Universal trimers in spin-orbit coupled Fermi gases

Size: px
Start display at page:

Download "Universal trimers in spin-orbit coupled Fermi gases"

Transcription

1 Universal trimers in spin-orbit coupled Fermi gases Wei Yi ( 易为 ) University of Science and Technology of China Few-body Conference, Beijing 14/04/2016 Wei Yi (USTC) Beijing, April / 20

2 Acknowledgement Institute of Physics, CAS Xiaoling Cui 崔晓玲 USTC Xingze Qiu 邱型泽 : Wei Yi (USTC) Beijing, April / 20

3 Outline Outline Synthetic spin-orbit coupling (SOC) in ultracold atoms Universal Borromean binding under Rashba SOC Stability of trimers against a spin-orbit coupled Fermi sea Summary Wei Yi (USTC) Beijing, April / 20

4 Synthetic Spin-Orbit Coupling Raman scheme for 1D SOC Atomic Gas Ω δ Raman lasers couple internal and external degrees of freedom An effective one-dimensional SOC with effective Zeeman fields H k = 2 2m ( k + k 0 xσ z ) 2 δ 2 σ z + Ω 2 σ x Y.-J. Lin, K. Jiménez-García, and I. B. Spielman, Nature 471, 83 (2011). Wei Yi (USTC) Beijing, April / 20

5 Synthetic Spin-Orbit Coupling Experiments on synthetic spin-orbit coupling in cold atoms NIST Shanxi University USTC, Purdue, WSU, IoP(CAS)... MIT Wei Yi (USTC) Beijing, April / 20

6 Synthetic Spin-Orbit Coupling Recent experimental realization of 2D SOC Huang et al., Nat. Phys. (2016) Wu et al., arxiv: Wei Yi (USTC) Beijing, April / 20

7 Synthetic Spin-Orbit Coupling Single-particle dispersion under SOC ε k ξ + ξ k Spin mixed Degenerate ground state in k-space Wei Yi (USTC) Beijing, April / 20

8 Synthetic Spin-Orbit Coupling Single-particle dispersion under SOC ε k ξ + ξ k x k Spin mixed Degenerate ground state in k-space Different types of SOC Wei Yi (USTC) Beijing, April / 20

9 Synthetic Spin-Orbit Coupling Single-particle dispersion under SOC ε k ξ + ξ k x k Spin mixed Degenerate ground state in k-space Different types of SOC Wei Yi (USTC) Beijing, April / 20

10 Synthetic Spin-Orbit Coupling Many-body physics under synthetic SOC Bose gas L L R R L L R R Hui Zhai, Rep. Prog. Phys. 78, (2015) Wei Yi (USTC) Beijing, April / 20

11 Synthetic Spin-Orbit Coupling Many-body physics under synthetic SOC Bose gas L L R R L L R R Fermi gas Hui Zhai, Rep. Prog. Phys. 78, (2015) Wei Yi (USTC) Beijing, April / 20

12 Synthetic Spin-Orbit Coupling Many-body physics under synthetic SOC Bose gas L L R R L L R R Fermi gas Hui Zhai, Rep. Prog. Phys. 78, (2015) Wei Yi (USTC) Beijing, April / 20

13 Synthetic Spin-Orbit Coupling Many-body physics under synthetic SOC Bose gas L L R R L L R R Fermi gas Hui Zhai, Rep. Prog. Phys. 78, (2015) WY, Wei Zhang, Xiaoling Cui, Sci. China: Phys. Mech. Astron. 58, (2015) Wei Yi (USTC) Beijing, April / 20

14 Synthetic Spin-Orbit Coupling SOC-enhanced three-body states Universal trimers with 3D SOC Zhe-Yu Shi, Xiaoling Cui, Hui Zhai, Phys. Rev. Lett. 112, (2014) Universal Borromean with Rashba SOC Xiaoling Cui, WY, Phys. Rev. X 4, (2014) Wei Yi (USTC) Beijing, April / 20

15 Universal Borromean binding under Rashba SOC Universal Borromean binding under Rashba SOC Two-body bound state Wei Yi (USTC) Beijing, April / 20

16 Universal Borromean binding under Rashba SOC Universal Borromean binding under Rashba SOC Two-body bound state Three-body bound state Wei Yi (USTC) Beijing, April / 20

17 Universal Borromean binding under Rashba SOC Bound-state solutions (2) ψ Q = ϕ kα b Q k a kα 0 α=± kα,qβ k (3) ψ Q = ϕ kα,qβ b Q k q a kα a qβ 0 Wei Yi (USTC) Beijing, April / 20

18 Universal Borromean binding under Rashba SOC Bound-state solutions Hamiltonian H = + k k,σ=, with φ k = arg(k x, k y ). (2) ψ Q = ϕ kα b Q k a kα 0 α=± kα,qβ k (3) ψ Q = ϕ kα,qβ b Q k q a kα a qβ 0 2 k 2 a k,σ 2m a k,σ + 2 λ ( ) k e iφ k a k, a m a k, + h.c. a 2 k 2 b k 2m b k + U b k,k,q k a k, b q k b q k a k,, Wei Yi (USTC) Beijing, April / 20

19 Universal Borromean binding under Rashba SOC Bound-state solutions In the Helicity basis (2) ψ Q = ϕ kα b Q k a kα 0 α=± kα,qβ k (3) ψ Q = ϕ kα,qβ b Q k q a kα a qβ 0 H = ξ k± a kα a kα + 2 k 2 b k 2m b k b kα=± k + U f kα,k βa kα b q k b q k a k β, kα,k β,q with ξ k± = 2 2m a ((k λ) 2 + k 2 z) 2 λ 2 2m a. Wei Yi (USTC) Beijing, April / 20

20 Universal Borromean binding under Rashba SOC Bound-state solutions (2) ψ Q = ϕ kα b Q k a kα 0 α=± kα,qβ k (3) ψ Q = ϕ kα,qβ b Q k q a kα a qβ 0 Bound-state wave functions (Q = 0, 40 K 40 K 6 Li) Wei Yi (USTC) Beijing, April / 20

21 Universal Borromean binding under Rashba SOC Bound-state solutions (2) ψ Q = ϕ kα b Q k a kα 0 α=± kα,qβ k (3) ψ Q = ϕ kα,qβ b Q k q a kα a qβ 0 Bound-state energies (Q = 0, 40 K 40 K 6 Li) Wei Yi (USTC) Beijing, April / 20

22 Universal Borromean binding under Rashba SOC Bound-state solutions (2) ψ Q = ϕ kα b Q k a kα 0 α=± kα,qβ k (3) ψ Q = ϕ kα,qβ b Q k q a kα a qβ 0 Bound-state energies (Q = 0, 40 K 40 K 6 Li) Universal Borromean Wei Yi (USTC) Beijing, April / 20

23 Universal Borromean binding under Rashba SOC Phase diagram Mass ratio η = m a /m b Borromean stable for η 0.39 Driven by symmetry of single-particle dispersion Wei Yi (USTC) Beijing, April / 20

24 Universal Borromean binding under Rashba SOC Phase diagram Mass ratio η = m a /m b Borromean stable for η 0.39 Driven by symmetry of single-particle dispersion Stability in a many-body system? Wei Yi (USTC) Beijing, April / 20

25 Stability against Fermi sea From few to many: Impurity in a spin-orbit coupled Fermi sea Effects of Fermi sea Pauli blocking: destabilizing bound states Particle-hole excitations: stabilizing bound states Wei Yi (USTC) Beijing, April / 20

26 Stability against Fermi sea From few to many: Impurity in a spin-orbit coupled Fermi sea Effects of Fermi sea Pauli blocking: destabilizing bound states Particle-hole excitations: stabilizing bound states Wei Yi (USTC) Beijing, April / 20

27 Stability against Fermi sea From few to many: Impurity in a spin-orbit coupled Fermi sea Effects of Fermi sea Pauli blocking: destabilizing bound states Particle-hole excitations: stabilizing bound states Focus on the two dimensional case for simplification Wei Yi (USTC) Beijing, April / 20

28 Stability against Fermi sea Bound states in 2D (equal mass case η = 1) (E + Eb)/Eth Dimer Trimer E b /E th Q/λ Q/λ E b /E th E b : energy of the two-body bound state without SOC Dimer always exists Universal trimer stable for E b < 1.66 Bound states with finite center-of-mass momentum Wei Yi (USTC) Beijing, April / 20

29 Stability against Fermi sea Bound-state wave functions (2) ψ 0 (3) ψ 0 (3) ψ Q -2-1 k x k y ϕk k y k x ϕk, k k y k x ϕk,2q k 2 Wei Yi (USTC) Beijing, April / 20

30 Stability against Fermi sea Bound-state wave functions (2) ψ 0 (3) ψ 0 (3) ψ Q -2-1 k x k y ϕk k y k x ϕk, k k y k x ϕk,2q k 2 Wei Yi (USTC) Beijing, April / 20

31 Stability against Fermi sea Effects of Pauli blocking: tuning the Fermi energy Ansatz for bare molecule/trimer (b) M Q = ϕ kα b Q k a kα FS kα (b) T Q = kα,qβ N 1 ϕ kα,qβ b Q k q a kα a qβ FS N 2 Wei Yi (USTC) Beijing, April / 20

32 Stability against Fermi sea Effects of Pauli blocking: tuning the Fermi energy Ansatz for bare molecule/trimer (b) M Q = ϕ kα b Q k a kα FS kα (b) T Q = kα,qβ N 1 ϕ kα,qβ b Q k q a kα a qβ FS N 2 η = 1 EF /Eth Normal M (b) T (b) E b /E th Pauli blocking the Rashba ring Wei Yi (USTC) Beijing, April / 20

33 Stability against Fermi sea Effects of Pauli blocking: tuning the Fermi energy Ansatz for bare molecule/trimer (b) M Q = ϕ kα b Q k a kα FS kα (b) T Q = kα,qβ N 1 ϕ kα,qβ b Q k q a kα a qβ FS N 2 η = EF /Eth Normal T (b) E b /E th M (b) E/Eth E b = 1.2E th M (b) T (b) E F /E th Pauli blocking the Rashba ring Wei Yi (USTC) Beijing, April / 20

34 Stability against Fermi sea Particle-hole fluctuations (polaron vs. dressed states) ( PQ = ϕ Q b Q + ) FS ϕ kα,qβ b q k a kα a qβ kα,qβ MQ = ϕ kα b Q k a kα FS kα + kα,k β,qγ T = + kα,qβ N 1 ϕ kα,k β,qγb Q k k +q a kα a k β a qγ FS N 1 ϕ kα,qβ b k q a kα a qβ FS kα,k β,k γ,qν N 2 ϕ kα,k β,k γ,qνb q k k k a kα a k β a k γ a qν FS N 2 Simplification for dressed trimer: Q = 0, q on Rashba ring N Wei Yi (USTC) Beijing, April / 20

35 Stability against Fermi sea Particle-hole fluctuations (polaron vs. dressed states) η = 1 EF /Eth T P(0) M(0) E b /E th Dressed trimer stabilized by particle-hole fluctuation Polaron wins eventually Wei Yi (USTC) Beijing, April / 20

36 Stability against Fermi sea Particle-hole fluctuations (polaron vs. dressed states) EF /Eth η = 1 T P(0) M(0) E/Eth E b 2.16E th M(0) P(0) T E b /E th E F /E th Dressed trimer stabilized by particle-hole fluctuation Polaron wins eventually Wei Yi (USTC) Beijing, April / 20

37 Stability against Fermi sea Phase diagram (E F 0.05E th ) 2 P(Q) η 1 T P(0) M(Q) M(0) E b /E th Dressed trimer stable for η > 0.38 Wei Yi (USTC) Beijing, April / 20

38 Summary Summary Effects of single-particle dispersion in few-body problems Universal Borromean in a spin-orbit coupled Fermi gas Similar universal trimers stable against a Fermi sea Quantum many-body states with exotic few-body correlations References: Xiaoling Cui, WY, Phys. Rev. X 4, (2014) Xingze Qiu, Xiaoling Cui, WY (in preparation) Wei Yi (USTC) Beijing, April / 20

39 Summary Summary Effects of single-particle dispersion in few-body problems Universal Borromean in a spin-orbit coupled Fermi gas Similar universal trimers stable against a Fermi sea Quantum many-body states with exotic few-body correlations References: Xiaoling Cui, WY, Phys. Rev. X 4, (2014) Xingze Qiu, Xiaoling Cui, WY (in preparation) THANK YOU!! Wei Yi (USTC) Beijing, April / 20

arxiv: v2 [cond-mat.quant-gas] 19 Nov 2016

arxiv: v2 [cond-mat.quant-gas] 19 Nov 2016 Universal trimers emerging from a spin-orbit coupled Fermi sea arxiv:67.358v [cond-mat.quant-gas] 9 Nov 6 Xingze Qiu,, Xiaoling Cui, 3,,, and Wei Yi Key Laboratory of Quantum Information, University of

More information

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in D Fermi Gases Carlos A. R. Sa de Melo Georgia Institute of Technology QMath13 Mathematical Results in Quantum

More information

Experimental realization of spin-orbit coupled degenerate Fermi gas. Jing Zhang

Experimental realization of spin-orbit coupled degenerate Fermi gas. Jing Zhang Hangzhou Workshop on Quantum Matter, 2013 Experimental realization of spin-orbit coupled degenerate Fermi gas Jing Zhang State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of

More information

Experimental realization of spin-orbit coupling in degenerate Fermi gas. Jing Zhang

Experimental realization of spin-orbit coupling in degenerate Fermi gas. Jing Zhang QC12, Pohang, Korea Experimental realization of spin-orbit coupling in degenerate Fermi gas Jing Zhang State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics,

More information

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas / 6 Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas Giovanni Italo Martone with G. V. Shlyapnikov Worhshop on Exploring Nuclear Physics with Ultracold Atoms

More information

Few-body problems in ultracold alkali-earth atoms and superfluid Boson-Fermion mixture

Few-body problems in ultracold alkali-earth atoms and superfluid Boson-Fermion mixture Few-body problems in ultracold alkali-earth atoms and superfluid Boson-Fermion mixture Peng Zhang Department of Physics, Renmin University of China 中国人民大学物理系 (2015-05-06,INT 15-1,Seattle) Outline Orbital

More information

Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas

Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas Tarik Yefsah Lawrence Cheuk, Ariel Sommer, Zoran Hadzibabic, Waseem Bakr and Martin Zwierlein July 20, 2012 ENS Why spin-orbit coupling? A

More information

Artificial Gauge Fields for Neutral Atoms

Artificial Gauge Fields for Neutral Atoms Artificial Gauge Fields for Neutral Atoms Simon Ristok University of Stuttgart 07/16/2013, Hauptseminar Physik der kalten Gase 1 / 29 Outline 1 2 3 4 5 2 / 29 Outline 1 2 3 4 5 3 / 29 What are artificial

More information

Loop current order in optical lattices

Loop current order in optical lattices JQI Summer School June 13, 2014 Loop current order in optical lattices Xiaopeng Li JQI/CMTC Outline Ultracold atoms confined in optical lattices 1. Why we care about lattice? 2. Band structures and Berry

More information

arxiv: v2 [cond-mat.quant-gas] 14 Jun 2018

arxiv: v2 [cond-mat.quant-gas] 14 Jun 2018 Bloch bound state of spin-orbit-coupled fermions in an optical lattice arxiv:806.02478v2 [cond-mat.quant-gas] 4 Jun 208 Baihua Gong, Shuai Li,,2 Xin-Hui Zhang, 3 Bo Liu,,2 and Wei Yi 4,5 Department of

More information

Spin-orbit-coupled quantum gases to be held at KITPC Beijing from August 1 to 19, Schedule of talks

Spin-orbit-coupled quantum gases to be held at KITPC Beijing from August 1 to 19, Schedule of talks 3 week KITPC mini-program on Spin-orbit-coupled quantum gases to be held at KITPC Beijing from August 1 to 19, 2016 Schedule of talks for the second and third weeks of the Program (August 8-18) All talks

More information

Universal Post-quench Dynamics at a Quantum Critical Point

Universal Post-quench Dynamics at a Quantum Critical Point Universal Post-quench Dynamics at a Quantum Critical Point Peter P. Orth University of Minnesota, Minneapolis, USA Rutgers University, 10 March 2016 References: P. Gagel, P. P. Orth, J. Schmalian Phys.

More information

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs INT Seattle 5 March 5 ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs Yun Li, Giovanni Martone, Lev Pitaevskii and Sandro Stringari University of Trento CNR-INO Now in Swinburne Now in Bari Stimulating discussions

More information

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators Nagoya University Masatoshi Sato In collaboration with Yukio Tanaka (Nagoya University) Keiji Yada (Nagoya University) Ai Yamakage

More information

Breakdown and restoration of integrability in the Lieb-Liniger model

Breakdown and restoration of integrability in the Lieb-Liniger model Breakdown and restoration of integrability in the Lieb-Liniger model Giuseppe Menegoz March 16, 2012 Giuseppe Menegoz () Breakdown and restoration of integrability in the Lieb-Liniger model 1 / 16 Outline

More information

arxiv: v2 [cond-mat.quant-gas] 14 Mar 2019

arxiv: v2 [cond-mat.quant-gas] 14 Mar 2019 Enhanced fermion pairing and superfluidity by an imaginary magnetic field arxiv:8.8v [cond-mat.quant-gas] 4 Mar 9 Lihong Zhou,, and Xiaoling Cui Beijing National Laboratory for Condensed Matter Physics,

More information

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES Congresso Nazionale della Società Italiana di Fisica Università della Calabria 17/21 Settembre 2018 SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES Sandro Stringari Università di Trento CNR-INO - Bose-Einstein

More information

Valley Zeeman Effect of free and bound excitons in WSe2

Valley Zeeman Effect of free and bound excitons in WSe2 Valley Zeeman Effect of free and bound excitons in WSe2 Ajit Srivastava Quantum Photonics Group ETH Zurich, Switzerland 24.01.2014 TMD Research Motivation Optical control of spins & pseudo-spins 2D optical

More information

Static and Dynamic Properties of One-Dimensional Few-Atom Systems

Static and Dynamic Properties of One-Dimensional Few-Atom Systems Image: Peter Engels group at WSU Static and Dynamic Properties of One-Dimensional Few-Atom Systems Doerte Blume Ebrahim Gharashi, Qingze Guan, Xiangyu Yin, Yangqian Yan Department of Physics and Astronomy,

More information

Trapping Centers at the Superfluid-Mott-Insulator Criticality: Transition between Charge-quantized States

Trapping Centers at the Superfluid-Mott-Insulator Criticality: Transition between Charge-quantized States Trapping Centers at the Superfluid-Mott-Insulator Criticality: Transition between Charge-quantized States Boris Svistunov University of Massachusetts, Amherst DIMOCA 2017, Mainz Institute for Theoretical

More information

Quantum simulation with SU(N) fermions: orbital magnetism and synthetic dimensions. Leonardo Fallani

Quantum simulation with SU(N) fermions: orbital magnetism and synthetic dimensions. Leonardo Fallani Quantum simulation with SU(N) fermions: orbital magnetism and synthetic dimensions Frontiers in Quantum Simulation with Cold Atoms, Seattle, April 1 st 2015 Leonardo Fallani Department of Physics and Astronomy

More information

Impurities and disorder in systems of ultracold atoms

Impurities and disorder in systems of ultracold atoms Impurities and disorder in systems of ultracold atoms Eugene Demler Harvard University Collaborators: D. Abanin (Perimeter), K. Agarwal (Harvard), E. Altman (Weizmann), I. Bloch (MPQ/LMU), S. Gopalakrishnan

More information

Artificial electromagnetism and spin-orbit coupling for ultracold atoms

Artificial electromagnetism and spin-orbit coupling for ultracold atoms Artificial electromagnetism and spin-orbit coupling for ultracold atoms Gediminas Juzeliūnas Institute of Theoretical Physics and Astronomy,Vilnius University, Vilnius, Lithuania *******************************************************************

More information

Engineering Dresselhaus spin-orbit coupling for cold atoms in a double tripod configuration

Engineering Dresselhaus spin-orbit coupling for cold atoms in a double tripod configuration Engineering Dresselhaus spin-orbit coupling for cold atoms in a double tripod configuration G. Juzeliūnas a,j.ruseckas a,d.l.campbell b and I. B. Spielman b a Institute of Theoretical Physics and Astronomy,

More information

Manipulation of Artificial Gauge Fields for Ultra-cold Atoms

Manipulation of Artificial Gauge Fields for Ultra-cold Atoms Manipulation of Artificial Gauge Fields for Ultra-cold Atoms Shi-Liang Zhu ( 朱诗亮 ) slzhu@scnu.edu.cn Laboratory of Quantum Information Technology and School of Physics South China Normal University, Guangzhou,

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

Supplementary Figure 3: Interaction effects in the proposed state preparation with Bloch oscillations. The numerical results are obtained by

Supplementary Figure 3: Interaction effects in the proposed state preparation with Bloch oscillations. The numerical results are obtained by Supplementary Figure : Bandstructure of the spin-dependent hexagonal lattice. The lattice depth used here is V 0 = E rec, E rec the single photon recoil energy. In a and b, we choose the spin dependence

More information

Reference for most of this talk:

Reference for most of this talk: Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding ultracold Fermi gases. in Ultracold Fermi Gases, Proceedings of the International School

More information

arxiv: v1 [cond-mat.quant-gas] 29 Aug 2012

arxiv: v1 [cond-mat.quant-gas] 29 Aug 2012 Radio-freuency spectroscopy of wealy bound molecules in spin-orbit coupled atomic Fermi gases arxiv:8.58v cond-mat.uant-gas 9 Aug Hui Hu, Han Pu, Jing Zhang, Shi-Guo Peng, and Xia-Ji Liu ARC Centre of

More information

"From a theoretical tool to the lab"

From a theoretical tool to the lab N "From a theoretical tool to the lab" Aline Ramires Institute for Theoretical Studies - ETH - Zürich Cold Quantum Coffee ITP - Heidelberg University - 13th June 2017 ETH - Hauptgebäude The Institute for

More information

Fermi polaron-polaritons in MoSe 2

Fermi polaron-polaritons in MoSe 2 Fermi polaron-polaritons in MoSe 2 Meinrad Sidler, Patrick Back, Ovidiu Cotlet, Ajit Srivastava, Thomas Fink, Martin Kroner, Eugene Demler, Atac Imamoglu Quantum impurity problem Nonperturbative interaction

More information

arxiv: v1 [cond-mat.quant-gas] 9 Jan 2019

arxiv: v1 [cond-mat.quant-gas] 9 Jan 2019 Polaron in a p + ip Fermi topological superfluid arxiv:9.766v [cond-mat.quant-gas] 9 Jan 9 Fang Qin,,, Xiaoling Cui, 3, 4,,, and Wei Yi Key Laboratory of Quantum Information, University of Science and

More information

Anomalous spin suscep.bility and suppressed exchange energy of 2D holes

Anomalous spin suscep.bility and suppressed exchange energy of 2D holes Anomalous spin suscep.bility and suppressed exchange energy of 2D holes School of Chemical and Physical Sciences & MacDiarmid Ins7tute for Advanced Materials and Nanotechnology Victoria University of Wellington

More information

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik Majorana single-charge transistor Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport through Majorana nanowires: Two-terminal device: Majorana singlecharge

More information

Superfluid Density of a Spin-orbit Coupled Bose Gas

Superfluid Density of a Spin-orbit Coupled Bose Gas Superfluid Density of a Spin-orbit Coupled Bose Gas where k 0 is the momentum transfer from the two Raman lasers, which we assume to be oriented along the ˆx-direction and p = i is the canonical momentum,

More information

Fermi liquids and fractional statistics in one dimension

Fermi liquids and fractional statistics in one dimension UiO, 26. april 2017 Fermi liquids and fractional statistics in one dimension Jon Magne Leinaas Department of Physics University of Oslo JML Phys. Rev. B (April, 2017) Related publications: M Horsdal, M

More information

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Generation of a synthetic vector potential in ultracold neutral Rubidium

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Generation of a synthetic vector potential in ultracold neutral Rubidium 3-8 Conference on Research Frontiers in Ultra-Cold Atoms 4-8 May 9 Generation of a synthetic vector potential in ultracold neutral Rubidium SPIELMAN Ian National Institute of Standards and Technology Laser

More information

Quantum Oscillations in underdoped cuprate superconductors

Quantum Oscillations in underdoped cuprate superconductors Quantum Oscillations in underdoped cuprate superconductors Aabhaas Vineet Mallik Journal Club Talk 4 April, 2013 Aabhaas Vineet Mallik (Journal Club Talk) Quantum Oscillations in underdoped cuprate superconductors

More information

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and From BEC to BCS Molecular BECs and Fermionic Condensates of Cooper Pairs Preseminar Extreme Matter Institute EMMI Andre Wenz Max-Planck-Institute for Nuclear Physics and Matthias Kronenwett Institute for

More information

Phase Sensitive Photonic Flash

Phase Sensitive Photonic Flash Commun. Theor. Phys. 70 (2018) 215 219 Vol. 70, No. 2, August 1, 2018 Phase Sensitive Photonic Flash Xin-Yun Cui ( 崔馨匀 ), Zhi-Hai Wang ( 王治海 ), and Jin-Hui Wu ( 吴金辉 ) Center for Quantum Sciences and School

More information

Lecture 3: Quantum Satis*

Lecture 3: Quantum Satis* Lecture 3: Quantum Satis* Last remarks about many-electron quantum mechanics. Everything re-quantized! * As much as needed, enough. Electron correlation Pauli principle Fermi correlation Correlation energy

More information

An imbalanced Fermi gas in 1 + ɛ dimensions. Andrew J. A. James A. Lamacraft

An imbalanced Fermi gas in 1 + ɛ dimensions. Andrew J. A. James A. Lamacraft An imbalanced Fermi gas in 1 + ɛ dimensions Andrew J. A. James A. Lamacraft 2009 Quantum Liquids Interactions and statistics (indistinguishability) Some examples: 4 He 3 He Electrons in a metal Ultracold

More information

Magnetism in ultracold gases

Magnetism in ultracold gases Magnetism in ultracold gases Austen Lamacraft Theoretical condensed matter and atomic physics April 10th, 2009 faculty.virginia.edu/austen/ Outline Magnetism in condensed matter Ultracold atomic physics

More information

Magnetic fields and lattice systems

Magnetic fields and lattice systems Magnetic fields and lattice systems Harper-Hofstadter Hamiltonian Landau gauge A = (0, B x, 0) (homogeneous B-field). Transition amplitude along x gains y-dependence: J x J x e i a2 B e y = J x e i Φy

More information

Collective excitations of ultracold molecules on an optical lattice. Roman Krems University of British Columbia

Collective excitations of ultracold molecules on an optical lattice. Roman Krems University of British Columbia Collective excitations of ultracold molecules on an optical lattice Roman Krems University of British Columbia Collective excitations of ultracold molecules trapped on an optical lattice Sergey Alyabyshev

More information

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Michael KöhlK ETH Zürich Z (www.quantumoptics.ethz.ch( www.quantumoptics.ethz.ch) Introduction Why should a condensed matter physicist

More information

Critical entanglement and geometric phase of a two-qubit model with Dzyaloshinski Moriya anisotropic interaction

Critical entanglement and geometric phase of a two-qubit model with Dzyaloshinski Moriya anisotropic interaction Chin. Phys. B Vol. 19, No. 1 010) 010305 Critical entanglement and geometric phase of a two-qubit model with Dzyaloshinski Moriya anisotropic interaction Li Zhi-Jian 李志坚 ), Cheng Lu 程璐 ), and Wen Jiao-Jin

More information

Surface Majorana Fermions in Topological Superconductors. ISSP, Univ. of Tokyo. Nagoya University Masatoshi Sato

Surface Majorana Fermions in Topological Superconductors. ISSP, Univ. of Tokyo. Nagoya University Masatoshi Sato Surface Majorana Fermions in Topological Superconductors ISSP, Univ. of Tokyo Nagoya University Masatoshi Sato Kyoto Tokyo Nagoya In collaboration with Satoshi Fujimoto (Kyoto University) Yoshiro Takahashi

More information

Some detailed information for BCS-BEC Crossover

Some detailed information for BCS-BEC Crossover BCS-BEC Crossover Some detailed information for BCS-BEC Crossover BCS Theory 李泽阳 April 3, 2015 School of Physics, Peking University BCS-BEC Crossover April 3, 2015 1 / 31 BCS-BEC Crossover Table of Contents

More information

Transport through interacting Majorana devices. Reinhold Egger Institut für Theoretische Physik

Transport through interacting Majorana devices. Reinhold Egger Institut für Theoretische Physik Transport through interacting Maorana devices Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport through Maorana nanowires: Two-terminal device: Maorana

More information

Spin Orbit Coupling (SOC) in Graphene

Spin Orbit Coupling (SOC) in Graphene Spin Orbit Coupling (SOC) in Graphene MMM, Mirko Rehmann, 12.10.2015 Motivation Weak intrinsic SOC in graphene: [84]: Phys. Rev. B 80, 235431 (2009) [85]: Phys. Rev. B 82, 125424 (2010) [86]: Phys. Rev.

More information

Phase Diagram of One-Dimensional Bosons in an Array of Local Nonlinear Potentials at Zero Temperature

Phase Diagram of One-Dimensional Bosons in an Array of Local Nonlinear Potentials at Zero Temperature Commun. Theor. Phys. (Beijing, China) 36 (001) pp. 375 380 c International Academic Publishers Vol. 36, No. 3, September 15, 001 Phase Diagram of One-Dimensional Bosons in an Array of Local Nonlinear Potentials

More information

Symmetry properties, density profiles and momentum distribution of multicomponent mixtures of strongly interacting 1D Fermi gases

Symmetry properties, density profiles and momentum distribution of multicomponent mixtures of strongly interacting 1D Fermi gases Symmetry properties, density profiles and momentum distribution of multicomponent mixtures of strongly interacting 1D Fermi gases Anna Minguzzi LPMMC Université Grenoble Alpes and CNRS Multicomponent 1D

More information

NanoKelvin Quantum Engineering

NanoKelvin Quantum Engineering NanoKelvin Quantum Engineering Few x 10 5 Yb atoms 250mm 400 nk 250 nk < 200 nk Control of atomic c.m. position and momentum. Today: Bose-Fermi double superfluid Precision BEC interferometry Ultracold

More information

Gravitational field around blackhole induces photonic spin-orbit interaction that twists. light

Gravitational field around blackhole induces photonic spin-orbit interaction that twists. light Gravitational field around blackhole induces photonic spin-orbit interaction that twists light Deng Pan, Hong-Xing Xu ǂ School of Physics and Technology, Wuhan University, Wuhan 430072, China Corresponding

More information

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT ICAP Summer School, Paris, 2012 Three lectures on quantum gases Wolfgang Ketterle, MIT Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding

More information

Topological Kondo Insulators!

Topological Kondo Insulators! Topological Kondo Insulators! Maxim Dzero, University of Maryland Collaborators: Kai Sun, University of Maryland Victor Galitski, University of Maryland Piers Coleman, Rutgers University Main idea Kondo

More information

Topological Kondo effect in Majorana devices. Reinhold Egger Institut für Theoretische Physik

Topological Kondo effect in Majorana devices. Reinhold Egger Institut für Theoretische Physik Topological Kondo effect in Maorana devices Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport in a Maorana device: Topological Kondo effect with stable

More information

Non-Equilibrium Physics with Quantum Gases

Non-Equilibrium Physics with Quantum Gases Non-Equilibrium Physics with Quantum Gases David Weiss Yang Wang Laura Adams Cheng Tang Lin Xia Aishwarya Kumar Josh Wilson Teng Zhang Tsung-Yao Wu Neel Malvania NSF, ARO, DARPA, Outline Intro: cold atoms

More information

Ground-state properties, excitations, and response of the 2D Fermi gas

Ground-state properties, excitations, and response of the 2D Fermi gas Ground-state properties, excitations, and response of the 2D Fermi gas Introduction: 2D FG and a condensed matter perspective Auxiliary-field quantum Monte Carlo calculations - exact* here Results on spin-balanced

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University January 25, 2011 2 Chapter 12 Collective modes in interacting Fermi

More information

Topological Defects inside a Topological Band Insulator

Topological Defects inside a Topological Band Insulator Topological Defects inside a Topological Band Insulator Ashvin Vishwanath UC Berkeley Refs: Ran, Zhang A.V., Nature Physics 5, 289 (2009). Hosur, Ryu, AV arxiv: 0908.2691 Part 1: Outline A toy model of

More information

Engineering Dresselhaus spin-orbit coupling for cold atoms in a double tripod configuration

Engineering Dresselhaus spin-orbit coupling for cold atoms in a double tripod configuration Engineering Dresselhaus spin-orbit coupling for cold atoms in a double tripod configuration G. Juzeliūnas a,j.ruseckas a,d.l.campbell b and I. B. Spielman b a Institute of Theoretical Physics and Astronomy,

More information

Path of Momentum Integral in the Skorniakov-Ter-Martirosian Equation

Path of Momentum Integral in the Skorniakov-Ter-Martirosian Equation Commun. Theor. Phys. 7 (218) 753 758 Vol. 7, No. 6, December 1, 218 Path of Momentum Integral in the Skorniakov-Ter-Martirosian Equation Chao Gao ( 高超 ) 1, and Peng Zhang ( 张芃 ) 2,3,4, 1 Department of

More information

Engineering of quantum Hamiltonians by high-frequency laser fields Mikhail Katsnelson

Engineering of quantum Hamiltonians by high-frequency laser fields Mikhail Katsnelson Engineering of quantum Hamiltonians by high-frequency laser fields Mikhail Katsnelson Main collaborators: Sasha Itin Clément Dutreix Zhenya Stepanov Theory of Condensed Matter group http://www.ru.nl/tcm

More information

Quantum Information Processing and Quantum Simulation with Ultracold Alkaline-Earth Atoms in Optical Lattices

Quantum Information Processing and Quantum Simulation with Ultracold Alkaline-Earth Atoms in Optical Lattices Quantum Information Processing and Quantum Simulation with Ultracold Alkaline-Earth Atoms in Optical Lattices Alexey Gorshkov California Institute of Technology Mikhail Lukin, Eugene Demler, Cenke Xu -

More information

Rashba spin-orbit coupling in the oxide 2D structures: The KTaO 3 (001) Surface

Rashba spin-orbit coupling in the oxide 2D structures: The KTaO 3 (001) Surface Rashba spin-orbit coupling in the oxide 2D structures: The KTaO 3 (001) Surface Sashi Satpathy Department of Physics University of Missouri, Columbia, USA E Ref: K. V. Shanavas and S. Satpathy, Phys. Rev.

More information

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other 1 The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other phases of matter that have been experimentally observed,

More information

Spin-orbit coupling: Dirac equation

Spin-orbit coupling: Dirac equation Dirac equation : Dirac equation term couples spin of the electron σ = 2S/ with movement of the electron mv = p ea in presence of electrical field E. H SOC = e 4m 2 σ [E (p ea)] c2 The maximal coupling

More information

Vortex States in a Non-Abelian Magnetic Field

Vortex States in a Non-Abelian Magnetic Field Vortex States in a Non-Abelian Magnetic Field Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University SESAPS November 10, 2016 Acknowledgments Collin Broholm IQM

More information

Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014

Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014 Cavity Optomechanics with synthetic Landau Levels of ultra cold atoms: Sankalpa Ghosh, Physics Department, IIT Delhi Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, 043603 (2013)! HRI, Allahabad,Cold

More information

Exact relations for two-component Fermi gases with contact interactions

Exact relations for two-component Fermi gases with contact interactions QMATH13, Oct. 8-11, 2016 Exact relations for two-component Fermi gases with contact interactions Shina Tan, Georgia Institute of Technology 1 Outline The system Hamiltonian Energy functional The contact

More information

Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots

Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots A. Kundu 1 1 Heinrich-Heine Universität Düsseldorf, Germany The Capri Spring School on Transport in Nanostructures

More information

Quantum Confinement in Graphene

Quantum Confinement in Graphene Quantum Confinement in Graphene from quasi-localization to chaotic billards MMM dominikus kölbl 13.10.08 1 / 27 Outline some facts about graphene quasibound states in graphene numerical calculation of

More information

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES experiments on 3D topological insulators Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Outline Using ARPES to demonstrate that certain materials

More information

From optical graphene to topological insulator

From optical graphene to topological insulator From optical graphene to topological insulator Xiangdong Zhang Beijing Institute of Technology (BIT), China zhangxd@bit.edu.cn Collaborator: Wei Zhong (PhD student, BNU) Outline Background: From solid

More information

Quantum Quenches in Chern Insulators

Quantum Quenches in Chern Insulators Quantum Quenches in Chern Insulators Nigel Cooper Cavendish Laboratory, University of Cambridge CUA Seminar M.I.T., November 10th, 2015 Marcello Caio & Joe Bhaseen (KCL), Stefan Baur (Cambridge) M.D. Caio,

More information

Magnetic Crystals and Helical Liquids in Alkaline-Earth 1D Fermionic Gases

Magnetic Crystals and Helical Liquids in Alkaline-Earth 1D Fermionic Gases Magnetic Crystals and Helical Liquids in Alkaline-Earth 1D Fermionic Gases Leonardo Mazza Scuola Normale Superiore, Pisa Seattle March 24, 2015 Leonardo Mazza (SNS) Exotic Phases in Alkaline-Earth Fermi

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Spin-Orbit Interactions in Semiconductor Nanostructures

Spin-Orbit Interactions in Semiconductor Nanostructures Spin-Orbit Interactions in Semiconductor Nanostructures Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, U.S.A. http://www.physics.udel.edu/~bnikolic Spin-Orbit Hamiltonians

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 15 Jul 2005

arxiv:cond-mat/ v1 [cond-mat.str-el] 15 Jul 2005 Correlation functions of one-dimensional Bose-Fermi mixtures Holger Frahm and Guillaume Palacios Institut für Theoretische Physik, Universität Hannover, Appelstr. 2, 30167 Hannover, Germany (Dated: July

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

Topological Insulators and Ferromagnets: appearance of flat surface bands

Topological Insulators and Ferromagnets: appearance of flat surface bands Topological Insulators and Ferromagnets: appearance of flat surface bands Thomas Dahm University of Bielefeld T. Paananen and T. Dahm, PRB 87, 195447 (2013) T. Paananen et al, New J. Phys. 16, 033019 (2014)

More information

Electronic structure of correlated electron systems. Lecture 2

Electronic structure of correlated electron systems. Lecture 2 Electronic structure of correlated electron systems Lecture 2 Band Structure approach vs atomic Band structure Delocalized Bloch states Fill up states with electrons starting from the lowest energy No

More information

Bogoliubov theory of disordered Bose-Einstein condensates

Bogoliubov theory of disordered Bose-Einstein condensates Bogoliubov theory of disordered Bose-Einstein condensates Christopher Gaul Universidad Complutense de Madrid BENASQUE 2012 DISORDER Bogoliubov theory of disordered Bose-Einstein condensates Abstract The

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

MRSEC. Inflation and coherent dynamics in a Bose-Einstein condensate driven across a quantum critical point. Cheng Chin. Funding:

MRSEC. Inflation and coherent dynamics in a Bose-Einstein condensate driven across a quantum critical point. Cheng Chin. Funding: SPICE Workshop: Non-equilibrium Quantum Matter, Mainz Germany, 5/31/2017 Inflation and coherent dynamics in a Bose-Einstein condensate driven across a quantum critical point Cheng Chin James Franck institute

More information

Topology of the Fermi surface wavefunctions and magnetic oscillations in metals

Topology of the Fermi surface wavefunctions and magnetic oscillations in metals Topology of the Fermi surface wavefunctions and magnetic oscillations in metals A. Alexandradinata L.I. Glazman Yale University arxiv:1707.08586, arxiv:1708.09387 + in preparation Physics Next Workshop

More information

Cold fermions, Feshbach resonance, and molecular condensates (II)

Cold fermions, Feshbach resonance, and molecular condensates (II) Cold fermions, Feshbach resonance, and molecular condensates (II) D. Jin JILA, NIST and the University of Colorado I. Cold fermions II. III. Feshbach resonance BCS-BEC crossover (Experiments at JILA) $$

More information

Probing and Manipulating Ultracold Fermi Superfluids

Probing and Manipulating Ultracold Fermi Superfluids RICE UNIVERSITY Probing and Manipulating Ultracold Fermi Superfluids by Lei Jiang A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved, Thesis Committee:

More information

Multichannel Kondo dynamics and Surface Code from Majorana bound states

Multichannel Kondo dynamics and Surface Code from Majorana bound states Multichannel Kondo dynamics and Surface Code from Maorana bound states Reinhold Egger Institut für Theoretische Physik Dresden workshop 14-18 Sept. 2015 Overview Brief introduction to Maorana bound states

More information

in BECs Fabian Grusdt Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Germany

in BECs Fabian Grusdt Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Germany 1 Polaron Seminar, AG Widera AG Fleischhauer, 05/06/14 Introduction to polaron physics in BECs Fabian Grusdt Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Germany Graduate

More information

arxiv: v1 [cond-mat.supr-con] 25 Mar 2014

arxiv: v1 [cond-mat.supr-con] 25 Mar 2014 Functional Renormalization Group Analysis of η-pairing in Iron-based Superconductors arxiv:143.624v1 [cond-mat.supr-con] 25 Mar 214 Jing Yuan 1 1, 2, 3 and Jiangping Hu 1 Institute of Physics, Chinese

More information

Quantum phase transitions and the Luttinger theorem.

Quantum phase transitions and the Luttinger theorem. Quantum phase transitions and the Luttinger theorem. Leon Balents (UCSB) Matthew Fisher (UCSB) Stephen Powell (Yale) Subir Sachdev (Yale) T. Senthil (MIT) Ashvin Vishwanath (Berkeley) Matthias Vojta (Karlsruhe)

More information

Disordered Ultracold Gases

Disordered Ultracold Gases Disordered Ultracold Gases 1. Ultracold Gases: basic physics 2. Methods: disorder 3. Localization and Related Measurements Brian DeMarco, University of Illinois bdemarco@illinois.edu Localization & Related

More information

Examples of Lifshitz topological transition in interacting fermionic systems

Examples of Lifshitz topological transition in interacting fermionic systems Examples of Lifshitz topological transition in interacting fermionic systems Joseph Betouras (Loughborough U. Work in collaboration with: Sergey Slizovskiy (Loughborough, Sam Carr (Karlsruhe/Kent and Jorge

More information

Spin Superfluidity and Graphene in a Strong Magnetic Field

Spin Superfluidity and Graphene in a Strong Magnetic Field Spin Superfluidity and Graphene in a Strong Magnetic Field by B. I. Halperin Nano-QT 2016 Kyiv October 11, 2016 Based on work with So Takei (CUNY), Yaroslav Tserkovnyak (UCLA), and Amir Yacoby (Harvard)

More information

Topology and many-body physics in synthetic lattices

Topology and many-body physics in synthetic lattices Topology and many-body physics in synthetic lattices Alessio Celi Synthetic dimensions workshop, Zurich 20-23/11/17 Synthetic Hofstadter strips as minimal quantum Hall experimental systems Alessio Celi

More information

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 3/4/04 Workshop

More information

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration Analysis ofbose Bose-Fermi Mixturesin in Optical Lattices Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock Project within FerMix collaboration Motivation

More information