Artificial electromagnetism and spin-orbit coupling for ultracold atoms

Size: px
Start display at page:

Download "Artificial electromagnetism and spin-orbit coupling for ultracold atoms"

Transcription

1 Artificial electromagnetism and spin-orbit coupling for ultracold atoms Gediminas Juzeliūnas Institute of Theoretical Physics and Astronomy,Vilnius University, Vilnius, Lithuania ******************************************************************* Wednesday, May 28, 11:00am Institut für Quantenoptik Leibniz Universität Hannover

2 OUTLINE v Background v Geometric gauge potentials v Spin-orbit coupling (SOC) for ultracold atoms v NIST scheme for SOC v Magnetically generated SOC v Synthetic gauge fields using synthetic dimensions v Conclusions

3 Collaboration (in the area of artificial gauge potentials for ultracold atoms) n P. Öhberg & group, Heriot-Watt Univ., Edinburgh n M. Fleischhauer & group, TU Kaiserslautern, n L. Santos & group, Universität Hannover n J. Dalibard, F. Gerbier & group, ENS, Paris n I. Spielman, B. Anderson, V. Galitski, D. Campbel, C. Clark and J. Vaishnav, JQI, NIST/UMD, USA n M. Lewenstein & group, ICFO, ICREA, Barcelona n Shih-Chuan Gou & group, Taiwan n Wu-Ming Liu, Qing Sun, An-Chun Ji & groups (Beijing)

4 Quantum Optics ITPA, Vilnius University R. Juršėnas, J. Ruseckas, T. Andrijauskas, A. Mekys, G. J., E. Anisimovas, V. Novicenko, D. Efimov (St. Petersburg Univ.) and H. R. Hamedi (April 2014) Not present in the picture: A. Acus and V. Kudriašov

5 Vilnius (Lithuania) is in north of EUROPE

6 Vilnius University

7 Quantum Optics ITPA, Vilnius University Research activities: n Light-induced gauge potentials for cold atoms (includes Rashba-Dresselhaus SO coupling) n Slow light (with OAM, multi-component, ) n Cold atoms in optical lattices n Graphene n Metamaterials

8 Quantum Optics ITPA, Vilnius University n Light-induced gauge potentials for cold atoms (includes Rashba-Dresselhaus SO coupling) This talk

9 Quantum Optics ITPA, Vilnius University n Light-induced gauge potentials for cold atoms (includes Rashba-Dresselhaus SO coupling) This talk v Slow light (multi-component) will be briefly mentioned (at the end)

10 Ultracold atoms n Analogies with the solid state physics q Fermionic atoms Electrons in solids q Atoms in optical lattices Hubbard model q Simulation of various many-body effects n Advantage : q Freedom in changing experimental parameters that are often inaccessible in standard solid state experiments q e.g. number of atoms, atom-atom interaction, lattice potential

11 Trapped atoms - electrically neutral species n No direct analogy with magnetic phenomena by electrons in solids, such as the Quantum Hall Effect (no Lorentz force) n A possible method to create an effective magnetic field (an artificial Lorentz force): Rotation

12 Trapped atoms - electrically neutral particles n No direct analogy with magnetic phenomena by electrons in solids, such as the Quantum Hall Effect (no Lorentz force) n A possible method to create an effective magnetic field (an artificial Lorentz force): Rotation à Coriolis force à

13 Trapped atoms - electrically neutral particles n No direct analogy with magnetic phenomena by electrons in solids, such as the Quantum Hall Effect (no Lorentz force) n A possible method to create an effective magnetic field: Rotation à Coriolis force (Mathematically equivalent to Lorentz force)

14 ROTATION n Can be applied to utracold atoms both in usual traps and also in optical lattices (a) Ultracold atomic cloud (trapped): (b) Optical lattice:

15 ROTATION n Can be applied to utracold atoms both in usual traps and also in optical lattices (a) Ultracold atomic cloud (trapped): (b) Optical lattice: Not always convenient to rotate an atomic cloud Limited magnetic flux

16 Effective magnetic fields without rotation n Using (unconventional) optical lattices Initial proposals: q J. Ruostekoski, G. V. Dunne, and J. Javanainen, Phys. Rev. Lett. 88, (2002) q D. Jaksch and P. Zoller, New J. Phys. 5, 56 (2003) q E. Mueller, Phys. Rev. A 70, (R) (2004) q A. S. Sørensen, E. Demler, and M. D. Lukin, Phys. Rev. Lett. 94, (2005) n B eff is produced by inducing an asymmetry in atomic transitions between the lattice sites. n Non-vanishing phase for atoms moving along a closed path on the lattice (a plaquette) n Simulates non-zero magnetic flux B eff 0

17 Effective magnetic fields without rotation n Using (unconventional) optical lattices Initial proposals: q J. Ruostekoski, G. V. Dunne, and J. Javanainen, Phys. Rev. Lett. 88, (2002) q D. Jaksch and P. Zoller, New J. Phys. 5, 56 (2003) q E. Mueller, Phys. Rev. A 70, (R) (2004) q A. S. Sørensen, E. Demler, and M. D. Lukin, Phys. Rev. Lett. 94, (2005) n A. R. Kolovsky, EPL, (2011) n Experimental implementation : q M. Aidelsburger et al., PRL 111, (2013) q H. Miyake et al., PRL 111, (2013)

18 Effective magnetic fields without rotation n Optical lattices: The method can be extended to create Non-Abelian gauge potentials (Laser assisted, state-sensitive tunneling) A proposal: q K. Osterloh, M. Baig, L. Santos, P. Zoller and M. Lewenstein, Phys. Rev. Lett. 95, (2005)

19 Effective magnetic fields without rotation n Optical lattices: The method can be extended to create Non-Abelian gauge potentials (Laser assisted, state-sensitive tunneling) A proposal: q K. Osterloh, M. Baig, L. Santos, P. Zoller and M. Lewenstein, Phys. Rev. Lett. 95, (2005) (Spin-orbit coupling in optical lattices)

20 Effective magnetic fields without rotation -- using Geometric Potentials n Distinctive features: q No rotation is necessary q No lattice is needed

21 Effective magnetic fields without rotation -- using Geometric Potentials q An artificial vector potential A is created q A can be a matrix à q à Spin-orbit coupling is formed

22 Geometric potentials n Emerge in various areas of physics (molecular, condensed matter physics etc.) n First considered by Mead, Berry, Wilczek and Zee and others in the 80 s (initially in the context of molecular physics). n More recently in the context of motion of cold atoms affected by laser fields n n n. (Currently: a lot of activities) Recent reviews: J.Dalibard, F. Gerbier, G. Juzeliūnas and P. Öhberg, Rev. Mod. Phys. 83, 1523 (2011). N. Goldman, G. Juzeliūnas, P. Öhberg and I.B. Spielman arxiv: (Submitted to Rep. Progr. Phys., 2013)

23 Geometric potentials n Advantage of such atomic systems: possibilities to control and shape gauge potentials by choosing proper laser fields..

24 Creation of B eff using geometric potentials Atomic dynamics taking into account both internal (electronic) degrees of freedom and also center of mass motion. ç (includes r-dependent atom-light coupling) (for c.m. motion) ë ( r-dependent dressed eigenstates)

25 Creation of B eff using geometric potentials Atomic dynamics taking into account both internal (electronic) degrees of freedom and also center of mass motion. ç (includes r-dependent atom-light coupling) (for c.m. motion) ë ( r-dependent dressed eigenstates)

26 Creation of B eff using geometric potentials Atomic dynamics taking into account both internal degrees of freedom and also center of mass motion. ç (includes r-dependent atom-light coupling) (for c.m. motion) ë ( r-dependent dressed eigenstates)

27 Creation of B eff using geometric potentials Atomic dynamics taking into account both internal degrees of freedom and also center of mass motion. ç (includes r-dependent atom-light coupling) (for c.m. motion) ë ( r-dependent dressed eigenstates)

28 n n Adiabatic atomic energies Full state vector: n=3 n=2 n=1 r wave-function of the atomic centre of mass motion in the n-th atomic internal dressed state

29 Non-degenerate state with n=1 Adiabatic approximation: n=3 n=2 Full state-vector n=1 r

30 Non-degenerate state with n=1 Adiabatic approximation: n=3 n=2 Full state-vector n=1 r

31 Non-degenerate state with n=1 Adiabatic approximation: n=3 n=2 n=1 r

32 Non-degenerate state with n=1 Adiabatic approximation: Equation of the atomic c. m. motion in the internal state n=3 n=2 n=1 r ( ) 2 H ˆ = p A 11 2M + V (r) + ε 1(r) Effective Vector potential A 11 A appears (due to the positiondependence of the atomic internal dressed state )

33 Non-degenerate state with n=1 Adiabatic approximation: Equation of the atomic c. m. motion in the internal state n=3 n=2 n=1 r ( ) 2 H ˆ = p A 11 2M + V (r) + ε 1(r) Effective Vector potential A 11 A appears (due to the positiondependence of the atomic internal dressed state ) R. Dum and M. Olshanii, Phys. Rev. Lett., 76,1788, 1996.

34 Non-degenerate state with n=1 Adiabatic approximation: Equation of the atomic c. m. motion in the internal state n=3 n=2 n=1 r ( ) 2 H ˆ = p A 11 2M + V (r) + ε 1(r) Effective Vector potential A 11 A appears - effective magnetic field

35 Non-degenerate state with n=1 Adiabatic approximation: Equation of the atomic c. m. motion in the internal state n=3 n=2 n=1 r ( ) 2 H ˆ = p A 11 2M + V (r) + ε 1(r) Effective Vector potential A 11 A appears - effective magnetic field (non-trivial situation if ) G.Juzeliūnas, and P. Öhberg, Phys. Rev. Lett. 93, (2004).

36 Counter-propagating beams with spatially shifted profiles [G. Juzeliūnas, J. Ruseckas, P. Öhberg, and M. Fleischhauer, Phys. Rev. A 73, (2006).] B = A 0 Artificial Lorentz force (due to photon recoil) [Interpretation: M. Cheneau et al., EPL 83, (2008).]

37

38

39 Position-dependent detuning δ

40 Position-dependent detuning δ=δ(y) B=B(y)

41

42 If one degenerate atomic internal dressed state -- Abelian gauge potentials

43 If more than one degenerate atomic internal dressed state --Non-Abelian (noncommuting) vector potential (spin-orbit coupling)

44 Degenerate states with n=1 and n=2 Adiabatic approximation: n=4 n=3 n=1, n=2 r wave-function of the atomic centre of mass motion in the n-th atomic internal dressed state (n=1,2)

45 Degenerate states with n=1 and n=2 Adiabatic approximation: n=4 n=3 n=1, n=2 r wave-function of the atomic centre of mass motion in the n-th atomic internal dressed state (n=1,2) # Ψ(r,t) = Ψ(r,t) & 1 % ( $ Ψ 2 (r,t)' - two-component atomic wave-function (spinor wave-function) à Quasi-spin 1/2 Repeating the same procedure

46 Degenerate states with n=1 and n=2 Adiabatic approximation: Equation of motion: ( ) 2 H ˆ = p A 2M +V(r) +ε 1(r) # Ψ(r,t) = Ψ(r,t) & 1 % ( $ Ψ 2 (r,t)' 2x2 matrix n=4 n=3 n=1, n=2 - effective vector potential r - two-comp. atomic wave-function A appears due to position-dependence of Spin-orbit coupling is formed

47 Degenerate states with n=1 and n=2 Adiabatic approximation: Equation of motion: ( ) 2 H ˆ = p A 2M +V(r) +ε 1(r) # Ψ(r,t) = Ψ(r,t) & 1 % ( $ Ψ 2 (r,t)' 2x2 matrix n=4 n=3 n=1, n=2 - effective vector potential r - two-comp. atomic wave-function A appears due to position-dependence of Ĥ = p2 + p.a + A.p + A 2 2M +V(r)+ε 1 (r) Spin-orbit coupling is formed

48 Degenerate states with n=1 and n=2 Adiabatic approximation: n=4 n=3 Equation of motion: ( ) 2 H ˆ = p A 2M +V(r) +ε 1(r) 2x2 matrix # Ψ(r,t) = Ψ(r,t) & 1 % ( $ Ψ 2 (r,t)' 2x2 matrix n=1, n=2 - effective vector potential - effective magnetic field (curvature) Non-trivial situation if r - two-comp. atomic wave-function

49 Degenerate states with n=1 and n=2 Adiabatic approximation: n=4 n=3 Equation of motion: ( ) 2 H ˆ = p A 2M +V(r) +ε 1(r) 2x2 matrix # Ψ(r,t) = Ψ(r,t) & 1 % ( $ Ψ 2 (r,t)' 2x2 matrix n=1, n=2 - effective vector potential - effective magnetic field (curvature) Non-trivial situation if r - two-comp. atomic wave-function If A x, A y, A z do not commute, B 0 even if A is constant!! à Non-Abelian vector potential is formed

50 Tripod configuration n M.A. Ol shanii, V.G. Minogin, Quant. Optics 3, 317 (1991) n R. G. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, Opt. Commun. 155, 144 (1998) n Two degenerate dark states n (Superposition of atomic ground states immune to the atomlight coupling)

51 Tripod configuration n Two degenerate dark states n n n (Superposition of atomic ground states immune to the atomlight coupling) Dark states: destructive interference for transitions to the excited state Lasers keep the atoms in these dark (dressed) states

52 (Non-Abelian) light-induced gauge potentials for centre of mass motion of dark-state atoms: (Due to the spatial dependence of the dark states) ë (two dark states) J. Ruseckas, G. Juzeliūnas and P.Öhberg, and M. Fleischhauer, Phys. Rev. Letters 95, (2005).

53 (Non-Abelian) light-induced gauge potentials for centre of mass motion of dark-state atoms: (Due to the spatial dependence of the dark states) ë (two dark states) A n,m = i! D n D m J. Ruseckas, G. Juzeliūnas and P.Öhberg, and M. Fleischhauer, Phys. Rev. Letters 95, (2005). A - effective vector potential à Spin-orbit coupling

54 (Non-Abelian) light-induced gauge potentials Centre of mass motion of dark-state atoms: A n,m = i! D n D m - 2x2 matrix ç Two component atomic wave-function # Ψ(r,t) = Ψ(r,t) & 1 % ( $ Ψ 2 (r,t)' A - effective vector potential à Spin-orbit coupling

55 Three plane wave setup T. D. Stanescu,, C. Zhang, and V. Galitski, Phys. Rev. Lett 99, (2007). A. Jacob, P. Öhberg, G. Juzeliūnas and L. Santos, Appl. Phys. B. 89, 439 (2007). # Ψ(r,t) = Ψ(r,t) & 1 % ( $ Ψ 2 (r,t)' (centre of mass motion, dark-state atoms): (à Rashba-type Hamilltonian) σ = e x σ x + e y σ y spin ½ operator (acting on the subspace of atomic dark states) à Spin-Orbit coupling of the Rashba-Dresselhaus type Constant non-abelian A with [A x,a y ]~σ z à B ~ e z

56 Three plane wave setup Centre of mass motion of dark-state atoms: σ = e x σ x + e y σ y (à Rashba-type Hamilltonian) Plane-wave solutions: σ k g ± ± k = ±g k à two dispersion branches with positive or negative chirality

57 Dispersion of centre of mass motion for cold atoms in light fields !/v 0 " v g =dω/dk>0 v g =dω/dk< k/"

58 Dispersion of centre of mass motion for cold atoms in light fields E(k x,k y ) Picture by Patrik Öhberg Dirac regime k x Lower branch Mexican hat potential k y

59 Zittenbewegung of cold atoms Theory n J. Y. Vaishnav and C. W. Clark, Phys. Rev. Lett. 100, (2008). n M. Merkl, F. E. Zimmer, G. Juzeliūnas, and P. Öhberg, Europhys. Lett. 83, (2008). n Q. Zhang, J. Gong and C. H. Oh, Phys. Rev. A. 81, (2010). n Y-C.i Zhang, S.-W. Song and C.-F. Liu and W.-M. Liu, Phys. Rev. A. 87, (2013). Experiment L. J. LeBlanc et al., New. J. Phys (2013). C. Qu et al. Phys. Rev. A A 88, (R) (2013).

60 Unconventional Bose-Einstein condensation!/v 0 " k/" Energy minimum is a ring (in the momentum space) T. D. Stanescu, B. Anderson and V. M. Galitski, PRA 78, (2008); J. Larson and E. Sjöqvist, Phys. Rev. A 79, (2009) C. Wang et al, PRL 105, (2010); T.-L. Ho and S. Zhang, PRL 107, (2011); Z. F. Xu, R. Lu, and L. You, PRA 83, (2011); S.-K. Yip, PRA 83, (2011); S. Sinha R. Nath, L. Santos, PRL 107, (2011); S.-W. Su, I.-K. Liu, Y.-C. Tsai, W. M. Liu, S.-C. Gou, Phys. Rev. A 86, (2012) H. Zhai, arxiv: (2014) [also covers fermions] etc. - Mexican hat potential

61 n Drawback of the tripod scheme: degenerate dark states are not the ground atomic dressed states à collision-induced loses n Closed loop setup overcomes this drawback: (a) Coupling scheme (with pi phase) (c) Uncoupled dispersion D. L. Campbell, G. Juzeliūnas and I. B. Spielman, Phys. Rev. A 84, (2011)

62 n Drawback of the tripod scheme: degenerate dark states are not the ground atomic dressed states à collision-induced loses n Closed loop setup overcomes this drawback: (a) Coupling scheme (with pi phase) D. L. Campbell, G. Juzeliūnas and I. B. Spielman, Phys. Rev. A 84, (2011) n n (c) Uncoupled dispersion Two degenerate internal ground states à non-abelian vector poten. for ground-state manifold

63 n Laser fields represent counter-propagating plane waves: BEC (a) Coupling scheme (d) Coupled dispersion (c) Uncoupled dispersion à Closed loop setup produce 2D Rashba- Dresselhaus SO coupling for cold atoms D. L. Campbell, G. Juzeliūnas and I. B. Spielman, Phys. Rev. A 84, (2011)

64 (a) Coupling scheme n Possible implementation of the closed loop setup using the Raman transitions: (with pi phase) (c) Uncoupled dispersion D. L. Campbell, G. Juzeliūnas and I. B. Spielman, Phys. Rev. A 84, (2011)

65 n Laser fields represent plane (b) Tetrehedral Geometry waves with wave-vectors forming a tetrahedron: (d) Spectrum à Modified closed loop setup produces a 3D Rashba-Dresselhaus SOC B. Anderson, G. Juzeliūnas, I. B. Spielman, and V. Galitski, Phys. Rev. Lett. 108, (2012) [Editor s Choice paper].

66 n Laser fields represent plane (b) Tetrehedral Geometry waves with wave-vectors forming a tetrahedron: (d) Spectrum à Closed loop setup produces a 3D Rashba-Dresselhaus SOC Minimum of atomic energy - the sphere (in the momentum space) B. Anderson, G. Juzeliūnas, I. B. Spielman, and V. Galitski, Phys. Rev. Lett. 108, (2012) [Editor s Choice paper].

67 The schemes for creating 2D and 3D SOC involve complex atom-light coupling and have not yet been implemented

68 Experimental implementation of the 1D SOC (using a simpler scheme) Y.-J. Lin, K. Jimenez-Garcıa and I. B. Spielman, Nature 471, 83 (2011).

69 Experimental implementation of the 1D SOC (using a simpler scheme) Y.-J. Lin, K. Jimenez-Garcıa and I. B. Spielman, Nature 471, 83 (2011). J.-Y. Zhang et al. Pan, Phys. Rev. Lett. 109, (2012). P. J. Wang et al, Phys. Rev. Lett. 109, (2012). L. W. Cheuk et a;, Phys. Rev. Lett. 109, (2012). C. Qu et al, Phys. Rev. A 88, (R) (2013).

70 Spin-orbit coupling using a simpler scheme Y.-J. Lin, K. Jimenez-Garcıa and I. B. Spielman, Nature 471, 83 (2011). Raman coupling between the F=1 ground state manifold of 87 Rb: (transitions between m F =-1 and m F =0 are in resonance)

71 Spin-orbit coupling using a simpler scheme Y.-J. Lin, K. Jimenez-Garcıa and I. B. Spielman, Nature 471, 83 (2011). Raman coupling between the F=1 ground state manifold of 87 Rb: (transitions between m F =-1 and m F =0 are in resonance) Large quadratic Zeeman shift à m F =1 state can be neglected

72 Spin-orbit coupling using a simpler scheme Y.-J. Lin, K. Jimenez-Garcıa and I. B. Spielman, Nature 471, 83 (2011). Raman coupling between the F=1 ground state manifold of 87 Rb: (transitions between m F =-1 and m F =0 are in resonance) Large quadratic Zeeman shift à m F =1 state can be neglected à An effective two level system (coupled by Raman transitions with a recoil)

73 Spin-orbit coupling using a simpler scheme Y.-J. Lin, K. Jimenez-Garcıa and I. B. Spielman, Nature 471, 83 (2011). Raman coupling between the F=1 ground state manifold of 87 Rb: (transitions between m F =-1 and m F =0 are in resonance) Large quadratic Zeeman shift à m F =1 state can be neglected à An effective two level system (coupled by Raman transitions with the recoil) Two states [to be called spin up and spin down states]

74 Spin-orbit coupling using a 2 level scheme Y.-J. Lin, K. Jimenez-Garcıa and I. B. Spielman, Nature 471, 83 (2011). Raman coupling between the the m F =-1 and m F =0 states of the F=1 ground state manifold of 87 Rb Two-level system Dispersion for δ=0 [Two parabolas shifted by the recoil momentum]

75 Spin-orbit coupling using a 2 level scheme Y.-J. Lin, K. Jimenez-Garcıa and I. B. Spielman, Nature 471, 83 (2011). Dispersion for δ=0 ( H = p χσ y) 2 2m + Ω 2 σ z Abelian (1D) vector potential (but non-trivial situation if Ω 0) (1D SOC)

76 Spin-orbit coupling using a 2 level scheme Y.-J. Lin, K. Jimenez-Garcıa and I. B. Spielman, Nature 471, 83 (2011). Dispersion for δ=0 ( H = p χσ y) 2 2m + Ω 2 σ z Abelian (1D) vector potential (but non-trivial situation if Ω 0) H = p2 2m χ pσ y m + Ω 2 σ z + const (1D SOC)

77 A relatively simple scheme to create 2D or 3D SOC?

78 Magnetically-induced SOC B.M. Anderson, I.B. Spielman and G. Juzeliūnas, Phys. Rev. Lett. 111, (2013). Z.F. Xu, L. You and M. Ueda, Phys. Rev. A (2013). A relatively simple scheme to create 2D or 3D SOC (without involving any light beams, any complex atom-light coupling)

79 Magnetically-induced SOC Atom in inhomogeneous -me- dependent magne-c field B=B(r,t):

80 Magnetically-induced SOC Atom in inhomogeneous -me- dependent magne-c field B=B(r,t): F spin operator For spin ½, F =σ/2

81 Magnetically-induced SOC Atom in inhomogeneous -me- dependent magne-c field B=B(r,t): Generation of 2D SOC Magnetic pulses:

82 Short Magnetic pulses: Ω y Ω x

83 Short Magnetic pulses: Ω y Ω x & Ω y induce spin-dep. force along y & x: Ω x à spin-dependent mom. kick along y & x:

84 Short Magnetic pulses: Ω y Ω x Ω x induces spin-dep. momentum kick along y: à Evolution operator:

85 Short Magnetic pulses: Ω y Ω x Ω x induces spin-dep. momentum kick along y: à Evolution operator: à Formation of 1D SOC (in y direction)

86 Short Magnetic pulses: Ω y U y : x y Ω x Ω x induces spin-dep. momentum kick along y: à Evolution operator: à Formation of 1D SOC (in y or x direction)

87 Total evolution operator after two pulses: H 2D - 2D Rashba-type Hamiltonian (small τ ):

88 Total evolution operator after two pulses: H 2D - 2D Rashba-type Hamiltonian (small τ ): à Formation of 2D SOC (Zero- order Floquet Hamiltonian)

89 Total evolution operator after two pulses: H 2D - 2D Rashba-type Hamiltonian (small τ ): 2D spin-orbit coupling Additional quadratic Zeman term

90 Total evolution operator after two pulses: H 2D - 2D Rashba-type Hamiltonian (small τ ): Can be extended to non-delta pulses:

91 Non-delta pulses:

92 Proposed experimental setup:

93 Finite pulse durations:

94 3D SOC:

95 For more details see B.M. Anderson, I.B. Spielman and G. Juzeliūnas, Phys. Rev. Lett. 111, (2013).

96 Spin-orbit Coupling using bilayer atoms, Q. Sun et at, arxiv: v 1D SOC in each layer (in 1 or 2 direct.) + Interlayer coupling (a) (b) (c) q y Q 2 Q1 Q 1 Q 2 q x

97 Spin-orbit Coupling using bilayer atoms, Q. Sun et at, arxiv: v 1D SOC in each layer (in 1 or 2 direct.) + Interlayer coupling v Effectively 2D SOC is generated (a) (b) (c) q y Q 2 Q1 Q 1 Q 2 q x

98 Spin-orbit Coupling using bilayer atoms, Q. Sun et at, arxiv: v 1D SOC in each layer (in 1 or 2 direct.) + Interlayer coupling v Effectively 2D SOC is generated v Interesing quantum phases for such a SOC BEC (a) (b) PW SP I SP II (c) q y Q 2 q x α HSL SP II Q1 Q 1 Q g / g g

99 Optical lattices in extra dimensions

100 Optical lattices in extra dimensions F=1, m = -1, 0, 1 Raman transitions between magnetic sublevels m (extra dimension)

101 Optical lattices in extra dimensions F=1, m = -1, 0, 1 Raman transitions between magnetic sublevels m (extra dimension) Ω0e ikx - Raman Rabi frequency (recoil in x direction)

102 Optical lattices in extra dimensions F=1, m = -1, 0, 1 Raman transitions between magnetic sublevels m (extra dimension) Ω0e ikx - Raman Rabi frequency (recoil in x direction) 1D chain of atoms (real dimension) x

103 Optical lattices in extra dimensions F=1, m = -1, 0, 1 Raman transitions between magnetic sublevels m (extra dimension) Ω0e ikx - Raman Rabi frequency γ=ka 1D chain of atoms (real dimension) Tunneling in real dimension and Raman transitions in the extra dimensions yield a 2D lattice involving real and extra dimensions x

104 Optical lattices in extra dimensions F=1, m = -1, 0, 1 Raman transitions between magnetic sublevels m (extra dimension) Ω0e ikx - Raman Rabi frequency γ=ka 1D chain of atoms (real dimension) Combination of real and extra dimensions yields strong & non-staggered magnetic flux γ=ka per 2D plaquette x

105 Optical lattices in extra dimensions F=1, m = -1, 0, 1 Raman transitions between magnetic sublevels m (extra dimension) Ω0e ikx - Raman Rabi frequency γ=ka 1D chain of atoms (real dimension) Combination of real and extra dimensions yields strong & non-staggered magnetic flux γ=ka per 2D plaquette x

106 Optical lattices in extra dimensions F=1, m = -1, 0, 1 Raman transitions between magnetic sublevels m (extra dimension) Ω0e ikx - Raman Rabi frequency γ=ka 1D chain of atoms (real dimension) Combination of real and extra dimensions yields strong & non-staggered magnetic flux γ=ka per 2D plaquette x

107 Optical lattices in extra dimensions Raman transitions between magnetic sublevels m (extra dimension) F=1, m = -1, 0, 1 Ω0e ikx - Raman Rabi frequency γ=ka 1D chain of atoms (real dimension) Sharp boundaries in extra dimension: Conducting edge states in extra dimension x

108 Optical lattices in extra dimensions Dispersion branches: Raman transitions between magnetic sublevels m (extra dimension) Ω0e ikx - Raman Rabi frequency γ=ka x γ=ka=1.0 1D chain of atoms (real dimension) Ω0/t=0.1 Sharp boundaries in extra dimension: Conducting edge states in extra dimension

109 Optical lattices in extra dimensions Dispersion branches: Raman transitions between magnetic sublevels m (extra dimension) Ω0e ikx - Raman Rabi frequency γ=ka x γ=ka=1.0 Edge states 1D chain of atoms (real dimension) Ω0/t=0.1 Sharp boundaries in extra dimension: Conducting edge states in extra dimension Atoms with opposite spins move in opposite directions

110 Optical lattices in extra dimensions Dispersion branches: Raman transitions between magnetic sublevels m (extra dimension) Ω0e ikx - Raman Rabi frequency γ=ka Landau Level x γ=ka=1.0 Edge states 1D chain of atoms (real dimension) Ω0/t=0.1 Sharp boundaries in extra dimension: Conducting edge states in extra dimension Atoms with opposite spins move in opposite directions

111 Optical lattices in extra dimensions Dispersion branches: Raman transitions between magnetic sublevels m (extra dimension) Ω0e ikx - Raman Rabi frequency γ=ka x γ=ka=1.0 Edge states 1D chain of atoms (real dimension) Ω0/t=0.1 Atoms with opposite spins move in opposite directions Scattering of edge states by a short-range potential (???)

112 Optical lattices in extra dimensions Dispersion branches: Spin-independent potential (road block) γ=ka x γ=ka=1.0 Edge states 1D chain of atoms (real dimension) Ω0/t=0.1 Atoms with opposite spins move in opposite directions Scattering of edge states by a short-range potential (???)

113 Optical lattices in extra dimensions Dispersion branches: Spin-dependent potential (perturbation for m=1) γ=ka x γ=ka=1.0 Edge states 1D chain of atoms (real dimension) Ω0/t=0.1 Atoms with opposite spins move in opposite directions Scattering of edge states by a short-range potential (???)

114 Optical lattices in extra dimensions Dispersion branches: Spin-dependent potential (perturbation for m=0) γ=ka x γ=ka=1.0 Edge states 1D chain of atoms (real dimension) Ω0/t=0.1 Atoms with opposite spins move in opposite directions Scattering of edge states by a short-range potential (???)

115 Optical lattices in extra dimensions Dispersion branches: Spin-dependent potential (perturbation for m= -1) γ=ka x γ=ka=1.0 Edge states 1D chain of atoms (real dimension) Ω0/t=0.1 Atoms with opposite spins move in opposite directions Scattering of edge states by a short-range potential (???)

116 Optical lattices in extra dimensions Dispersion branches: Spin-independent potential (road block) γ=ka x γ=ka=1.0 Edge states 1D chain of atoms (real dimension) Ω0/t=0.1 Atoms with opposite spins move in opposite directions Scattering of edge states by a short-range potential (???)

117 Optical lattices in extra dimensions Scattering of edge state atoms by a short-range potential: Dispersion branches: γ=ka=1.0 Ω0/t=0.1 Blue line - spin-independent perturbation (road block), red - perturbation for m=±1, green - perturbation for m=0 Edge (spin-up & spin-down) states

118 Optical lattices in extra dimensions Scattering of edge state atoms by a short-range potential: Dispersion branches: γ=ka=1.0 Ω0/t=0.1 Blue line - spin-independent perturbation (road block), red - perturbation for m=±1, green - perturbation for m=0 Edge (spin-up & spin-down) states Two scattering peaks for higher energies Immune to scattering

119 Closed boundary condition along the extra dimension Various possibilities: - Combination of Raman and two-photon IR transitions: mf = Connecting different F manifolds via rf fields: rf rf

120 Energy spectrum of spin-1 atoms, closed boundary Formation of Hofstadter butterfly using artificial dimensions

121

122

123

124

125 n n n n Conclusions The light induced non-abelian vector potential can simulate the spin-orbit coupling (SOC) of the Rashba-Dresselhaus-type for ultracold atoms (2D SOC or even 3D SOC!). Up to now experimentally only a simpler 1D SOC has been implemented (Abelian yet non-trivial). Possible solutions: Magnetically induced SOC: [B.M. Anderson, I.B. Spielman and G. Juzeliūnas, PRL 111, (2013). Z.F. Xu, L. You and M. Ueda, PRA (2013)] or using bilayer atoms: Q. Sun et at, arxiv: Non-staggered magnetic flux in optical lattices using synthetic dimensions [A. Celi, P. Massignan, J. Ruseckas, N. Goldman, I. B. Spielman, G. Juzeliūnas, and M. Lewenstein, Phys. Rev. Lett. 112, (2014)].

126 Recent reviews: Artificial gauge potentials n J. Dalibard, F. Gerbier, G. Juzeliūnas and P. Öhberg, Rev. Mod. Phys. 83, 1523 (2011). n N. Goldman, G. Juzeliūnas, P. Öhberg and I.B. Spielman, arxiv: (Submitted to Rep. Progr. Phys., 2013). Spin-orbit coupling n V. Galitski and I.B. Spielman I B Nature 494, 49 (2013) H. Zhai, arxiv: (2014) (Submitted to Rep. Progr. Phys., 2013)

127 Thank you!

Artificial magnetism and optical flux lattices for ultra cold atoms

Artificial magnetism and optical flux lattices for ultra cold atoms Artificial magnetism and optical flux lattices for ultra cold atoms Gediminas Juzeliūnas Institute of Theoretical Physics and Astronomy,Vilnius University, Vilnius, Lithuania Kraków, QTC, 31 August 2011

More information

Engineering Dresselhaus spin-orbit coupling for cold atoms in a double tripod configuration

Engineering Dresselhaus spin-orbit coupling for cold atoms in a double tripod configuration Engineering Dresselhaus spin-orbit coupling for cold atoms in a double tripod configuration G. Juzeliūnas a,j.ruseckas a,d.l.campbell b and I. B. Spielman b a Institute of Theoretical Physics and Astronomy,

More information

Artificial Gauge Fields for Neutral Atoms

Artificial Gauge Fields for Neutral Atoms Artificial Gauge Fields for Neutral Atoms Simon Ristok University of Stuttgart 07/16/2013, Hauptseminar Physik der kalten Gase 1 / 29 Outline 1 2 3 4 5 2 / 29 Outline 1 2 3 4 5 3 / 29 What are artificial

More information

Engineering Dresselhaus spin-orbit coupling for cold atoms in a double tripod configuration

Engineering Dresselhaus spin-orbit coupling for cold atoms in a double tripod configuration Engineering Dresselhaus spin-orbit coupling for cold atoms in a double tripod configuration G. Juzeliūnas a,j.ruseckas a,d.l.campbell b and I. B. Spielman b a Institute of Theoretical Physics and Astronomy,

More information

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas / 6 Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas Giovanni Italo Martone with G. V. Shlyapnikov Worhshop on Exploring Nuclear Physics with Ultracold Atoms

More information

Topological Bandstructures for Ultracold Atoms

Topological Bandstructures for Ultracold Atoms Topological Bandstructures for Ultracold Atoms Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106,

More information

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Generation of a synthetic vector potential in ultracold neutral Rubidium

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Generation of a synthetic vector potential in ultracold neutral Rubidium 3-8 Conference on Research Frontiers in Ultra-Cold Atoms 4-8 May 9 Generation of a synthetic vector potential in ultracold neutral Rubidium SPIELMAN Ian National Institute of Standards and Technology Laser

More information

Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas

Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas Tarik Yefsah Lawrence Cheuk, Ariel Sommer, Zoran Hadzibabic, Waseem Bakr and Martin Zwierlein July 20, 2012 ENS Why spin-orbit coupling? A

More information

Manipulation of Artificial Gauge Fields for Ultra-cold Atoms

Manipulation of Artificial Gauge Fields for Ultra-cold Atoms Manipulation of Artificial Gauge Fields for Ultra-cold Atoms Shi-Liang Zhu ( 朱诗亮 ) slzhu@scnu.edu.cn Laboratory of Quantum Information Technology and School of Physics South China Normal University, Guangzhou,

More information

Spin-orbit-coupled quantum gases to be held at KITPC Beijing from August 1 to 19, Schedule of talks

Spin-orbit-coupled quantum gases to be held at KITPC Beijing from August 1 to 19, Schedule of talks 3 week KITPC mini-program on Spin-orbit-coupled quantum gases to be held at KITPC Beijing from August 1 to 19, 2016 Schedule of talks for the second and third weeks of the Program (August 8-18) All talks

More information

Atomic Zitterbewegung

Atomic Zitterbewegung Atomic Zitterbewegung M. Merkl, F. E. Zimmer, and P. Öhberg SUPA, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH4 4AS, United Kingdom G. Juzeliūnas Institute of Theoretical

More information

Optical Flux Lattices for Cold Atom Gases

Optical Flux Lattices for Cold Atom Gases for Cold Atom Gases Nigel Cooper Cavendish Laboratory, University of Cambridge Artificial Magnetism for Cold Atom Gases Collège de France, 11 June 2014 Jean Dalibard (Collège de France) Roderich Moessner

More information

Quantum simulation of an extra dimension

Quantum simulation of an extra dimension Quantum simulation of an extra dimension Alessio Celi based on PRL 108, 133001 (2012), with O. Boada, J.I. Latorre, M. Lewenstein, Quantum Technologies Conference III QTC III, Warzsawa, 14/09/2012 p. 1/14

More information

Topology and many-body physics in synthetic lattices

Topology and many-body physics in synthetic lattices Topology and many-body physics in synthetic lattices Alessio Celi Synthetic dimensions workshop, Zurich 20-23/11/17 Synthetic Hofstadter strips as minimal quantum Hall experimental systems Alessio Celi

More information

arxiv: v1 [cond-mat.quant-gas] 31 Mar 2011

arxiv: v1 [cond-mat.quant-gas] 31 Mar 2011 Emergent patterns in a spin-orbit coupled spin-2 Bose-Einstein condensate arxiv:1103.6074v1 [cond-mat.quant-gas] 31 Mar 2011 Z. F. Xu, 1 R. Lü, 1 and L. You 1 1 Department of Physics, Tsinghua University,

More information

Synthetic gauge fields in Bose-Einstein Condensates 1. Alexander Fetter Stanford University. University of Hannover, May 2015

Synthetic gauge fields in Bose-Einstein Condensates 1. Alexander Fetter Stanford University. University of Hannover, May 2015 Synthetic gauge fields in Bose-Einstein Condensates 1 Alexander Fetter Stanford University University of Hannover, May 2015 1. Two-component trapped spin-orbit coupled Bose-Einstein condensate (BEC) 2.

More information

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs INT Seattle 5 March 5 ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs Yun Li, Giovanni Martone, Lev Pitaevskii and Sandro Stringari University of Trento CNR-INO Now in Swinburne Now in Bari Stimulating discussions

More information

Magnetic fields and lattice systems

Magnetic fields and lattice systems Magnetic fields and lattice systems Harper-Hofstadter Hamiltonian Landau gauge A = (0, B x, 0) (homogeneous B-field). Transition amplitude along x gains y-dependence: J x J x e i a2 B e y = J x e i Φy

More information

Experimental realization of spin-orbit coupled degenerate Fermi gas. Jing Zhang

Experimental realization of spin-orbit coupled degenerate Fermi gas. Jing Zhang Hangzhou Workshop on Quantum Matter, 2013 Experimental realization of spin-orbit coupled degenerate Fermi gas Jing Zhang State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of

More information

Ytterbium quantum gases in Florence

Ytterbium quantum gases in Florence Ytterbium quantum gases in Florence Leonardo Fallani University of Florence & LENS Credits Marco Mancini Giacomo Cappellini Guido Pagano Florian Schäfer Jacopo Catani Leonardo Fallani Massimo Inguscio

More information

Filled Landau levels in neutral quantum gases

Filled Landau levels in neutral quantum gases Filled Landau levels in neutral quantum gases P. Öhberg, 1 G. Juzeliūnas, J. Ruseckas,,3 and M. Fleischhauer 3 1 Department of Physics, University of Strathclyde, Glasgow G4 0NG, Scotland Institute of

More information

Experimental Demonstration of Spinor Slow Light

Experimental Demonstration of Spinor Slow Light Experimental Demonstration of Spinor Slow Light Ite A. Yu Department of Physics Frontier Research Center on Fundamental & Applied Sciences of Matters National Tsing Hua University Taiwan Motivation Quantum

More information

Experimental reconstruction of the Berry curvature in a topological Bloch band

Experimental reconstruction of the Berry curvature in a topological Bloch band Experimental reconstruction of the Berry curvature in a topological Bloch band Christof Weitenberg Workshop Geometry and Quantum Dynamics Natal 29.10.2015 arxiv:1509.05763 (2015) Topological Insulators

More information

Magnetic Crystals and Helical Liquids in Alkaline-Earth 1D Fermionic Gases

Magnetic Crystals and Helical Liquids in Alkaline-Earth 1D Fermionic Gases Magnetic Crystals and Helical Liquids in Alkaline-Earth 1D Fermionic Gases Leonardo Mazza Scuola Normale Superiore, Pisa Seattle March 24, 2015 Leonardo Mazza (SNS) Exotic Phases in Alkaline-Earth Fermi

More information

Laboratoire Kastler Brossel Collège de France, ENS, UPMC, CNRS. Artificial gauge potentials for neutral atoms

Laboratoire Kastler Brossel Collège de France, ENS, UPMC, CNRS. Artificial gauge potentials for neutral atoms Laboratoire Kastler Brossel Collège de France, ENS, UPMC, CNRS Artificial gauge potentials for neutral atoms Fabrice Gerbier Workshop Hadrons and Nuclear Physics meet ultracold atoms, IHP, Paris January

More information

Quantum Quenches in Chern Insulators

Quantum Quenches in Chern Insulators Quantum Quenches in Chern Insulators Nigel Cooper Cavendish Laboratory, University of Cambridge CUA Seminar M.I.T., November 10th, 2015 Marcello Caio & Joe Bhaseen (KCL), Stefan Baur (Cambridge) M.D. Caio,

More information

Experimental realization of spin-orbit coupling in degenerate Fermi gas. Jing Zhang

Experimental realization of spin-orbit coupling in degenerate Fermi gas. Jing Zhang QC12, Pohang, Korea Experimental realization of spin-orbit coupling in degenerate Fermi gas Jing Zhang State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics,

More information

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in D Fermi Gases Carlos A. R. Sa de Melo Georgia Institute of Technology QMath13 Mathematical Results in Quantum

More information

Mapping the Berry Curvature of Optical Lattices

Mapping the Berry Curvature of Optical Lattices Mapping the Berry Curvature of Optical Lattices Nigel Cooper Cavendish Laboratory, University of Cambridge Quantum Simulations with Ultracold Atoms ICTP, Trieste, 16 July 2012 Hannah Price & NRC, PRA 85,

More information

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES Congresso Nazionale della Società Italiana di Fisica Università della Calabria 17/21 Settembre 2018 SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES Sandro Stringari Università di Trento CNR-INO - Bose-Einstein

More information

Universal trimers in spin-orbit coupled Fermi gases

Universal trimers in spin-orbit coupled Fermi gases Universal trimers in spin-orbit coupled Fermi gases Wei Yi ( 易为 ) University of Science and Technology of China Few-body Conference, Beijing 14/04/2016 Wei Yi (USTC) Beijing, April 2016 1 / 20 Acknowledgement

More information

Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014

Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014 Cavity Optomechanics with synthetic Landau Levels of ultra cold atoms: Sankalpa Ghosh, Physics Department, IIT Delhi Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, 043603 (2013)! HRI, Allahabad,Cold

More information

Loop current order in optical lattices

Loop current order in optical lattices JQI Summer School June 13, 2014 Loop current order in optical lattices Xiaopeng Li JQI/CMTC Outline Ultracold atoms confined in optical lattices 1. Why we care about lattice? 2. Band structures and Berry

More information

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007 1859-5 Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases 27 August - 7 September, 2007 Dipolar BECs with spin degrees of freedom Yuki Kawaguchi Tokyo Institute of

More information

Exploring Topological Phases With Quantum Walks

Exploring Topological Phases With Quantum Walks Exploring Topological Phases With Quantum Walks Tk Takuya Kitagawa, Erez Berg, Mark Rudner Eugene Demler Harvard University References: PRA 82:33429 and PRB 82:235114 (2010) Collaboration with A. White

More information

E. Ruokokoski, J. A. M. Huhtamäki, and M. Möttönen Stationary states of trapped spin-orbit-coupled Bose-Einstein condensates

E. Ruokokoski, J. A. M. Huhtamäki, and M. Möttönen Stationary states of trapped spin-orbit-coupled Bose-Einstein condensates Powered by TCPDF (www.tcpdf.org) This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Title: E. Ruokokoski,

More information

Spontaneous Loop Currents and Emergent Gauge Fields in Optical Lattices

Spontaneous Loop Currents and Emergent Gauge Fields in Optical Lattices IASTU Condensed Matter Seminar July, 2015 Spontaneous Loop Currents and Emergent Gauge Fields in Optical Lattices Xiaopeng Li ( 李晓鹏 ) CMTC/JQI University of Maryland [Figure from JQI website] Gauge fields

More information

synthetic condensed matter systems

synthetic condensed matter systems Ramsey interference as a probe of synthetic condensed matter systems Takuya Kitagawa (Harvard) DimaAbanin i (Harvard) Mikhael Knap (TU Graz/Harvard) Eugene Demler (Harvard) Supported by NSF, DARPA OLE,

More information

TOPOLOGICAL SUPERFLUIDS IN OPTICAL LATTICES

TOPOLOGICAL SUPERFLUIDS IN OPTICAL LATTICES TOPOLOGICAL SUPERFLUIDS IN OPTICAL LATTICES Pietro Massignan Quantum Optics Theory Institute of Photonic Sciences Barcelona QuaGATUA (Lewenstein) 1 in collaboration with Maciej Lewenstein Anna Kubasiak

More information

Interference between quantum gases

Interference between quantum gases Anderson s question, and its answer Interference between quantum gases P.W. Anderson: do two superfluids which have never "seen" one another possess a relative phase? MIT Jean Dalibard, Laboratoire Kastler

More information

Quantum simulation with SU(N) fermions: orbital magnetism and synthetic dimensions. Leonardo Fallani

Quantum simulation with SU(N) fermions: orbital magnetism and synthetic dimensions. Leonardo Fallani Quantum simulation with SU(N) fermions: orbital magnetism and synthetic dimensions Frontiers in Quantum Simulation with Cold Atoms, Seattle, April 1 st 2015 Leonardo Fallani Department of Physics and Astronomy

More information

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics 1 Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics Instructor Eugene Demler Office: Lyman 322 Email: demler@physics.harvard.edu Teaching Fellow

More information

Ultracold atomic gases in non-abelian gauge potentials: The case of constant Wilson loop

Ultracold atomic gases in non-abelian gauge potentials: The case of constant Wilson loop Ultracold atomic gases in non-abelian gauge potentials: The case of constant Wilson loop N. Goldman, 1 A. Kubasiak, 2,3 P. Gaspard, 1 and M. Lewenstein 2,4 1 Center for Nonlinear Phenomena and Complex

More information

Vortices and other topological defects in ultracold atomic gases

Vortices and other topological defects in ultracold atomic gases Vortices and other topological defects in ultracold atomic gases Michikazu Kobayashi (Kyoto Univ.) 1. Introduction of topological defects in ultracold atoms 2. Kosterlitz-Thouless transition in spinor

More information

Measuring many-body topological invariants using polarons

Measuring many-body topological invariants using polarons 1 Anyon workshop, Kaiserslautern, 12/15/2014 Measuring many-body topological invariants using polarons Fabian Grusdt Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Germany

More information

Synthetic topology and manybody physics in synthetic lattices

Synthetic topology and manybody physics in synthetic lattices Synthetic topology and manybody physics in synthetic lattices Alessio Celi EU STREP EQuaM May 16th, 2017 Atomtronics - Benasque Plan Integer Quantum Hall systems and Edge states Cold atom realizations:

More information

Quantum Information Processing and Quantum Simulation with Ultracold Alkaline-Earth Atoms in Optical Lattices

Quantum Information Processing and Quantum Simulation with Ultracold Alkaline-Earth Atoms in Optical Lattices Quantum Information Processing and Quantum Simulation with Ultracold Alkaline-Earth Atoms in Optical Lattices Alexey Gorshkov California Institute of Technology Mikhail Lukin, Eugene Demler, Cenke Xu -

More information

arxiv: v1 [quant-ph] 3 Nov 2015

arxiv: v1 [quant-ph] 3 Nov 2015 Nonadiabatic holonomic single-qubit gates in off-resonant Λ systems Erik Sjöqvist a arxiv:1511.00911v1 [quant-ph] 3 Nov 015 a Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 0

More information

Ultracold atomic gas in non-abelian gauge potentials: the quantum Hall effect supremacy

Ultracold atomic gas in non-abelian gauge potentials: the quantum Hall effect supremacy Ultracold atomic gas in non-abelian gauge potentials: the quantum Hall effect supremacy N. Goldman, 1 A. Kubasiak, 2, 3 P. Gaspard, 1 and M. Lewenstein 2, 4 1 Center for Nonlinear Phenomena and Complex

More information

Quantum noise studies of ultracold atoms

Quantum noise studies of ultracold atoms Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin, Anatoli Polkovnikov Funded by NSF,

More information

Adiabatic trap deformation for preparing Quantum Hall states

Adiabatic trap deformation for preparing Quantum Hall states Marco Roncaglia, Matteo Rizzi, and Jean Dalibard Adiabatic trap deformation for preparing Quantum Hall states Max-Planck Institut für Quantenoptik, München, Germany Dipartimento di Fisica del Politecnico,

More information

Learning about order from noise

Learning about order from noise Learning about order from noise Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin, Anatoli

More information

Measuring atomic NOON-states and using them to make precision measurements

Measuring atomic NOON-states and using them to make precision measurements Measuring atomic NOON-states and using them to make precision measurements David W. Hallwood, Adam Stokes, Jessica J. Cooper and Jacob Dunningham School of Physics and Astronomy, University of Leeds, Leeds,

More information

arxiv: v1 [cond-mat.other] 18 Jan 2008

arxiv: v1 [cond-mat.other] 18 Jan 2008 arxiv:81.935v1 [cond-mat.other] 18 Jan 8 Landau levels of cold atoms in non-abelian gauge fields A. Jacob 1, P. Öhberg, G. Juzeliūnas 3 and L. Santos 1 1 Institut für Theoretische Physik, Leibniz Universität

More information

Hong-Ou-Mandel effect with matter waves

Hong-Ou-Mandel effect with matter waves Hong-Ou-Mandel effect with matter waves R. Lopes, A. Imanaliev, A. Aspect, M. Cheneau, DB, C. I. Westbrook Laboratoire Charles Fabry, Institut d Optique, CNRS, Univ Paris-Sud Progresses in quantum information

More information

Quantum Simulation with Rydberg Atoms

Quantum Simulation with Rydberg Atoms Hendrik Weimer Institute for Theoretical Physics, Leibniz University Hannover Blaubeuren, 23 July 2014 Outline Dissipative quantum state engineering Rydberg atoms Mesoscopic Rydberg gates A Rydberg Quantum

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Anatoli Polkovnikov Boston University Ehud Altman Weizmann Vladimir Gritsev Harvard Mikhail

More information

Adiabatic Control of Atomic Dressed States for Transport and Sensing

Adiabatic Control of Atomic Dressed States for Transport and Sensing Adiabatic Control of Atomic Dressed States for Transport and Sensing N. R. Cooper T.C.M. Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 HE, United Kingdom A.

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

Experimental Reconstruction of the Berry Curvature in a Floquet Bloch Band

Experimental Reconstruction of the Berry Curvature in a Floquet Bloch Band Experimental Reconstruction of the Berry Curvature in a Floquet Bloch Band Christof Weitenberg with: Nick Fläschner, Benno Rem, Matthias Tarnowski, Dominik Vogel, Dirk-Sören Lühmann, Klaus Sengstock Rice

More information

In Situ Imaging of Cold Atomic Gases

In Situ Imaging of Cold Atomic Gases In Situ Imaging of Cold Atomic Gases J. D. Crossno Abstract: In general, the complex atomic susceptibility, that dictates both the amplitude and phase modulation imparted by an atom on a probing monochromatic

More information

Cold Quantum Gas Group Hamburg

Cold Quantum Gas Group Hamburg Cold Quantum Gas Group Hamburg Fermi-Bose-Mixture BEC in Space Spinor-BEC Atom-Guiding in PBF Fermi Bose Mixture Project Quantum Degenerate Fermi-Bose Mixtures of 40K/87Rb at Hamburg: since 5/03 Special

More information

From optical graphene to topological insulator

From optical graphene to topological insulator From optical graphene to topological insulator Xiangdong Zhang Beijing Institute of Technology (BIT), China zhangxd@bit.edu.cn Collaborator: Wei Zhong (PhD student, BNU) Outline Background: From solid

More information

Multi-Body Interacting Bosons. Dmitry Petrov Laboratoire Physique Théorique et Modèles Statistiques (Orsay)

Multi-Body Interacting Bosons. Dmitry Petrov Laboratoire Physique Théorique et Modèles Statistiques (Orsay) Multi-Body Interacting Bosons Dmitry Petrov Laboratoire Physique Théorique et Modèles Statistiques (Orsay) Outline Effective multi-body interactions Multi-body interacting systems. Why interesting? How

More information

Quantum Electrodynamics with Ultracold Atoms

Quantum Electrodynamics with Ultracold Atoms Quantum Electrodynamics with Ultracold Atoms Valentin Kasper Harvard University Collaborators: F. Hebenstreit, F. Jendrzejewski, M. K. Oberthaler, and J. Berges Motivation for QED (1+1) Theoretical Motivation

More information

COPYRIGHTED MATERIAL. Index

COPYRIGHTED MATERIAL. Index 347 Index a AC fields 81 119 electric 81, 109 116 laser 81, 136 magnetic 112 microwave 107 109 AC field traps see Traps AC Stark effect 82, 84, 90, 96, 97 101, 104 109 Adiabatic approximation 3, 10, 32

More information

Spin-orbit coupling in quantum gases

Spin-orbit coupling in quantum gases Spin-orbit coupling in quantum gases Victor Galitski 1,2 and Ian B. Spielman 1 1 Joint Quantum Institute, National Institute of Standards and Technology, and University of Maryland, Gaithersburg, Maryland,

More information

Matter wave interferometry beyond classical limits

Matter wave interferometry beyond classical limits Max-Planck-Institut für Quantenoptik Varenna school on Atom Interferometry, 15.07.2013-20.07.2013 The Plan Lecture 1 (Wednesday): Quantum noise in interferometry and Spin Squeezing Lecture 2 (Friday):

More information

Shortcuts To Adiabaticity: Theory and Application. Xi Chen

Shortcuts To Adiabaticity: Theory and Application. Xi Chen Correlations and Coherence in Quantum Systems Shortcuts To Adiabaticity: Theory and Application Xi Chen ( 陈玺 ) University of Basque Country, Spain Shanghai University, China Évora, Portugal, 8-12 October

More information

Quantum Metrology Optical Atomic Clocks & Many-Body Physics

Quantum Metrology Optical Atomic Clocks & Many-Body Physics Quantum Metrology Optical Atomic Clocks & Many-Body Physics Jun Ye JILA, National Institute of Standards & Technology and University of Colorado APS 4CS Fall 2011 meeting, Tucson, Oct. 22, 2011 Many-body

More information

Interplay of micromotion and interactions

Interplay of micromotion and interactions Interplay of micromotion and interactions in fractional Floquet Chern insulators Egidijus Anisimovas and André Eckardt Vilnius University and Max-Planck Institut Dresden Quantum Technologies VI Warsaw

More information

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University Quantum Memory with Atomic Ensembles Yong-Fan Chen Physics Department, Cheng Kung University Outline Laser cooling & trapping Electromagnetically Induced Transparency (EIT) Slow light & Stopped light Manipulating

More information

Spin orbit coupling in quantum gases

Spin orbit coupling in quantum gases REVIEW doi:1.138/nature11841 Spin orbit coupling in quantum gases Victor Galitski 1,2 & Ian B. Spielman 1 Spin orbit coupling links a particle s velocity to its quantum-mechanical spin, and is essential

More information

Spin-orbit coupling and topological phases for ultracold atoms

Spin-orbit coupling and topological phases for ultracold atoms Spin-orbit coupling and topological phases for ultracold atoms Long Zhang 1, 2 and Xiong-Jun Liu 1, 2 1 International Center for Quantum Materials, School of Physics, Peing University, Beijing 100871,

More information

Magnetism of spinor BEC in an optical lattice

Magnetism of spinor BEC in an optical lattice Magnetism of spinor BEC in an optical lattice Eugene Demler Physics Department, Harvard University Collaborators: Ehud Altman, Ryan Barnett, Luming Duan, Walter Hofstetter, Adilet Imambekov, Mikhail Lukin,

More information

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration Analysis ofbose Bose-Fermi Mixturesin in Optical Lattices Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock Project within FerMix collaboration Motivation

More information

arxiv: v2 [cond-mat.quant-gas] 14 Jul 2014

arxiv: v2 [cond-mat.quant-gas] 14 Jul 2014 Simulation of non-abelian lattice gauge fields with a single component gas arxiv:1403.1221v2 [cond-mat.quant-gas] 14 Jul 2014 Arkadiusz Kosior 1 and Krzysztof Sacha 1, 2 1 Instytut Fizyki imienia Mariana

More information

Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices

Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

More information

Correlated Phases of Bosons in the Flat Lowest Band of the Dice Lattice

Correlated Phases of Bosons in the Flat Lowest Band of the Dice Lattice Correlated Phases of Bosons in the Flat Lowest Band of the Dice Lattice Gunnar Möller & Nigel R Cooper Cavendish Laboratory, University of Cambridge Physical Review Letters 108, 043506 (2012) LPTHE / LPTMC

More information

Fermi liquids and fractional statistics in one dimension

Fermi liquids and fractional statistics in one dimension UiO, 26. april 2017 Fermi liquids and fractional statistics in one dimension Jon Magne Leinaas Department of Physics University of Oslo JML Phys. Rev. B (April, 2017) Related publications: M Horsdal, M

More information

Laser cooling and trapping

Laser cooling and trapping Laser cooling and trapping William D. Phillips wdp@umd.edu Physics 623 14 April 2016 Why Cool and Trap Atoms? Original motivation and most practical current application: ATOMIC CLOCKS Current scientific

More information

INT International Conference, Frontiers in Quantum Simulation with Cold Atoms, March 30 April 2, 2015

INT International Conference, Frontiers in Quantum Simulation with Cold Atoms, March 30 April 2, 2015 Ana Maria Rey INT International Conference, Frontiers in Quantum Simulation with Cold Atoms, March 30 April 2, 2015 The JILA Sr team: Jun Ye A. Koller Theory: S. Li X. Zhang M. Bishof S. Bromley M. Martin

More information

LECTURE 3 - Artificial Gauge Fields

LECTURE 3 - Artificial Gauge Fields LECTURE 3 - Artificial Gauge Fields SSH model - the simplest Topological Insulator Probing the Zak Phase in the SSH model - Bulk-Edge correspondence in 1d - Aharonov Bohm Interferometry for Measuring Band

More information

Quantum Information Storage with Slow and Stopped Light

Quantum Information Storage with Slow and Stopped Light Quantum Information Storage with Slow and Stopped Light Joseph A. Yasi Department of Physics, University of Illinois at Urbana-Champaign (Dated: December 14, 2006) Abstract This essay describes the phenomena

More information

Interference experiments with ultracold atoms

Interference experiments with ultracold atoms Interference experiments with ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Anton Burkov, Robert Cherng, Adilet Imambekov, Serena Fagnocchi, Vladimir Gritsev, Mikhail Lukin,

More information

POEM: Physics of Emergent Materials

POEM: Physics of Emergent Materials POEM: Physics of Emergent Materials Nandini Trivedi L1: Spin Orbit Coupling L2: Topology and Topological Insulators Tutorials: May 24, 25 (2017) Scope of Lectures and Anchor Points: 1.Spin-Orbit Interaction

More information

Li You, Georgia Tech (KITP Quantum Gases Conf 5/13/04) 1

Li You, Georgia Tech (KITP Quantum Gases Conf 5/13/04) 1 Li You D. L. Zhou B. Zeng, M. Zhang, Z. Xu (Tsinghua Univ.) C. P. Sun, (ITP) Li You, Georgia Tech (KITP Quantum Gases Conf 5/3/04) i (,,, +,, e ϕ ) -GH Z =, i ( e ϕ ) = + W. M. Itano et al., Phs. Rev.

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

Exploring long-range interacting quantum many-body systems with Rydberg atoms

Exploring long-range interacting quantum many-body systems with Rydberg atoms Exploring long-range interacting quantum many-body systems with Rydberg atoms Christian Groß Max-Planck-Institut für Quantenoptik Hannover, November 2015 Motivation: Quantum simulation Idea: Mimicking

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University September 18, 2014 2 Chapter 5 Atoms in optical lattices Optical lattices

More information

Atomic Coherent Trapping and Properties of Trapped Atom

Atomic Coherent Trapping and Properties of Trapped Atom Commun. Theor. Phys. (Beijing, China 46 (006 pp. 556 560 c International Academic Publishers Vol. 46, No. 3, September 15, 006 Atomic Coherent Trapping and Properties of Trapped Atom YANG Guo-Jian, XIA

More information

EE-LE E OPTI T C A L S Y TE

EE-LE E OPTI T C A L S Y TE 1> p p γ 1 γ > 3 c 3> p p +> > 1> THREE-LEVEL OPTICAL SYSTEMS . THREE-LEVEL OPTICAL SYSTEMS () OUTLINE.1 BASIC THEORY.1 STIRAP: stimulated raman adiabatic passage. EIT: electromagnetically induced transparency.3

More information

Rotating artificial gauge magnetic and electric fields

Rotating artificial gauge magnetic and electric fields Rotating artificial gauge magnetic and electric fields V. E. Lembessis 1, A.Alqarni 1, S.Alshamari 1, A.Siddig 1 ando.m.aldossary 1, 1. Department Physics Astronomy, King Saud University, P.O. Box 455,

More information

9 Atomic Coherence in Three-Level Atoms

9 Atomic Coherence in Three-Level Atoms 9 Atomic Coherence in Three-Level Atoms 9.1 Coherent trapping - dark states In multi-level systems coherent superpositions between different states (atomic coherence) may lead to dramatic changes of light

More information

MACROSCOPIC QUANTUM PHENOMENA IN SPIN- ORBIT COUPLED BOSE- EINSTEIN CONDENSATE AND THEIR IMPLICATIONS

MACROSCOPIC QUANTUM PHENOMENA IN SPIN- ORBIT COUPLED BOSE- EINSTEIN CONDENSATE AND THEIR IMPLICATIONS MACROSCOPIC QUANTUM PHENOMENA IN SPIN- ORBIT COUPLED BOSE- EINSTEIN CONDENSATE AND THEIR IMPLICATIONS SHIZHONG ZHANG 04.08.2011 INT, APRIL 2011 INTRODUCTION Solid State Physics: effects of magne3c field

More information

Engineering Synthetic Gauge Fields, Weyl Semimetals, and Anyons

Engineering Synthetic Gauge Fields, Weyl Semimetals, and Anyons Engineering Synthetic Gauge Fields, Weyl Semimetals, and Anyons Φ q Φ q Φ q T. Dubček 1, M. Todorić 1, B. Klajn 1, C. J. Kennedy 2, L. Lu 2, R. Pezer 5, D. Radić 1, D. Jukić 4, W. Ketterle 2, M. Soljačić

More information

arxiv: v3 [cond-mat.quant-gas] 30 Jul 2013

arxiv: v3 [cond-mat.quant-gas] 30 Jul 2013 Higgs-like Excitations of Cold Atom System with Spinorbit Coupling arxiv:1207.3707v3 [cond-mat.quant-gas] 30 Jul 2013 Fei-Jie Huang,Qi-Hui Chen,Wu-Ming Liu 1 National Laboratory for Condensed Matter Physics,

More information

Raman-Induced Oscillation Between an Atomic and Molecular Gas

Raman-Induced Oscillation Between an Atomic and Molecular Gas Raman-Induced Oscillation Between an Atomic and Molecular Gas Dan Heinzen Changhyun Ryu, Emek Yesilada, Xu Du, Shoupu Wan Dept. of Physics, University of Texas at Austin Support: NSF, R.A. Welch Foundation,

More information

Quantum Information Processing with Ultracold Atoms and Molecules in Optical Lattices

Quantum Information Processing with Ultracold Atoms and Molecules in Optical Lattices Quantum Information Processing with Ultracold Atoms and Molecules in Optical Lattices Mirta Rodríguez Instituto de Estructura de la Materia CSIC, Madrid SPAIN Overview I. Introduction II. III. IV. I. QIP

More information