE dy = x 2y.. Draw a big axis system and plot some isoclines,

More information

reason is that from a gaametrical point of view, as we shall show in the exercises, tha study of complex functions of a

reason is that from a gaametrical point of view, as we shall show in the exercises, tha study of complex functions of a Study Guide Block 1: Rn Introduction to Functions of a Complex Variable Unit 4: Comulex Functions of a Cmlex Variable 1. overview The main aim of this Black is to study the calculus of functions of a complex

More information

HOMEWORK 4 - GEOMETRY OF CURVES AND SURFACES

HOMEWORK 4 - GEOMETRY OF CURVES AND SURFACES HOMEWORK 4 - GEOMETRY OF CURVES ND SURFCES NDRÉ NEVES DISCLIMER: This homework was very tough and it involves being comfortable with facts you might have seen in other classes but are not so fresh. The

More information

Twitter: @Owen134866 www.mathsfreeresourcelibrary.com Prior Knowledge Check 1) Simplify: a) 3x 2 5x 5 b) 5x3 y 2 15x 7 2) Factorise: a) x 2 2x 24 b) 3x 2 17x + 20 15x 2 y 3 3) Use long division to calculate:

More information

Math Real Analysis II

Math Real Analysis II Math 432 - Real Analysis II Solutions to Homework due February 3 In class, we learned that the n-th remainder for a smooth function f(x) defined on some open interval containing is given by f (k) () R

More information

f(x, y) = 1 2 x y2 xy 3

f(x, y) = 1 2 x y2 xy 3 Problem. Find the critical points of the function and determine their nature. We have We find the critical points We calculate f(x, y) = 2 x2 + 3 2 y2 xy 3 f x = x y 3 = 0 = x = y 3 f y = 3y 3xy 2 = 0

More information

WHY POLYNOMIALS? PART 1

WHY POLYNOMIALS? PART 1 WHY POLYNOMIALS? PART 1 The proofs of finite field Kakeya and joints and short and clean, but they also seem strange to me. They seem a little like magic tricks. In particular, what is the role of polynomials

More information

REVIEW OF DIFFERENTIAL CALCULUS

REVIEW OF DIFFERENTIAL CALCULUS REVIEW OF DIFFERENTIAL CALCULUS DONU ARAPURA 1. Limits and continuity To simplify the statements, we will often stick to two variables, but everything holds with any number of variables. Let f(x, y) be

More information

Dr. Allen Back. Sep. 10, 2014

Dr. Allen Back. Sep. 10, 2014 Dr. Allen Back Sep. 10, 2014 The chain rule in multivariable calculus is in some ways very simple. But it can lead to extremely intricate sorts of relationships (try thermodynamics in physical chemistry...

More information

Multivariable Calculus Midterm 2 Solutions John Ross

Multivariable Calculus Midterm 2 Solutions John Ross Multivariable Calculus Midterm Solutions John Ross Problem.: False. The double integral is not the same as the iterated integral. In particular, we have shown in a HW problem (section 5., number 9) that

More information

How does it work? QM describes the microscopic world in a way analogous to how classical mechanics (CM) describes the macroscopic world.

How does it work? QM describes the microscopic world in a way analogous to how classical mechanics (CM) describes the macroscopic world. Today we use Quantum Mechanics (QM) on a regular basis: Chemical bonds NMR spectroscopy The laser (blue beam in Blue-ray player; red beam in a DVD player for example) The fingerprint /signature of a molecule

More information

More Empirical Process Theory

More Empirical Process Theory More Empirical Process heory 4.384 ime Series Analysis, Fall 2008 Recitation by Paul Schrimpf Supplementary to lectures given by Anna Mikusheva October 24, 2008 Recitation 8 More Empirical Process heory

More information

5 Finding roots of equations

5 Finding roots of equations Lecture notes for Numerical Analysis 5 Finding roots of equations Topics:. Problem statement. Bisection Method 3. Newton s Method 4. Fixed Point Iterations 5. Systems of equations 6. Notes and further

More information

M311 Functions of Several Variables. CHAPTER 1. Continuity CHAPTER 2. The Bolzano Weierstrass Theorem and Compact Sets CHAPTER 3.

M311 Functions of Several Variables. CHAPTER 1. Continuity CHAPTER 2. The Bolzano Weierstrass Theorem and Compact Sets CHAPTER 3. M311 Functions of Several Variables 2006 CHAPTER 1. Continuity CHAPTER 2. The Bolzano Weierstrass Theorem and Compact Sets CHAPTER 3. Differentiability 1 2 CHAPTER 1. Continuity If (a, b) R 2 then we write

More information

Slope Fields and Differential Equations. Copyright Cengage Learning. All rights reserved.

Slope Fields and Differential Equations. Copyright Cengage Learning. All rights reserved. Slope Fields and Differential Equations Copyright Cengage Learning. All rights reserved. Objectives Review verifying solutions to differential equations. Review solving differential equations. Review using

More information

Chapter 2 Notes, Linear Algebra 5e Lay

Chapter 2 Notes, Linear Algebra 5e Lay Contents.1 Operations with Matrices..................................1.1 Addition and Subtraction.............................1. Multiplication by a scalar............................ 3.1.3 Multiplication

More information

18.06 Quiz 2 April 7, 2010 Professor Strang

18.06 Quiz 2 April 7, 2010 Professor Strang 18.06 Quiz 2 April 7, 2010 Professor Strang Your PRINTED name is: 1. Your recitation number or instructor is 2. 3. 1. (33 points) (a) Find the matrix P that projects every vector b in R 3 onto the line

More information

Lecture 6: Linear ODE s with Constant Coefficients I

Lecture 6: Linear ODE s with Constant Coefficients I Lecture 6: Linear ODE s with Constant Coefficients I Dr. Michael Dougherty February 12, 2010 1 LHODEs, and Linear Operators Revisited In this and the next few lectures we will be interested in linear,

More information

LECTURE 16: LIE GROUPS AND THEIR LIE ALGEBRAS. 1. Lie groups

LECTURE 16: LIE GROUPS AND THEIR LIE ALGEBRAS. 1. Lie groups LECTURE 16: LIE GROUPS AND THEIR LIE ALGEBRAS 1. Lie groups A Lie group is a special smooth manifold on which there is a group structure, and moreover, the two structures are compatible. Lie groups are

More information

Name: Instructor: Multiple Choice. x 3. = lim x 3 x 3 x (x 2 + 7) 16 = lim. (x 3)( x ) x 3 (x 3)( x ) = lim.

Name: Instructor: Multiple Choice. x 3. = lim x 3 x 3 x (x 2 + 7) 16 = lim. (x 3)( x ) x 3 (x 3)( x ) = lim. Multiple Choice 1.(6 pts.) Evaluate the following limit: x + 7 4 lim. x 3 x 3 lim x 3 x + 7 4 x 3 x + 7 4 x + 7 + 4 x 3 x 3 x + 7 + 4 (x + 7) 16 x 3 (x 3)( x + 7 + 4) x 9 x 3 (x 3)( x + 7 + 4) x 3 (x 3)(x

More information

Notes on generating functions in automata theory

Notes on generating functions in automata theory Notes on generating functions in automata theory Benjamin Steinberg December 5, 2009 Contents Introduction: Calculus can count 2 Formal power series 5 3 Rational power series 9 3. Rational power series

More information

10/22/16. 1 Math HL - Santowski SKILLS REVIEW. Lesson 15 Graphs of Rational Functions. Lesson Objectives. (A) Rational Functions

10/22/16. 1 Math HL - Santowski SKILLS REVIEW. Lesson 15 Graphs of Rational Functions. Lesson Objectives. (A) Rational Functions Lesson 15 Graphs of Rational Functions SKILLS REVIEW! Use function composition to prove that the following two funtions are inverses of each other. 2x 3 f(x) = g(x) = 5 2 x 1 1 2 Lesson Objectives! The

More information

Practice problems. 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b.

Practice problems. 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b. Practice problems 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b. 1, 1 = c 1 3, 2 + c 2 2, 1. Solve c 1, c 2. 2. Suppose a is a vector in the plane. If the component of the a in

More information

Chapter 3: Root Finding. September 26, 2005

Chapter 3: Root Finding. September 26, 2005 Chapter 3: Root Finding September 26, 2005 Outline 1 Root Finding 2 3.1 The Bisection Method 3 3.2 Newton s Method: Derivation and Examples 4 3.3 How To Stop Newton s Method 5 3.4 Application: Division

More information

SPECIAL POINTS AND LINES OF ALGEBRAIC SURFACES

SPECIAL POINTS AND LINES OF ALGEBRAIC SURFACES SPECIAL POINTS AND LINES OF ALGEBRAIC SURFACES 1. Introduction As we have seen many times in this class we can encode combinatorial information about points and lines in terms of algebraic surfaces. Looking

More information

Dynamical Systems: Lecture 1 Naima Hammoud

Dynamical Systems: Lecture 1 Naima Hammoud Dynamical Systems: Lecture 1 Naima Hammoud Feb 21, 2017 What is dynamics? Dynamics is the study of systems that evolve in time What is dynamics? Dynamics is the study of systems that evolve in time a system

More information

1 Functions of Several Variables 2019 v2

1 Functions of Several Variables 2019 v2 1 Functions of Several Variables 2019 v2 11 Notation The subject of this course is the study of functions f : R n R m The elements of R n, for n 2, will be called vectors so, if m > 1, f will be said to

More information

Lecture 7. Sums of random variables

Lecture 7. Sums of random variables 18.175: Lecture 7 Sums of random variables Scott Sheffield MIT 18.175 Lecture 7 1 Outline Definitions Sums of random variables 18.175 Lecture 7 2 Outline Definitions Sums of random variables 18.175 Lecture

More information

Calculus I Homework: Linear Approximation and Differentials Page 1

Calculus I Homework: Linear Approximation and Differentials Page 1 Calculus I Homework: Linear Approximation and Differentials Page Example (3..8) Find the linearization L(x) of the function f(x) = (x) /3 at a = 8. The linearization is given by which approximates the

More information

EXAM 3 MAT 167 Calculus I Spring is a composite function of two functions y = e u and u = 4 x + x 2. By the. dy dx = dy du = e u x + 2x.

EXAM 3 MAT 167 Calculus I Spring is a composite function of two functions y = e u and u = 4 x + x 2. By the. dy dx = dy du = e u x + 2x. EXAM MAT 67 Calculus I Spring 20 Name: Section: I Each answer must include either supporting work or an explanation of your reasoning. These elements are considered to be the main part of each answer and

More information

Math 212-Lecture 8. The chain rule with one independent variable

Math 212-Lecture 8. The chain rule with one independent variable Math 212-Lecture 8 137: The multivariable chain rule The chain rule with one independent variable w = f(x, y) If the particle is moving along a curve x = x(t), y = y(t), then the values that the particle

More information

Definition 6.1. A metric space (X, d) is complete if every Cauchy sequence tends to a limit in X.

Definition 6.1. A metric space (X, d) is complete if every Cauchy sequence tends to a limit in X. Chapter 6 Completeness Lecture 18 Recall from Definition 2.22 that a Cauchy sequence in (X, d) is a sequence whose terms get closer and closer together, without any limit being specified. In the Euclidean

More information

Review: control, feedback, etc. Today s topic: state-space models of systems; linearization

Review: control, feedback, etc. Today s topic: state-space models of systems; linearization Plan of the Lecture Review: control, feedback, etc Today s topic: state-space models of systems; linearization Goal: a general framework that encompasses all examples of interest Once we have mastered

More information

Honors Differential Equations

Honors Differential Equations MIT OpenCourseWare http://ocw.mit.edu 18.034 Honors Differential Equations Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. UNIT III: HIGHER-ORDER

More information